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Mechanical cooling in single-photon optomechanics with quadratic nonlinearity

Wen-ju Gu,* Zhen Yi, Li-hui Sun, and Da-hai Xu
Institute of Quantum Optics and Information Photonics, School of Physics and Optoelectronic Engineering,

Yangtze University, Jingzhou 434023, China
(Received 2 April 2015; published 10 August 2015)

In the paper we study the nonlinear mechanical cooling processes in an intrinsic quadratically optomechanical
coupling system without linearizing the optomechanical interaction. We apply scattering theory to calculate the
transition rates between different mechanical Fock states using the resolvent of the Hamiltonian, which allows
for a direct identification of the underlying physical processes, where only even-phonon transitions are permitted
and odd-phonon transitions are forbidden. We verify the feasibility of the approach by comparing the steady-state
mean phonon number obtained from transition rates with the simulation of the full quantum master equation, and
also discuss the analytical results in the weak coupling limit that coincide with two-phonon mechanical cooling
processes. Furthermore, to evaluate the statistical properties of steady mechanical state, we respectively apply the
Mandel Q parameter to show that the oscillator can be in nonclassical mechanical states, and the phonon number
fluctuations F to display that the even-phonon transitions favor suppressing the phonon number fluctuations
compared to the linear coupling optomechanical system.

DOI: 10.1103/PhysRevA.92.023811 PACS number(s): 42.50.Wk, 42.65.−k, 07.10.Cm

I. INSTRUCTION

Realization of cooling of mechanical motion within the
vicinity of the quantum regime is a key ingredient for a
broad range of applications, including quantum information
processing (QIP) [1–3], high-precision measurement [4,5],
probing quantum behavior of macroscopic systems [6], etc.
Recently, theoretical and experimental studies have been
mainly focused on the linearized treatment of linear coupling
optomechanical system, where the coupling term is propor-
tional to the mechanical displacement x [7–9]. However,
some studies have begun to generalize the investigations
of nonlinear mechanical cooling processes, such as second-
sideband laser cooling of trapped ions [10] and cooling in the
single-photon strong optomechanical coupling regime [11],
which can lead to nonthermal steady states, and even the
nonclassical, sub-Poissonian states. Quantum systems far from
thermal equilibrium hold great promise for the investigation
of fundamental physics and the implementation of practical
devices [12,13].

Now, a new type of optomechanical system, i.e., op-
tomechanics with quadratic nonlinearity (herein “quadratical
optomechanics”), has been proposed, where the coupling term
is proportional to the square of mechanical displacement x2,
which is realizable in the setups of membrane-in-the-middle
optomechanical systems, ultracold atomic ensembles, and su-
perconducting electrical circuit systems [14–16]. Distinct from
the displacement of mechanical equilibrium position in linear
coupling optomechanics, the quadratic coupling will modify
the resonant frequency of the mechanical oscillator [17–19].
Thus the quadratical optomechanical system can be used for
quantum nondemolition (QND) measurement of individual
quantum jumps [20]. In addition, robust stationary mechanical
squeezing and electromagnetically induced transparency (EIT)
from two-phonon processes in a quadratical optomechanical
system are also achievable [21,22]. For practical applications
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one should minimize the influence of thermal noise, and the
linearized approach to the cooling of a quadratically coupled
mechanical oscillator has been studied in Ref. [23]. With
the advancement of experimental technology, now it will
become attractive to theoretically investigate the nonlinear
cooling processes induced by intrinsic quadratical coupling.
For example, utilizing avoided crossings effects in a multimode
optical cavity containing a flexible dielectric membrane
enables a significantly enhanced quadratical coupling strength
that can reach >30 MHz/nm2 [24,25]. Further, via mapping
the “membrane-in-the-middle” optomechanics in the optical
domain onto thae superconducting electrical circuit system, the
quadratical optomechanical coupling strength g compared to
the dissipation rate κ could be raised to g/κ > 0.1 by tuning the
bias flux and coupling capacitance [16]; Purdy et al. provide
the first characterization of quadratical optomechanical effects
in cavity optomechanics with ultracold atoms by localizing
the gas within a submicron region positioned variably along
the cavity axis [15]; in the double-slotted photonic crystal
structure the quadratical coupling rate is measured to be as
large as 1 THz/nm2 by integrating electrostatic actuators to
allow for tuning of the tunnel coupling strength between the
cavity modes around the two slots [26]. These platforms offer
the possibility to enter the single-photon strong quadratically
optomechanical coupling regime, where a single photon
can produce observable effects on a mechanical oscillator
and the nature of optomechanical effects remains poorly
understood.

Here, we investigate the nonlinear mechanical cooling pro-
cesses in the intrinsic quadratically optomechanical coupling
regime without linearizing the optomechanical interaction. We
apply scattering theory to calculate the transition rates be-
tween different mechanical Fock states using the Hamiltonian
resolvent method [27,28]. This approach allows for a clear
identification of the underlying physical processes, where only
even-phonon transitions are permitted while the odd-phonon
transitions are prohibited. We first derive the mechanical
transition rates, verify the consistence of transition rates with
the results of a simulation of the full quantum master equation
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with the consideration of thermal mechanical damping, and
then discuss the analytical results in the weak coupling limit
that coincide with two-phonon mechanical cooling processes
[29,30]. We indicate the difference from a linear coupling op-
tomechanical system by evaluating the Mandel Q parameter; it
tends to achieve nonclassical mechanical states in quadratical
optomechanics. Furthermore, we apply the phonon number
fluctuations F to present that the even-phonon transitions favor
suppressing the phonon number fluctuations.

The paper is organized as follows. In Sec. II the quadratical
optomechanical system is introduced. In Sec. III the scattering
theory of the single-photon quadratically optoemchanical
cooling process is presented and the cooling limits in the weak
and strong coupling regimes are discussed. The nonthermal
and nonclassical statistical properties of the mechanical
oscillator are analyzed in Sec. IV. Last, the conclusions are
given.

II. DESCRIPTION OF PHYSICAL MODEL

We consider a quadratically coupled optomechanical sys-
tem in which an optical cavity mode is parametrically coupled
to the square of the position of a mechanical oscillator, and the
Hamiltonian is written as

Ĥ0 = ωRâ†â + ωmb̂†b̂ + gâ†â(b̂† + b̂)2, (1)

where ωR is the frequency of the cavity mode â, ωm

is the frequency of the mechanical mode b̂, and g is
the quadratically optomechanical coupling strength between
the cavity mode and mechanical motion of the oscillator. The
coupling allows for a direct measurement of the square of the
oscillator’s displacement for the introduction of phase shift
of the cavity field. In the rotating-wave approximation the
average mechanical motion is (b̂† + b̂)2/2 = n̂b + 1/2 with
n̂b denoting the number of quanta, and the interaction between
the cavity and mechanical oscillator becomes analogous
to the optical Kerr effect, which is practicable for QND
measurements. Thus in principle the read-out of the oscillator’s
energy eigenstate is feasible, which is a major goal in the field
of quantum measurement. In order to make the present system
stable, the Routh-Hurwitz criterion implies that the condition
ωm + 4sg > 0 should be satisfied, in which s is the number of
photons inside the cavity. In the frame rotating at the driving
laser’s frequency ωL, the optical drive is described by the
Hamiltonian Ĥ ′ = �(â† + â) with the driving strength �. We
are considering the regime � � κ , where κ is the damping
rate of the cavity field, and thus the cavity states with more
than one photon can be neglected.

The damping of the cavity field is described by the
interaction between the mode â and the environmental mode
ĉkε , where Ĥemf = ∑

kε(ωk − ωL)ĉ†kε ĉkε is the free dynamics
of the electromagnetic field external to the resonator in the
reference frame rotating at the laser frequency ωL. Here,
the sum runs over all modes, identified by the wave vector
k and orthogonal polarization ε, the operators ĉkε and ĉ

†
kε

annihilate and create photons in the corresponding mode, and
ωk = ck denotes the mode frequency. The cavity-environment

interaction

Ŵκ =
∑
kε

g
(κ)
kε (â†ĉkε + âĉ

†
kε) (2)

accounts for the coupling of the cavity mode with the modes
of the external radiation field, and the explicit expressions of
coupling constant g

(κ)
kε , which is connected to the reflectivity

amplitude of the cavity mirror, can be found in the literature
[31,32]. In the high-Q cavity limit, it demonstrates that the
Markovian approximation is a good approach to describe the
cavity damping process, where g

(κ)
kε = √

κ/2π , with cavity
damping rate κ defined as [33]

κ =
∫ ∞

0

∑
kε

∣∣g(κ)
kε

∣∣2
e−i(ωk−ωR )t dt

= 2π
∑
kε

∣∣g(κ)
kε

∣∣2
δ(ωk − ωR). (3)

The delta function physically implies that the emission is
centered about the cavity frequency ωR . The mechanical
dissipation rate is usually much smaller than the cavity
damping rate, and we will take it into consideration in the
following.

III. RESOLVENT METHOD ON NONLINEAR
COOLING PROCESSES

In this paper we will resort to scattering theory to explicitly
evaluate the transition rates which quantitatively determine the
cooling and heating processes. This approach will allow for
a direct identification of the underlying physical processes.
For convenience we separate the total system Hamiltonian
according to Ĥ = Ĥ0 + V̂ , where the redefined main operator
Ĥ0 consists of Eq. (1) andhtbe free electromagnetic field, i.e.,

Ĥ0 = −�â†â + ωmb̂†b̂ + gâ†â(b̂† + b̂)2 + Ĥemf, (4)

and the small interaction part is

V̂ = Ŵκ + Ĥ ′, (5)

in which � = ωL − ωR is the detuning between laser fre-
quency ωL and resonator frequency ωR . In the case of weak
optical drive strength �, it is sufficient to work to the
second order of � in the transition rate to well describe the
scattering processes. Moreover, the cooling mechanism relies
on the energy dissipation, i.e., cavity damping rate κ that
is proportional to the square of g

(κ)
kε . Thus we choose V̂ as

the perturbation to calculate the transition rates, which are
proportional to the cavity damping rate κ and the second order
of �, by using the scattering theory.

First, the initial system is in the state |i〉 = |0; n; 0kε〉, where
the cavity mode is in the vacuum state |0〉, |n〉 are phononic
excitations and |0kε〉 is the environmental vacuum mode.
We are interested in the processes that change the motion
state of the membrane induced by one photon followed by
dissipation to the environment, and we denote the final states
|f 〉 = |0; m; 1kε〉. For the weak optical driving and cavity-
reservoir coupling, i.e., {�,g

(κ)
kε } � g, it is sufficient to derive

the transition amplitude up to the second-order perturbation
of interaction V̂ to achieve transition rates proportional to �2
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and κ , which is given by the form

Tfi = 〈f |V̂ + V̂ Ĝ0(Ei)V̂ |i〉, (6)

where Ĝ0(z) = 1/(z − Ĥ eff
0 ) is the resolvent of the effective

Hamiltonian Ĥ eff
0 = Ĥ0 − i κ

2 â†â with the consideration of
cavity damping, and Ei = nωm is the energy of the initial
state [33]. By substituting the initial and final states |i〉 and
|f 〉, it can be easily verified that

〈f |V̂ |i〉 = 0, (7)

since Ŵκ and Ĥ ′ contain an annihilation or creation cavity
operator while the cavity number states before and after the
scattering process are unchanged, and thus only the second-
order perturbation is retained.

To obtain the explicit expression of transition amplitude
Tfi, we have to find the eigensystem of the Hamiltonian Ĥ0.
Since the optical photon is conserved, i.e., [â†â,Ĥ0] = 0, the
quadratical coupling suggests that the cavity photon squeezes
the position of the mechanical oscillator associated with the
number of cavity mode â†â [18,19]. Then we can find the
phonon squeezing operator dependent on photon number to
diagonalize the freedom of the mechanical oscillator, which is
given by the polaron transformation

Û = exp

[
−1

4
ln

(
1 + 4â†âg

ωm

)
(b̂2 − b̂†2)/2

]
, (8)

with the squeezing factor connected to the photon number.
Then, with the help of the relation[

Û
1

z − Ĥ eff
0

Û †

][
Û

(
z − Ĥ eff

0

)
Û †] = I, (9)

where I is the identity matrix, the resolvent of the effective
Hamiltonian can be reexpressed as

Ĝ0(z) = 1

z − Ĥ eff
0

= Û †Û
1

z − Ĥ eff
0

Û †Û

= Û † 1

Û
(
z − Ĥ eff

0

)
Û †

Û . (10)

By applying a form of polaron transformation, the effective
Hamiltonian Ĥ eff

0 is diagonalized as

Ĥdiag = Û
(
z − Ĥ eff

0

)
Û †

= z −
[
−�â†â + ωm

√
1 + 4â†âg/ωm

× (b̂†b̂ + 1/2) − 1

2
ωm − i

κ

2
â†â

]
− Ĥemf, (11)

where the eigenfrequency of the oscillator is dependent on
the cavity photon number. With the explicit forms of the
interaction part V̂ in Eq. (5) and the transition amplitude
in Eq. (6), for the initial state |i〉 where the photon number
in cavity and reservoir modes is zero, Ŵκ |i〉 = 0, and the
operation of Ĥ ′ on |i〉 induces one cavity excitation. Following
the operation of Ĝ0(Ei), the cavity excitation is conserved
since [â†â,Ĥ eff

0 ] = 0, and there is still no excitation of the
reservoir modes. To connect with the final state which contains
zero cavity and one reservoir excitation, we should apply the

operator Ŵκ since the matrix elements of Ĥ ′ are zero. Then
the transition amplitude in Eq. (5) can be simplified as

Tfi = 〈f |ŴκĜ0(Ei)Ĥ
′|i〉

= �g
(κ)
kε 〈1; m; 0kε |Û †Ĥ−1

diagÛ |1; n; 0kε〉. (12)

Since under the operations of Û and Ĥdiag the states of
the cavity and reservoir modes are unchanged, we can insert
the completeness of mechanical Fock states

∑
l |l〉〈l| = I. The

transition amplitude becomes

Tfi = �g
(κ)
kε

∑
l,l′

〈1; m|Û †|1; l〉〈1; l|Ĥ−1
diag|1; l′〉〈1; l′|Û |1; n〉,

(13)

and the matrix elements

〈1; l|Ĥ−1
diag|1; l′〉 = 1

δ(1)(l,n) + � + i κ
2

δll′ , (14)

where

δ(1)(l,n) = (
n + 1

2

)
ωm − (

l + 1
2

)
ω(1)

m , (15)

and

ω(1)
m = ωm

√
1 + 4g/ωm (16)

is the membrane’s eigenfrequency modified by one cavity
photon [19]. The polaron transformation Û in the phonon
Fock representation is the coefficient of the squeezed number
state, and we denote Sl,n = 〈1,l|Û |1; n〉, which is given by

Sl,n = 〈l| exp[−ξ (b̂2 − b̂†2)/2]|n〉 (17)

with ξ = 1
4 ln(1 + 4g/ωm). The coefficient can be expressed

in the explicit form [17,18,34]

Sl,n =
√

l!n!

(cosh ξ )n+1/2

Floor[ l
2 ]∑

k′=0

Floor[ n
2 ]∑

k=0

(−1)k

k′!k!

×
(

1
2 tanh ξ

)k′+k

(n − 2k)!
(cosh ξ )2kδl−2k′,n−2k, (18)

where the function Floor[x] gives the greatest integer less
than or equal to x. By substituting the Eqs. (14) and (17) into
Eq. (13), the transition amplitude becomes

Tfi = �g
(κ)
kε

∑
l

Sl,mSl,n

δ(1)(l,n) + � + i κ
2

. (19)

Then the corresponding transition rate is defined as

Rfi = 2π
∑
kε

|Tfi|2δ(Ei − Ef ), (20)

where the δ function guarantees the energy conservation and
the sum covers all relevant polarizations and wave vectors [33].
The transition rate becomes

Rfi = 2π�2
∑
kε

∣∣g(κ)
kε

∣∣2

× δ(ωk − ωR)

∣∣∣∣∣
∑

l

Sl,mSl,n

δ(1)(l,n) + � + i κ
2

∣∣∣∣∣
2

. (21)
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With the definition of cavity damping in Eq. (3), the transition
rate which denotes the change of the motional state of
mechanical oscillator from n to m phonons becomes

Rf i = 
n→m	=n = κ�2

∣∣∣∣∣
∑

l

Sl,mSl,n

δ(1)(l,n) + � + i κ
2

∣∣∣∣∣
2

. (22)

Equation (22) presents a clear physical view of the process
of an incident photon scattered by the quadratical cavity-
optomechanical system with the change of the motion of
the mechanical oscillator from n to m phonons. When a
laser photon turns into the cavity photon, the phonon state
changes from the initial number n to an intermediate number l

demanding that |l − n| is even due to the term of two-phonon
operators, and the amplitude is inversely proportional to
the frequency detuning δ(1)(l,n) + � which relates to the
photon-coupled membrane’s resonant frequency ω(1)

m , and is
proportional to the matrix element of squeezed number state
Sl,n. As the photon leaves the cavity and dissipates into the
continuum of modes in free space, it induces a transition in
mechanical motion from l to m phonons which also demands
that |l − m| is even, and its amplitude is independent of
the driving detuning but dependent on the cavity-reservoir
coupling strength g

(κ)
kε , and is also determined by the coefficient

of squeezed number state Sl,m for the two-phonon term. The
output photon possesses the energy ωL + (n − m)ωm and
carries away (n − m) phonons, in which (n − m) should be
even since |l − n| and |l − m| are both even.

Now we stress the differences of nonlinear cooling rates
between quadratical and linear coupling optomechanical
systems. The quadratical optomechanical coupling modifies
the mechanical frequency of the oscillator while the linear
coupling just displaces the mechanical equilibrium position.
Thus the frequency detuning of the transition δ(1)(l,n) is closely
dependent on the coupling strength g while the effective
detuning in the linear coupling optomechanics is independent
of the coupling strength in the single-photon level. Moreover,
the transition amplitude of the linear coupling optomechanics
is proportional to the Franck-Condon overlap factor for the
single-phonon operators while the transition amplitude is
proportional to the matrix elements of the squeezed number
state for the two-phonon operators. Therefore, the form of the
transition rate in Eq. (22) is different from that of the linear
coupling optomechanical system in Ref. [11,28], and may be
helpful to generate the more interesting mechanical states.

Taking into account the thermal damping of the mechanical
oscillator with rate γm and thermal phonon number nth, the set
of rate equations for the mechanical oscillator becomes

Ṗn = − γmnth(n + 1)Pn − γm(nth + 1)nPn

+ γmnthnPn−1 + γm(nth + 1)(n + 1)Pn+1

−
∑
m	=n


n→mPn +
∑
m	=n


m→nPm (|m − n| is even),

(23)

where Pn is the phonon number distribution in the n phonon
state.

A. Cooling process in the resolved-sideband and weak
quadratical coupling limits

The occurrence of cooling processes in the strong quadrat-
ical coupling regime can absorb multiple two-phonons, and
modify the eigenfrequency of the mechanical oscillator simul-
taneously, which can lead to the generation of uncommon
mechanical states. To understand this behavior we first
consider the case of the resolved-sideband limit ωm 
 κ and
weak quadratical coupling limit g � ωm, where the scattering
processes are mainly dominated by the two-phonon transitions

n→n±2, and the rates in Eq. (22) are explicitly simplified
as 
n→n−2 = n(n − 1)
↓ and 
n→n+2 = (n + 1)(n + 2)
↑ in
these limits, in which


↓ = κ�2g2/ω2
m

(κ/2)2 + (� + 2ωm)2
,


↑ = κ�2g2/ω2
m

(κ/2)2 + (� − 2ωm)2

(24)

describe the strengths of two-phonon absorption and emission
processes. The results are consistent with effective two-phonon
quadratically mechanical cooling theory [29], in which the
cavity mode is linearized and then served as the two-phonon
reservoir in the weak optomechanical coupling limit. The set
of rate equations in Eq. (23) becomes

Ṗn = γm(nth + 1)[(n + 1)Pn+1 − nPn]

− γmnth[(n + 1)Pn − nPn−1]

+ 
↓[(n + 1)(n + 2)Pn+2 − n(n − 1)Pn]

− 
↑[(n + 1)(n + 2)Pn − n(n − 1)Pn−2]. (25)

For the high-Q mechanical oscillator and low initial
temperature, i.e., γmnth � 
↓↑, we can ignore the thermal
damping effects. The cooling process turns out to be the pure
two-phonon transitions, and the phonon number distribution
Pn can be analytically solved and expressed in the form

P
(2)
2n+j = (1 − r)rn(γ + j − 1)(−1)j−1, j = 0,1, (26)

where r = 
↑/
↓, and γ characterizes the relative weight of
the odd phonon states determined by the initial conditions [35].
In the resolved-sideband regime, when the detuning satisfies
� = −2ωm, the two-phonon absorption process dominates
the emission process, i.e., r � 1, and the phonon number
distribution is concentrated at zero- and one-phonon states
P0 = 1 − γ , P1 = γ , which indicates that two-phonon cooling
processes preserve the phonon-number parity, leading to the
initial odd phonon states cooled to the one-phonon state
and the even phonon states cooled to the zero-phonon state
independently.

In the strong two-phonon absorption regime 
↓ 
 γ nth 


↑, which is achievable with � = −2ωm in the resolved-
sideband limit, finally we can obtain [35]

P0 = 1 + 2ξ

1 + 3ξ
+ O

(
γmnth


↓

)
,

P1 = ξ

1 + 3ξ
+ O

(
γmnth


↓

)
, ξ = nth

nth + 1
. (27)

Thus the minimal mean phonon number 〈n̂〉 = 1/(4 + 1/nth).
To investigate the statistical properties of the phonon field, we
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FIG. 1. (Color online) Steady-state phonon number nss = 〈b̂†b̂〉
in a single-photon quadratical optomechanical system as a function
of detuning � with the coupling strengths g/ωm = 0.8 (red solid line
and green squares), g/ωm = 0.4 (blue dashed line and yellow circles),
and g/ωm = 0.1 (green dash-dotted line and magenta diamonds). The
other parameters are γm/ωm = 10−6, nth = 10, κ/ωm = 0.25, and
�/κ = 0.4. [In the figure the lines are obtained from the simulation
of the master equation (29) by using the Quantum Optics Toolbox and
the markers are obtained by solving the rate equations in Eq. (23)].

resort to the Mandel Q factor that is defined as [36]

Q = 〈n̂2〉 − 〈n̂〉2

〈n̂〉 − 1 (28)

with 〈n̂〉 = ∑∞
n=0 nPn,〈n̂2〉 = ∑∞

n=0 n2Pn. Here, the Q ≈
−〈n̂〉 becomes negative and the phonon number distribution
is sub-Poissonian, which implies that the membrane is in a
nonclassical mechanical state.

B. Cooling process in the strong coupling limit

In the strong coupling regime higher-order mechanical
sidebands appear and the multiple two-phonon transitions
begin to work. In Fig. 1 we plot the steady-state phonon number
nss = 〈b̂†b̂〉 as a function of detuning � = ωL − ωR with
different coupling strengths g/ωm. We observe that in the weak
coupling and the resolved-sideband limits, i.e., g/ωm = 0.1,
the optimal cooling occurs at the detuning � = −2ωm and
the cooling limit reaches a value close to 0.25, which is in
accordance with Eq. (27). In the strong coupling limit, the
efficient cooling processes occur at the multiple two-phonon
resonances � = −δ(1)(l,n), where the multiple dips of the
evolution of nss indicate the occurrence of the multiple two-
phonon transitions, which will further influence the statistical
properties of the mechanical oscillator.

To indicate the validity of the set of rate equations obtained
by scattering theory in Eq. (23), we compare the steady-state
phonon number with numerical simulation of the quantum
master equation

d

dt
ρ̂ = −i[ ˜̂H,ρ̂] + κ

2
L[â]ρ̂ + γm(nth + 1)L[b̂]ρ̂

+ γmnthL[b̂†]ρ̂, (29)

performed with the Quantum Optics Toolbox [37], where
the Hamiltonian is ˜̂H = −�â†â + ωmb̂†b̂ + gâ†â(b̂ + b̂†)2 +
�(â + â†), and L[ô]ρ̂ = ôρ̂ô† − 1

2 {ô†ô,ρ̂} is the Lindblad

operator of photon (phonon) dissipation. In Fig. 1, we plot the
results of master equation (29) in various styles of lines, which
are respectively red solid, blue dashed, and green dash-dotted
lines for the different coupling strengths g/ωm = 0.8,0.4,0.1,
and specific markers, which are green squares, yellow circles,
and magenta diamonds, are obtained by solving the set of rate
equations (23). These two results are well matched, and the rate
equation approach coincides with the master equation. Thus
it demonstrates that scattering theory is feasible in describing
nonlinear quadratical cooling processes, and the clear view of
the underlying physics in the cooling process presented by the
analytical expressions is also acceptable.

IV. STATISTICAL PROPERTIES OF STEADY
MECHANICAL STATE

The occurrence of the multiple two-phonon transitions in
cooling processes, especially in the strong coupling regime,
decreases the membrane’s vibrating energy containing several
two-phonons simultaneously, and together with the modifica-
tion of the resonant frequency of the membrane due to the
quadratical coupling, the mechanical oscillator can present
different statistical properties compared with linear coupling
and linearized optomechanics. In this section we mainly resort
to the Mandel Q parameter and phonon number fluctuations F

to discuss the mechanical statistical properties.
By using the Mandel Q parameter it is convenient to

characterize nonclassical states with negative values, which
indicate a sub-Poissonian statistics and have a nonclassical
analogue. In Fig. 2, we plot the Mandel Q parameter as
a function of detuning with different quadratical coupling
strengths. In the weak coupling regime, i.e., g/ωm = 0.1, the
minimum value of Q becomes negative, that is, close to the
value −〈n̂〉, which agrees with the results of Eq. (27). With
the increasing coupling strength, Q can present a negative
value as well. For example, at g/ωm = 0.4 it takes a smaller
value. Thus the mechanical oscillator is in a nonclassical state.
However, in the strong linear coupling optomechanics [11,28],
it is relatively difficult to present the nonclassical properties in
the weak driving regime.
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FIG. 2. (Color online) Mandel Q parameter in a single-photon
quadratical optomechanical system as a function of detuning � with
the coupling strengths g/ωm = 0.8 (red solid line), g/ωm = 0.4 (blue
dashed line), and g/ωm = 0.1 (green dash-dotted line). The other
parameters are γm/ωm = 10−6, nth = 10, κ/ωm = 0.25, and �/κ =
0.4.
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FIG. 3. (Color online) Phonon number fluctuations F in a single-
photon quadratical optomechanical system as functions of detuning �

with the coupling strengths g/ωm = 0.8 (red solid line), g/ωm = 0.4
(blue dashed line), and g/ωm = 0.1 (green dash-dotted line). The
other parameters are γm/ωm = 10−6, nth = 10, κ/ωm = 0.25, and
�/κ = 0.4.

In the linearized treatment of the mechanical cooling
regime, the rate equation satisfies the detailed balance con-
dition which implies that the final phonon state is in a thermal
state. For the thermal state, 〈n̂〉 = nth, 〈n̂2〉 = 2n2

th + nth, yield-
ing the phonon number fluctuations F = 〈b̂†b̂†b̂b̂〉/〈b̂†b̂〉2 = 2
[38]. Here the rate equations (23) obviously do not obey the
detailed balance condition and the steady mechanical state
will be in a nonthermal state. It is more clearly exhibited in the
single two-phonon cooling process of the weak coupling limit
in Eq. (25). In Fig. 3 we plot the phonon number fluctuations F

as functions of detuning � with different coupling strengths.
Since phonon number fluctuations F = 2 for the thermal me-
chanical state, in nonlinear intrinsic quadratical optomechanics
we can both decrease and increase the number fluctuations
(F < 2 and F > 2), and the fluctuations can be suppressed
for a large range of detuning. Moreover, compared with
the optomechanical cooling induced by single-photon linear
coupling where the fluctuation is mainly enlarged, here the
mechanical cooling occurs with the mainly decreased phonon
number fluctuations, which possesses potential applications
of QIP and measurement. The suppression is induced by
the (multiple) two-phonon cooling processes that decrease
the phonon occupation in the zero- and one-phonon number

states, and compared to one-phonon cooling processes it is
more achievable to suppress the phonon number fluctuations
[11,29].

Finally, the phonon number distributions are detectable by
using the QND measurement, such as in methods of cold atoms
in an optical lattice system [39,40], where another auxiliary
probe cavity mode should also quadratically couple to the
membrane. For the interaction between the probe field and
the membrane, the rotating-wave approximation should be
justified and the cross-Kerr coupling between the cavity and
membrane modes is achievable. Then it is feasible for the QND
measurement to probe the phonon states [41].

V. CONCLUSIONS

In summary, we have studied the nonlinear mechanical
cooling processes in the intrinsic quadratically optomechanical
coupling regime without linearizing the optomechanical inter-
action. We apply scattering theory to calculate the transition
rates between different mechanical Fock states using the
Hamiltonian resolvent method, since the approach can present
a direct identification of the underlying physical processes.
Due to the preservation of phonon number parity, only even-
phonon transitions are permitted and the odd-phonon transi-
tions are forbidden. In the paper we first derive the phononic
transition rates, and verify the feasibility of the scattering
approach by comparing with the results of simulation of the
full quantum master equation. We also discuss the analytical
mechanical cooling limits in the weak coupling limit, and
find that they coincide with two-phonon mechanical cooling
processes. Finally, the statistical properties of the mechanical
state are presented. The mechanical state can be in a sub-
Poissonian distribution that characterizes the nonclassical
state, and the even-phonon transitions favor suppressing the
phonon number fluctuations for a large range of detuning as
well.
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