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Architecture dependence of photon antibunching in cavity quantum electrodynamics
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We investigate numerically the architecture dependence of the characteristics of antibunched photons generated
in cavity quantum electrodynamic systems. We show that the quality of antibunching [the smallness of the
second-order intensity correlation function at zero time g(2)(0)] and the generation efficiency significantly depend
on the configurations: the arrangements of single-mode optical cavities and waveguides. We found that for certain
class of architecture, when the Jaynes-Cummings system (the atom-cavity system) couples to two terminated
waveguides, there exists a fundamental tradeoff between high transmission and low g(2)(0), and is sensitive
to dissipation. We further show that optimal antibunching can be achieved in two alternative cavity quantum
electrodynamic configurations operating in the dissipatively weak coupling regime such that the two-photon
transmission can be two orders of magnitude higher for the same g(2)(0).
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I. INTRODUCTION

Photon antibunching refers to the statistical property of a
light field that the probability to detect two photons right after
each other vanishes [1–5]. Photon antibunching demonstrates
the manifestly quantum character of light, as a classical
theory of fluctuating field amplitudes would require negative
probability in order to give antibunching. Photon bunching
describes the opposite effect that the probability to detect a
photon immediately after another one has been found is higher
than at a later moment. The photon statistics of a light beam is
characterized by measurement of the normalized second-order
intensity correlation function g(2)(τ ), which characterizes the
joint probability of detecting one photon followed by another
within the delay time τ . For perfectly antibunched light beam,
the intensity correlations vanish for short delay times. In prac-
tice, often a less stringent criterion for antibunching is used:
the initial slope of g(2)(τ ) is positive [i.e., g(2)(0) < g(2)(τ )],
which means the probability for coincidence (τ = 0) is smaller
than noncoincidence (τ �= 0). Under the latter criterion, the
photon-counting statistics of antibunched photons can be either
super-Poissonian [g(2)(0) > 1] or sub-Poissonian [g(2)(0) <

1] [6,7]. A stream of photons that is both antibunched
and sub-Poissonian has a subshot noise power level that is
below the standard quantum limit and can serve as single-
photon light sources [8–10]; such light sources are important
for applications in quantum information science, including
absolutely secure quantum communication [11], single-photon
interferometry [12] and interaction-free measurement [13],
and quantum computation with linear optics [14].

It was first theoretically predicted that the resonance
fluorescence of a two-level atom driven by a resonant laser
field would exhibit photon antibunching [15,16], and subse-
quently in 1977 Kimble, Dagenais, and Mandel observed the
phenomenon of antibunching by using sodium atoms in an
atomic beam [17]. In 1997, Höffges et al. observed photonic
antibunching from the spectrum of the fluorescent radiation of
a single quantum emitter (a trapped 24Mg+ ion) [18]. In recent
years, stemming from the applications in quantum information
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processing and also from the rapidly advanced experimental
techniques, there has been greatly growing interest in generat-
ing such nonclassical photonic states in various cavity quantum
electrodynamics (QED) systems containing only one single
quantum emitter [19–26]. To quantify the characteristics of
antibunched photons generated in cavity QED, the first impor-
tant metrics is the quality of antibunching, i.e., the smallness
of g(2)(0) which measures the overlap between photons. Ideal
single-photon sources would have g(2)(0) = 0. The issue of
quality of antibunching in cavity QED has been recognized and
discussed extensively in the literatures using a master-equation
approach [27–32]. The second important metrics concerns
the generation efficiency of the antibunched photons. For a
continuous coherent driving field, the generation efficiency
can be properly defined as the ratio of flux of the generated
antibunched photons to the flux of the driving optical field.
Another scenario of interest is the generation of antibunched
photons from a Fock state input containing a fixed number of
uncorrelated photons. For example, for a pulse containing two
uncorrelated photons, the generation efficiency is the proba-
bility the two photons become antibunched after scattering. In
the weak coherent driving regime, these two descriptions are
asymptotically equivalent. The issue of generation efficiency
so far has received less attention in the context of cavity
QED (we note that large antibunching and high generation
efficiency have been discussed and demonstrated in the context
of Rydberg polaritons [33,34]). In cavity QED, even if the
configuration is set up so that individual photons have perfect
transmission, and that the antibunched photons are generated
in the transmitted direction, in general, a significant portion
of incoming photons in a multiphoton state (coherent or Fock
state) can still be reflected due to correlations.

More importantly, the cavity QED systems, in particular
in the solid-state implementations, allow us to explore a wide
variety of structural couplings between the photonic modes via
different arrangements of optical resonators and waveguides.
Such a possibility suggests the need for an investigation of the
impacts of the structural configurations of optical components
on the characteristics, the quality and the generation efficiency,
of antibunched photons created in cavity QED.

This paper is devoted to investigating numerically the ar-
chitecture dependence of photon antibunching in cavity QED.
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Specifically, we will discuss the characteristics of antibunched
photons in three different configurations in cavity QED,
involving different arrangements of optical cavities and waveg-
uides. For brevity, we shall call each configuration a cQED
circuit. This paper will focus on resonators of single-mode
cavities; the cases of optimal antibunching in configurations
involving whispering-gallery-type optical resonators [35,36],
which have degenerated counterpropagating modes, will be
presented elsewhere. We do this by first numerically evolving
the photonic states temporally in cQED circuits of different
architectures, determining the statistical properties from the
scattered photonic states. Then, for each architecture, we
numerically scan a range of coupling strengths between the
atom-cavity-waveguide system to investigate the fundamental
and optimal performance of each architecture. To emphasize
the structural impacts on the generation characteristics of
antibunched photons, we first discuss the cases wherein the
intrinsic dissipations (which take photons out of the system
in question) are not present to demonstrate the fundamental
limitations of each architecture; we then present the results
when realistic numerical values of dissipations, taken from
appropriate experimental data, are considered. Using such an
approach, we first show that the cQED circuit architecture
employed in many current cavity QED experiments to gen-
erate antibunched photons, wherein a Jaynes-Cummings (JC)
system [37,38] couples to input and output waveguides to
form an inline configuration, has an intrinsic tradeoff between
high-generation efficiency and low g(2)(0), which remains so
even for the ideal case where the dissipations are not present.
We then demonstrate that for two different cQED circuits,
with an architecture of either a side-coupled JC system or
a direct-coupled generalized JC configuration, the generation
of antibunched photons can be two orders of magnitude more
efficient or the quality can be at least 10 times better, operating
in the dissipatively weak coupling regime.

II. JAYNES-CUMMINGS AND GENERALIZED
JAYNES-CUMMINGS SYSTEMS

The fundamental building block to generate antibunched
photons in cavity QED is the Jaynes-Cummings system,
which describes the interaction of a two-level atom with the
quantized modes of an optical or microwave cavity [37,38].
One configuration to couple photons in and out is to employ
an inline geometry by coupling a JC system to two terminated
waveguides [Fig. 1(a)]. Other possible simple configurations
include the side-coupled geometry, which uses a single waveg-
uide [Fig. 1(b)]; and the T geometry wherein two terminated
waveguides couple to a generalized JC system, which is
formed by introducing an additional bare cavity coupled to the
waveguides [Fig. 1(c)]. All waveguides are single-polarization
single-mode waveguides [39] to minimize the cross talks
between different modes which degrade the performance.
All cQED circuits exhibit single-photon nonlinearity, as they
contain a two-level atomic component that can be saturated by
a single photon under ideal conditions.

Both the JC and generalized JC systems are exactly soluble
(see Appendix for details). Here, we summarize the main
results. As illustrated in Fig. 2(a), the underlying mechanism
of the photon blockade in the inline cQED circuit is the

(a)

(b)

(c)

FIG. 1. (Color online) Cavity QED circuits exhibiting photon
blockade for the transmission field. (a) Inline geometry with a JC
system placed between two terminated waveguides. (b) Side-coupled
geometry with a JC system coupled to a single waveguide. (c) T
geometry with a generalized JC system coupled to two terminated
waveguides. For all configurations, � represents the cavity-waveguide
coupling strength (i.e., halfwidth of the cavity linewidth); g represents
the atom-cavity coupling strength; the intercavity coupling strength
for the T geometry is given by ξ . All coupling strengths have the
unit of frequency. ωa is the angular transition frequency of the two-
level atom, and ωc is the resonant frequency of the cavities. The
on-resonance case (that is, ωa = ωc) is considered throughout. Each
waveguide has a single transverse mode for each operating frequency.

anharmonicity of the JC ladder of eigenstates [37,40]. Each
n-photon manifold consists of two dressed states |n+〉 and
|n−〉, with a frequency separation 2

√
ng (g is the atom-cavity

coupling strength in frequency). Thus, when a single photon of
frequency ωi = ωc − g, which is on resonance with the state
|1−〉 of the intermediary JC component, is injected into the
input port of the inline circuit, the photon will resonantly tunnel
through to the output port with a relatively high probability [see
Fig. 2(a) bottom for the single-photon transmission spectrum);
nonetheless, when two resonant photons at frequency ωi are
injected simultaneously, the resonant absorption of either
photon will “block” the absorption of a second photon.
Moreover, as the sharp energy levels of the JC component
will be broadened and gain a finite width ∼� when coupled
to the waveguide, the inline circuit must operate in the strong
coupling regime [g > �, such that the frequency mismatch
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(a) (b)

FIG. 2. (Color online) Energy-level diagrams, operating schemes, and single-photon transmission spectra for the JC and generalized JC
systems. (a) Top: JC level scheme is shown up to the second manifold, with single-photon operating frequencies ωi = ωc − g for the inline (blue
arrows) and ωs = ωc for the side-coupled (green arrows) geometries. Each n-photon manifold has two energy levels. Bottom: single-photon
transmission spectrum for inline (with �/g = 0.15) and side-coupled (with �/g = 1.75) geometries with arrows indicating single-photon
operating frequency [41]. (b) Top: generalized JC level scheme is shown up to the second manifold, with single-photon operating frequency
ωT = ωc for the T geometry (red arrows). Each n-photon manifold has 2n + 1 energy levels. Bottom: single-photon transmission spectrum for
the T geometry with �/g = 1.4 and ξ/g = 1.9. Each energy level is broadened (gray color) when coupled to the waveguide.

(2 − √
2)g exceeds the finite width] so as the photon blockade

mechanism to be effective.
The above picture based upon anharmonic ladder dia-

gram and single-photon transport is often used to infer the
antibunching behavior [19–23]; this noninteracting picture,
however, cannot be conveniently applied to other cQED
circuits, where the statistics of the transmitted photons in
general are influenced by external couplings and can only be
determined by the full interacting scattering dynamics that
takes into account the photon-photon correlations induced
by the intermediary JC interaction. For example, as will
be shown later, both the side-coupled and T circuits can
generate antibunched photons in the weak coupling regime,
but the antibunching behavior in either configuration does
not directly arise from the anharmonicity mechanism as with
the inline circuit. Specifically, for the side-coupled cQED
circuit with the energy level diagram and the operating scheme
shown in Fig. 2(a), at the operating frequency ωs = ωc, high
single-photon transmission is expected as the photon is not
on resonance with the JC component and simply carries on
unimpeded; when two photons are injected simultaneously, the

full scattering dynamics indicates that the transmitted photons
will be antibunched and have higher transmission efficiency
than the inline case.

The energy-level diagram for the generalized JC component
is shown in Fig. 2(b). Here, we summarize the relevant
properties. For each n-photon manifold there are now 2n + 1
dressed states due to the additional cavity degree of freedom.
This can be deduced by exhausting all partition possibilities of
the photons. For example, when n = 1 the three bare states are
|1,0,ground〉, |0,1,ground〉, and |0,0,excited〉 where the first,
second, and third slots of the state correspond to the number
of photons in the bare cavity, the number of photons in the JC
cavity, and the atomic state (ground or excited), respectively;
the dressed states are linear combinations of the bare states. For
each manifold there is always an unperturbed central energy
level; the energy separations (in units of g) from the central
state are functions of ξ/g. For the limiting case of large ξ/g, all
dressed states are cavitylike and equally spaced in frequency.
When ξ/g becomes small, the bare cavity decouples, and
the eigenstates of the generalized JC component reduce to
product states of the bare cavity state and the JC dressed
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state: |bare cav〉 ⊗ |JC〉. The eigenstate naming convention in
Fig. 2(b) is chosen to make this reduction transparent: the |2±〉
generalized JC states reduce to |0〉cav|2±〉JC (i.e., both photons
are in the JC component); the |2±〉′ generalized JC states
reduce to |1〉cav|1±〉JC (i.e., one photon is in the bare cavity,
and one is in the JC component); the |20〉 generalized JC state
reduces to |2〉cav|0〉JC (i.e., both photons are in the bare cavity).
For the T cQED circuit operating at frequency ωT = ωc

as shown in Fig. 2(b), a single resonant photon can tunnel
through by interacting with the unperturbed resonance |10〉 of
the generalized JC system. When two photons are injected
simultaneously, the two photons will hit the unperturbed
resonance of the two-photon manifold |20〉 of the generalized
JC component. The full scattering dynamics indicates that the
transmitted photons will also be antibunched and have a higher
transmission efficiency than the inline case.

III. STATISTICAL PROPERTIES OF THE
TRANSMITTED OPTICAL FIELDS

A. Input state

The statistics of the transmitted field in a cQED circuit must
be determined by the interacting two-photon scattering dy-
namics that takes into account the photon-photon correlations
induced by the intermediary JC interaction. To substantiate this
interacting picture quantitatively, we inject into each circuit
a two-photon input state, which is numerically evolved in
time according to the equations of motion, and investigate
the photon statistics for the output field by computing the
normalized second-order correlation function g(2)(τ ) (see
Appendix for details). The input state at t = 0 consists of two
identically overlapping Gaussian wave packets with spatial

width σ , center position x0, and central frequency ω0:

φin(x1,x2,0) = 1√
2πσ 2

e−(x1−x0 )2/4σ 2−(x2−x0 )2/4σ 2

× ei(ω0 /v)x1+i(ω0 /v)x2 , (1)

where x1 and x2 correspond to the location of each photon in
the input port of the waveguide, and v is the group velocity
of photons in the waveguide. Such an input is a product state,
meaning that the two photons are completely uncorrelated.
The square amplitude |φin|2 is the probability density and is
normalized to unity when integrated from −∞ to ∞ in both
x1 and x2. It can be shown both numerically and analytically
that g

(2)
input(τ ) = 1

2 for all τ , which is expected for a number
(Fock) state [3,5]. In principle, to properly simulate a weak
coherent input to obtain the photon statistics, one should use
a truncated coherent input that contains the vacuum state, a
one-photon state, and a two-photon state. However, either
choice (a two-photon number state or a truncated coherent
state) yields the same g(2)(τ ) (see Appendix for all technical
details).

B. Scattered photon states

After scattering, there are four possible outcomes for
the two photons: both transmitted, with a wave func-
tion φRR(x1,x2,t); both reflected, with a wave function
φLL(x1,x2,t); as well as one transmitted and one reflected, with
a wave function φRL(x1,x2,t) and φLR(x1,x2,t), respectively.
Here, the subscript denotes the propagation direction of
the photon after scattering: R denotes right moving, thus
transmitted; and L denotes left moving, thus reflected. A
graphic representation of the two-photon scattering dynamics

(a) (b) (c)

FIG. 3. (Color online) Probability density plot for two-photon transport in cQED circuits. (a) Inline geometry (�/g = 0.15). (b) Side-
coupled geometry (�/g = 1.75). (c) T geometry (�/g = 1.4, ξ/g = 1.9). In each plot, the two-photon input state at t = 0 is shown as a disk
in the third quadrant. For the output state, the part in the first quadrant corresponds to both photons transmitted; the part in the third quadrant
corresponds to both photons reflected; and the parts in the second and fourth quadrants correspond to one photon transmitted and one reflected.
The input state is made transparent to visually distinguish it from the output. Simulation parameters correspond to gx0/v = −70, gσ/v = 15
for all cases.
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for each cQED circuit is shown in Fig. 3, which plots
the probability density for the input and output (long after
scattering) states. In the colormap representation, the two-
photon input state described by Eq. (1) will appear as a
disk in the third quadrant (x1, x2 < 0). Different choices for
the input will have different shapes. For the output wave
function in the first quadrant φRR(x1,x2,t) (i.e., both photons
are transmitted field), the center cut along the x1 = x2 line for
each case implies photon blockade behavior, as the probability
density has a depleted region corresponding to the two photons
separating from each other. Conversely, in the third quadrant
the output wave function φLL(x1,x2,t) is localized along the
x1 = x2 line, exhibiting bunching behavior for the reflection
field. Likewise, the localization of the wave function in the
second φLR(x1,x2,t) and fourth quadrants φRL(x1,x2,t) means
that the photons will be found at the same distance from the
scatterer on opposite sides. By projecting the output wave
function onto the relative coordinate axis (x1 = −x2 line),
g(2)(τ ) is computed from integrating the projection along the
axis (Fig. 3). The total probability for each outcome is obtained
by integrating the respective probability density over each
quadrant. For example, the probability of the both photons
being transmitted, Ptt , is given by integrating |φRR(x1,x2,t)|2
over the first quadrant.

C. Results: Quality of antibunching and generation efficiency

While each cQED circuit exhibits sub-Poissonian and
antibunching behavior [g(2)(0) 	 1, g(2)(0) < g(2)(τ )], the
performance differs greatly. The inline circuit has the lowest
two-photon transmission probability Ptt and causes the most
distortion in the waveform. The T geometry has the smallest
g(2)(0), i.e., the photons are more antibunched, so to speak.
Additionally, the inline geometry exhibits a much wider gap
across the x1 = x2 line, so that g(2)(τ ) for the inline circuit
rises to unity much slower than for the side-coupled and T
geometries (Fig. 3); also, the center of the scattered wave
function for the inline geometry lags significantly behind
that of the side-coupled and T geometries. For example, for
reported values of g in the optical [24] and microwave [22]
regimes, the relative delay time is ≈0.1 or ≈15 ns, respectively.
The delay reflects the long photon-cavity interaction time
scale, which is a general feature for any system operating in
the strong coupling regime. These effects fundamentally limit
the operation rate of the strongly coupled cQED circuits.

Figure 4 shows the dependence of g(2)(0) and Ptt on the
coupling strengths. For the inline case g(2)(0) falls off as �/g

decreases, and numerically g(2)(0) ∝ (�/g)2 for small values
of �/g, in agreement with previous results [19]. Under this
strong coupling condition, however, Ptt ∝ �/g also falls off

(a) (b)

(c) (d)

FIG. 4. (Color online) Performance plots of the cQED circuits. (a) Semilog plot of g(2)(0). (b) Two-photon transmission Ptt . (c) g(2)(0)
versus �/g and ξ/g for the T geometry. (d) Ptt versus �/g and ξ/g for the T geometry. For all cases, gσ/v = 15. The white dashed line in (c)
and (d) denotes the valley relation.
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as �/g decreases. For example, to achieve g(2)(0) ≈ 10−2 in
the inline geometry, the strong coupling requirement leads to
a Ptt ≈ 0.1. In contrast, for the side-coupled case g(2)(0) falls
off as �/g increases, and numerically g(2)(0) ∝ e−2�/g for
�/g � 1. Thus, the side-coupled circuit can have low g(2)(0)
in the weak coupling regime (large �/g) while maintaining
high transmission Ptt . For example, a low g(2)(0) ≈ 10−2 can
be achieved with a Ptt ≈ 0.9 for �/g = 2. The weak coupling
condition is also beneficial as it allows the use of low-Q
cavities which are readily available in many nanophotonic
systems. The performance of the T circuit depends on the
intercavity coupling ξ . When ξ/g = 1, both g(2)(0) and Ptt

[Figs. 4(a) and 4(b), respectively] decrease as �/g decreases,
similar to the inline case. In the strong coupling regime
(�/g < 1), the T circuit significantly outperforms the inline
circuit, with g(2)(0) at least an order of magnitude smaller
and Ptt as much as 40% larger. The behavior of g(2)(0) has
a qualitative change when intercavity coupling is increased
to ξ/g = 1.9. Now, g(2)(0) has a dip with an extremely low
minimum value g(2)(0) < 10−3 near �/g = 1.45. At the same
time, in this weak coupling regime there is a large Ptt ≈ 0.85.
For the T circuit, by scanning both coupling strengths, Fig. 4(c)
shows that for ξ/g � 1, a fanlike structure (appearing in blue
color) exists wherein g(2)(0) ∼ O(10−3), corresponding to

strong antibunching. The valley of the fanlike structure follows
the constraining relation �/g ∼ √

2.25(ξ/g − 1). Figure 4(d)
shows that, in general, Ptt increases as �/g increases and
ξ/g decreases. For optimal antibunching, however, operation
should be restricted to the valley relation, and the maximum
transmission chosen within this constraint. Therefore, the
optimal operating conditions are given by �/g = 1.45 with
ξ/g = 1.9, at which g(2)(0) ≈ 7 × 10−4 and Ptt ≈ 0.85. The
curves in Fig. 4 were obtained using a particular choice of
spatial width σ (which in turn means a particular choice of
input bandwidth ∝1/σ ); g(2)(0) is numerically found to be
insensitive to the particular choice of σ . Higher σ will lead to
higher single- and two-photon transmission for all geometries,
although the qualitative behavior will remain the same.

D. Effects of cavity and atomic dissipations

To illustrate the fundamental limitations of each configura-
tion, we have heretofore focused on the ideal dissipationless
case. Dissipation certainly is omnipresent in any cQED circuit,
but specific values depend on the particular implementation.
Here, we discuss in more detail the effects of dissipation under
realistic experimental conditions and show that all three cQED
circuits can still achieve a photon blockade in the presence

(a) (b)

FIG. 5. (Color online) Effects of cavity and atomic dissipations. (a) Inline and side-coupled geometries. Parentheses in the legend denote
(circuit type, γc/g, γa/g). (b) T geometry. Parentheses in the legend denote (ξ/g, γc/g, γa/g). Dissipation equal to 0.1g corresponds to or is
larger than many current experimental conditions [19,21–23]).
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of cavity dissipation γc or atomic dissipation γa (where the
photon leaks to modes other than the privileged waveguide
or cavity mode, respectively); and that the side-coupled and
T cQED circuits both provide better performance compared
to the inline circuit. Figure 5 plots g(2)(0) and Ptt against
�/g with varying dissipations. For the inline circuit [the
blue curves in Fig. 5(a)], g(2)(0) is not strongly affected by
either cavity or atomic dissipation. For example, for �/g =
0.1 (strong coupling) and no dissipation, g(2)(0) ≈ 6 × 10−2.
Cavity dissipation of γc/g = 0.1 does not change this value
[i.e., one still has g(2)(0) ≈ 6 × 10−2], while atomic dissipation
of γa/g = 0.1 still yields g(2)(0) ≈ 7 × 10−2. The two-photon
transmission Ptt is, however, significantly degraded by the
presence of dissipation. Cavity and atomic dissipation yield
nearly identical values of Ptt which are significantly lower
than the dissipationless case for all �/g. In particular, in the
dissipative case, Ptt is 85% lower for �/g = 0.1.

For the side-coupled circuit [the green curves in Fig. 5(a)],
cavity dissipation affects g(2)(0) more than atomic dissipation,
but low g(2)(0) < 0.1 can still be achieved with �/g < 2 for
either γc/g = 0.1 or γa/g = 0.1. On the other hand, cavity
dissipation has essentially no effect upon the two-photon
transmission Ptt while atomic dissipation γa/g = 0.1 causes
Ptt to fall off much more quickly with increasing �/g, yielding
Ptt that is 50% lower than Ptt in the dissipationless case or
the case with cavity dissipation only. For the T circuit with
ξ/g = 1, g(2)(0) and Ptt still fall off monotonically as �/g

decreases. Additionally, small g(2)(0) can still be achieved
with either cavity or atomic dissipation. For example, one
has g(2)(0) < 10−3 both γc/g = 0.1 and γa/g = 0.1. The
two-photon transmission Ptt is reduced by an almost identical
amount for either type of dissipation. For ξ/g = 1.9, the local
minimum of g(2)(0) in �/g still appears for either cavity or
atomic dissipation. In both cases, the minimum is shifted
toward lower �/g. For the atomic case, the minimum is slightly
higher than the dissipationless case, while the minimum with
cavity dissipation is actually lower than the dissipationless
case, meaning that an even stronger photon blockade can be
achieved. The transmission is again reduced for both types of
dissipation, but much less so for cavity dissipation with Ptt >

0.5 for �/g = 1.05 [corresponding to the minimum in g(2)(0)
with cavity dissipation γc/g = 0.1], while atomic dissipation
γa/g = 0.1 yields Ptt ≈ 0.35 at �/g = 1.4 [corresponding to
the minimum in g(2)(0) with atomic dissipation].

IV. SUMMARY

We have demonstrated optimal photon antibunching for
two simple cQED circuits operating advantageously in the

dissipatively weak coupling regime. Here, we also comment on
the current experimental feasibility. To operate at the optimal
conditions requires precise control of the various coupling
strengths in the system. One promising implementation is
in superconducting systems, wherein the coupling strength
between the transmission line and the inductively coupled
cavity can be adjusted over a wide range [42]. For nanopho-
tonic systems, post-fabrication tunability is challenging, but
progress has been made [43]. By operating at different
single-photon frequencies [44,45], the quantum circuits can
also efficiently generate extremely large bunching and super-
Poissonian statistics for the transmission field. Extensions of
our work include operation in modulated circuits to engineer
time-dependent waveform and statistics for transmitted pho-
tons.

APPENDIX A: JAYNES-CUMMINGS AND GENERALIZED
JAYNES-CUMMINGS MODELS

As stated in the main text, the Jaynes-Cummings and
generalized Jaynes-Cummings models are exactly soluble
from the Hamiltonian describing the coupled atom-cavity
systems. In this section, we present the solutions to these
models.

1. Jaynes-Cummings model

The Hamiltonian for the JC model is given by

HJC = �ωca
†
cac + �ωga

†
gag + �ωea

†
eae

+ �g(a†
ca

†
gae + a†

eagac), (A1)

where ωc is the resonant frequency of the cavity, �ωg is the
energy of the atomic ground state |g〉, and �ωe is the energy
of the atomic excited state |e〉; a

†
c and ac are bosonic creation

and annihilation operators for photons in the cavity mode; a
†
g

and ag (a†
e and ae) are fermionic creation and annihilation

operators for an atomic ground (excited) state.
For a given photon number n, since only the |n,g〉 and |n −

1,e〉 states (where |n,g〉 and |n,e〉 correspond to n photons in
the cavity and an atomic ground and excited state, respectively)
are coupled by the Hamiltonian, the state can be written

|ψn〉 = αn,g|n,g〉 + αn,e|n − 1,e〉, (A2)

where αn,g is the amplitude for n photons in cavity modes
and the atom in the ground state, and αn,e is the amplitude
for n − 1 photons in cavity modes and the atom in the excited
state. Calculating the matrix elements of the Hamiltonian in
this basis, one has

H ⇒ �

(
ωmid + (

n − 1
2

)
ωc − 1

2�
√

ng
√

ng ωmid + (
n − 1

2

)
ωc + 1

2�

)
, (A3)

where ωmid ≡ (ωe + ωg)/2 is the central frequency of the atom, and � ≡ ωa − ωc is the detuning between the cavity resonance
frequency and the atomic transition frequency ωa = ωe − ωg . From Eq. (A3), the eigenvalues are given by

E±
n /� = ωmid +

(
n − 1

2

)
ωc ±

√
�2/4 + ng2. (A4)
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These eigenvalues form the JC ladder shown schematically in Fig. 2(a) of the main text with � = 0. The eigenstates, noted as
|n±〉, where H |n±〉 = E±

n |n±〉 are then given by

|n+〉 = 1√
1 + 1

4 (�̄ + √
�̄2 + 4)2

|n,g〉 +
1
2 (�̄ + √

�̄2 + 4)√
1 + 1

4 (�̄ + √
�̄2 + 4)2

|n − 1,e〉, (A5)

|n−〉 = 1√
1 + 1

4 (�̄ − √
�̄2 + 4)2

|n,g〉 +
1
2 (�̄ − √

�̄2 + 4)√
1 + 1

4 (�̄ − √
�̄2 + 4)2

|n − 1,e〉, (A6)

where �̄ ≡ �/
√

ng. For the on-resonance case (i.e., � = 0),
the amplitudes simplify to

|n+〉 = 1√
2
|n,g〉 + 1√

2
|n − 1,e〉, (A7)

|n−〉 = 1√
2
|n,g〉 − 1√

2
|n − 1,e〉. (A8)

The basic mechanism of the photon blockade in the inline
geometry can be understood through the JC energy-level
diagram [Fig. 2(a) from the main text]. Each n-photon
manifold consists of two dressed states labeled |n+〉 and |n−〉
with a frequency separation 2

√
ng. When a single photon

at resonant frequency ωi = ωc − g is injected into the inline
system, it will be transmitted between waveguides with a
relatively high probability as it hits a single-photon resonance
|1−〉 of the JC component [Fig. 2(a) bottom] and tunnels
through; when two such photons are injected simultaneously,
there will be a frequency mismatch of (2 − √

2)g with the
two-photon manifold in the JC ladder, so the two photons as
a whole cannot interact with the JC component and will not
both be transmitted. When the JC component couples to the
waveguide, the sharp energy levels will be broadened and gain
a finite width �. For a significant frequency mismatch to occur,
the inline system must therefore operate in the strong coupling
regime (g > �).

For the side-coupled case, the injected photons have
frequency ωs = ωc [Fig. 2(a)]. At this operating frequency,
high single-photon transmission is expected as the photon
does not hit any resonance of the JC component and simply
carries on unimpeded [Fig. 2(a) bottom]. When two photons
are injected simultaneously, they will be antibunched and will
have higher transmission efficiency than the inline case.

2. Generalized Jaynes-Cummings model

The Hamiltonian for the generalized JC model is given by

HGJC =
∑
i=1,2

�ωca
†
ciaci + �ωga

†
gag + �ωea

†
eae

− �ξ (a†
c2ac1 + a

†
c1ac2) + �g(a†

c2a
†
gae + a†

eagac2),

(A9)

where the operators a
†
g and ag are the same as those in the

previous section, and a
†
ci and aci are creation and annihilation

operators for the ith cavity, where i = 1 is chosen to refer to
the empty cavity and i = 2 to refer to the cavity containing an
atom. Hereafter (and throughout the main text), it is assumed
ωa = ωc (i.e., the cavity and atom are on resonance). Unlike the

case with the conventional JC model, the number of possible
states grows with total photon number n. In particular, there
will be 2n + 1 states per n-photon manifold. In the following,
we compute the eigenvalues and eigenstates separately for the
n = 1 and 2 manifolds.

a. One-photon energy levels and eigenstates

To find the energy levels of this system, we again find
the matrix elements of the Hamiltonian in the appropriate
basis. For n = 1 photon, the set of basis states is {|1,0,g〉,
|0,1,g〉, |0,0,e〉}, where |n1,n2,g〉 = 1√

n1!n2!
(a†

c1)n1 (a†
c2)n2a

†
g|0〉

represents a state with n1 photons in cavity 1, n2 photons
in cavity 2, and the atom in the ground state; |n1,n2,e〉 =

1√
n1!n2!

(a†
c1)n1 (a†

c2)n2a
†
e |0〉 corresponds to the atom in the

excited state. In this basis, we find

H ⇒ �

⎛
⎝
1 −ξ 0

−ξ 
1 g

0 g 
1

⎞
⎠, (A10)

where 
1 ≡ ωg + ωc. All diagonal elements are identical due
to the on-resonance assumption ωa = ωc. The three eigenstate
energies are then given by

E0
1/� = 
1, (A11)

E±
1 /� = 
1 ±

√
g2 + ξ 2. (A12)

The eigenstates can be written as

|10〉 = α0
10g|1,0,g〉 + α0

01g|0,1,g〉 + α0
00e|0,0,e〉, (A13)

|1±〉 = α±
10g|1,0,g〉 + α±

01g|0,1,g〉 + α±
00e|0,0,e〉, (A14)

where H |10〉 = E0
1 |10〉 and H |1±〉 = E±

1 |1±〉. Solving for the
amplitudes yields

α0
10g = 1√

1 + ξ̄ 2
, (A15)

α0
01g = 0, (A16)

α0
00e = ξ̄√

1 + ξ̄ 2
, (A17)

α+
10g = −ξ̄√

2
√

1 + ξ̄ 2
, (A18)

α+
01g = 1√

2
, (A19)

023810-8



ARCHITECTURE DEPENDENCE OF PHOTON . . . PHYSICAL REVIEW A 92, 023810 (2015)

α+
00e = 1√

2
√

1 + ξ̄ 2
, (A20)

α−
10g = −ξ̄√

2
√

1 + ξ̄ 2
, (A21)

α−
01g = − 1√

2
, (A22)

α−
00e = 1√

2
√

1 + ξ̄ 2
, (A23)

where ξ̄ ≡ ξ/g. For the resonant case, all amplitudes are
either constant or depend only on the ratio ξ/g. When ξ̄

becomes small, the bare cavity once again decouples, and
the eigenstates of the generalized JC component reduce to
product states of the bare cavity state and the JC dressed state:
|bare cav〉 ⊗ |JC〉. The eigenstate naming convention is chosen
to make this reduction transparent: the |1±〉 generalized JC
states reduce to |0〉cav|1±〉JC (i.e., the photon is completely in
the JC subsystem); the |10〉 generalized JC state reduces to
|1〉cav|0〉JC (i.e., the photon is in the bare cavity).

b. Two-photon energy levels and eigenstates

For n = 2 photons, the set of basis states becomes {|2,0,g〉,
|1,1,g〉, |0,2,g〉, |1,0,e〉, |0,1,e〉}, where all bases are inter-
preted as in Sec. A 2 a. In this basis, one has

H ⇒ �

⎛
⎜⎜⎜⎜⎜⎜⎝


2 −√
2ξ 0 0 0

−√
2ξ 
2 −√

2ξ g 0

0 −√
2ξ 
2 0

√
2g

0 g 0 
2 −ξ

0 0
√

2g −ξ 
2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A24)

where 
2 ≡ ωg + 2ωc. Again, the diagonal elements are
all identical due to the on-resonance assumption. The five
eigenstate energies are given by

E0
2/� = 
2, (A25)

E−
2

′/� = 
2 −
√

3g2

2
+ 5ξ 2

2
− 1

2

√
g4 + 30g2ξ 2 + 9ξ 4,

(A26)

E+
2

′/� = 
2 +
√

3g2

2
+ 5ξ 2

2
− 1

2

√
g4 + 30g2ξ 2 + 9ξ 4,

(A27)

E−
2 /� = 
2 −

√
3g2

2
+ 5ξ 2

2
+ 1

2

√
g4 + 30g2ξ 2 + 9ξ 4,

(A28)

E+
2 /� = 
2 +

√
3g2

2
+ 5ξ 2

2
+ 1

2

√
g4 + 30g2ξ 2 + 9ξ 4,

(A29)

where E+
2 > E+

2
′ > E0

2 > E−
2

′ > E−
2 . Now, the five eigen-

states are denoted |2+〉, |2+〉′, |20〉, |2−〉′, and |2+〉. The
eigenstates are again linear combinations of the bare states.

For example, the central |20〉 state can be written

|20〉 = α0
20g|2,0,g〉 + α0

11g|1,1,g〉 + α0
02g|0,2,g〉 + α0

10e|1,0,e〉
+α0

01e|0,1,e〉, (A30)

and other eigenstates can be written analogously.
Solving for the central (energy E0

2) amplitudes yields

α0
20g = 1 − ξ̄ 2√

1 + 2ξ̄ 2
, α0

11g = 0,

α0
02g = ξ̄ 2√

1 + 2ξ̄ 4
, α0

10e =
√

2ξ̄√
1 + 2ξ̄ 4

,

α0
01e = 0,

where ξ̄ ≡ ξ/g. The |2−〉′ and |2+〉′ amplitudes are given by

α−
20g

′ = D−1
1 ξ̄ (1 − 3ξ̄ 2 + R), α+

20g
′ = −α−

20g
′,

α−
11g

′ =
√

1 − 3ξ̄ 2 + R

2
√

R
, α+

11g
′ = α−

11g
′,

α−
02g

′ = D−1
1 ξ̄ (−5 − 3ξ̄ 2 + R), α+

02g
′ = −α−

02g
′,

α−
10e

′ = − 1√
2
D−1

1 (1 − 9ξ̄ 2 + R), α+
10e

′ = −α−
10e

′,

α−
01e

′ =
√

−1 + 3ξ̄ 2 + R

2
√

R
, α+

01e
′ = α−

01e
′,

where

D1 ≡
√

2
√

1 + R + 17ξ̄ 2(2 − R) + 3ξ̄ 4(43 − 4R) + 36ξ̄ 6

and

R ≡
√

1 + 30ξ̄ 2 + 9ξ̄ 4.

The amplitudes corresponding to the outermost states (|2−〉
and |2+〉) are given by

α−
20g = D−1

2 ξ̄ (1 − 3ξ̄ 2 − R), α+
20g = −α−

20g,

α−
11g = −3ξ̄√

R
√

1 − 3ξ̄ 2 + R
, α+

11g = α−
11g,

α−
02g = −D−1

2 ξ̄ (5 + 3ξ̄ 2 + R), α+
02g = −α−

02g,

α−
10e = − 1√

2
D−1

2 (1 − 9ξ̄ 2 − R), α+
10e = −α−

10e,

α−
01e = 3D−1

3 ξ̄ , α+
01e = −α−

01e,

where

D2 ≡
√

2
√

1 − R + 17ξ̄ 2(2 + R) + 3ξ̄ 4(43 + 4R) + 36ξ̄ 6

and

D3 =
√

1 − R + 3ξ̄ 2(10 + R) + 9ξ̄ 4.

It is not immediately obvious from the expressions above,
but all of the amplitudes above are real for any value of ξ . The
denominator for several of the amplitudes D2 approaches zero
as ξ̄ approaches zero, but the limit for all of the amplitudes is
as ξ̄ → 0 is finite. For the limiting case of large ξ̄ , all dressed
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states are cavitylike and equally spaced in frequency. As with
the n = 1 case, as ξ̄ becomes small the bare cavity decouples,
and the eigenstates of the generalized JC component reduce to
product states of the bare cavity state and the JC dressed state:
|bare cav〉 ⊗ |JC〉. The eigenstate naming convention in the
n = 2 case is again chosen to make this reduction transparent:
the |2±〉 generalized JC states reduce to |0〉cav|2±〉JC (i.e., both
photons are in the JC subsystem); the |2±〉′ generalized JC
states reduce to |1〉cav|1±〉JC (i.e., one photon is in the bare
cavity, and one is in the JC subsystem); the |20〉 generalized
JC state reduces to |2〉cav|0〉JC (i.e., both photons are in the bare
cavity). The T geometry operates at single-photon frequency
ωT = ωc, so a single photon can tunnel through by interacting
with the resonance |10〉 of the generalized JC system. When
two photons are injected simultaneously, the two photons will
hit the unperturbed resonance |20〉 of the two-photon manifold
of the generalized JC component. The two photons will be
antibunched with a higher transmission than the inline case.

APPENDIX B: FULL HAMILTONIAN AND EQUATIONS
OF MOTION FOR EACH QUANTUM CIRCUIT

In this section, the Hamiltonian describing the full inline,
side-coupled, and T geometries is shown and the respective
two-photon equations of motion are derived.

1. Inline geometry

As given in Ref. [20] from the main text, the Hamiltonian
for the inline geometry is

H = Hw + Ha + Hc + Hwc + Hac. (B1)

Hw is the folded Hamiltonian for photonic propagation in the
two waveguide branches

Hw = �

∫
dxc

†
l (x)(−iv∂x)cl(x)+�

∫
dxc†r (x)(−iv∂x)cr (x),

(B2)
where the subscripts l and r refer to the left- and right-hand
branches of the waveguide, respectively. The operators cl(x)
and c

†
l (x) [cr (x) and c

†
r (x)] are creation and annihilation

operators for a photon in the left- (right-) hand branch of
the waveguide. The path corresponding to each operator is
shown in Fig. 6. For the left-hand branch, cl(x < 0) describes
a photon moving to the right at −|x| in the left-hand branch,

FIG. 6. (Color online) Regular and folded coordinates for de-
scribing different cavity QED geometries. (a) Folded coordinates
to describe inline and T geometries, wherein photons are reflected
unless they interact with the cavity. (b) Regular, left-right coordinates
to describe side-coupled geometry, wherein photons continue to
propagate unimpeded unless they interact with the cavity.

and cl(x > 0) describes a photon moving to the left at −|x| in
the left-hand branch. The operator cr (x) has a similar meaning
for the right-hand branch.

Ha + Hc + Hac is equal to HJC from the previous section.
Ha is the Hamiltonian for the atom and is given by

Ha = �ωga
†
gag + �ωea

†
eae, (B3)

where a
†
g and ag (a†

e and ae) are creation and annihilation
operators for the atomic ground (excited) state; �ωg and �ωe

are the energies of the atomic ground state |g〉 and excited state
|e〉, respectively.

Hc is the Hamiltonian for cavity modes, and is given by

Hc = �ωca
†
cac, (B4)

where a
†
c and ac are creation and annihilation operators for

cavity modes, and ωc is the resonant frequency of the cavity.
Hac describes the coupling between the atom and cavity

modes, and is given by

Hac = �g(a†
eagac + a†

ca
†
gae), (B5)

where g is the atom-cavity coupling strength.
Hwc describes cavity-waveguide coupling to folded waveg-

uide modes and is given by

Hwc =
∫

dxVcδ(x)[c†l (x)ac + a†
ccl(x) + c†r (x)ac + a†

ccr (x)], (B6)

where Vc gives the coupling strength between waveguided and cavity modes (the cavity couples to the waveguide at x = 0).
The general state with only two photons present is

|ψ〉 =
∫∫

dx1dx2 φll(x1,x2,t)e
−iωgt

1√
2
c
†
l (x1)c†l (x2)a†

g|0〉 +
∫∫

dx1dx2 φlr (x1,x2,t)e
−iωgt

1√
2
c
†
l (x1)c†r (x2)a†

g|0〉

+
∫∫

dx1dx2 φLR(x1,x2,t)e
−iωgt

1√
2
c†r (x1)c†l (x2)a†

g|0〉 +
∫∫

dx1dx2 φLL(x1,x2,t)e
−iωgt

1√
2
c†r (x1)c†r (x2)a†

g|0〉
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+
∫

dx ecl(x,t)e−i(ωg+ωc)t c
†
l (x)a†

ca
†
g|0〉 +

∫
dx ecr (x,t)e−i(ωg+ωc)t c†r (x)a†

ca
†
g|0〉

+
∫

dx eal(x,t)e−iωet c
†
l (x)a†

e |0〉 +
∫

dx ear (x,t)e−iωet c†r (x)a†
e |0〉 + ecc(t)e−i2ωct

1√
2
a†

ca
†
ca

†
g|0〉 + eac(t)e−i(ωe+ωc)t a†

ca
†
e |0〉,
(B7)

where φll(x1,x2,t), φlr (x1,x2,t), φrl(x1,x2,t), and φrr (x1,x2,t) are amplitudes corresponding to two photons in the waveguide,
no cavity excitation, and the atom in the ground state; ecl(x,t) and ecr (x,t) are amplitudes corresponding to one photon in the
waveguide, one cavity excitation, and the atom in the ground state; eal(x,t) and ear (x,t) are amplitudes corresponding to one
photon in the waveguide, no cavity excitation, and the atom in the excited state; ecc(t) is the amplitude corresponding to no
photons in the waveguide, two cavity excitations, and the atom in the ground state; eac(t) is the amplitude corresponding to
no photons in the waveguide, one cavity excitation, and the atom in the excited state. In Eq. (B7), the phase due to the temporal
evolution of the atomic and cavity parts of the state (e−iωgt , e−iωet , and e−iωc ) is written explicitly for convenience. The two-photon
part of the state is symmetric under the interchange of x1 and x2. For the ll and rr portions, this means that φll(x1,x2) = φll(x2,x1)
and φrr (x1,x2) = φrr (x2,x1). The part of the state with one photon in the left-hand branch and one in the right-hand branch is
separated into lr and rl for convenience, and here symmetrization requires φlr (x1,x2) = φrl(x2,x1).

Solving the Schrödinger equation with this Hamiltonian and state yields the equations of motion

φ̇ll(x1,x2,t) = − v
(
∂x1 + ∂x2

)
φll(x1,x2,t) − i

Vc√
2

[δ(x2)ecl(x1,t) + δ(x1)ecl(x2,t)]e
−iωct ,

φ̇lr (x1,x2,t) = − v
(
∂x1 + ∂x2

)
φlr (x1,x2,t) − i

Vc√
2

[δ(x2)ecl(x1,t) + δ(x1)ecr (x2,t)]e
−iωct ,

φ̇rl(x1,x2,t) = − v
(
∂x1 + ∂x2

)
φrl(x1,x2,t) − i

Vc√
2

[δ(x2)ecr (x1,t) + δ(x1)ecl(x2,t)]e
−iωct ,

φ̇rr (x1,x2,t) = − v
(
∂x1 + ∂x2

)
φrr (x1,x2,t) − i

Vc√
2

[δ(x2)ecL(x1,t) + δ(x1)ecL(x2,t)]e
−iωct ,

ėcl(x,t) = − v∂xecl(x,t) − i
Vc√

2
[φll(0,x,t) + φll(x,0,t) + φlr (x,0,t) + φrl(0,x,t)]eiωct

− i
√

2Vcδ(x)ecc(t)e−iωct − igeal(x,t)e−i�t ,

ėcr (x,t) = − v∂xecr (x,t) − i
Vc√

2
[φrr (0,x,t) + φrr (x,0,t) + φlr (0,x,t) + φrl(x,0,t)]eiωct

− i
√

2Vcδ(x)ecc(t)e−iωct − igear (x,t)e−i�t ,

ėal(x,t) = − v∂xeal(x,t) − iVcδ(x)eace
−iωct − igecl(x,t)ei�t ,

ėar (x,t) = − v∂xear (x,t) − iVcδ(x)eace
−iωct − igecr (x,t)ei�t ,

ėcc(t) = − i
√

2Vc[ecl(0,t) + ecr (0,t)]eiωct − i
√

2geac(t)e−i�t ,

ėac(t) = − iVc[eal(0,t) + ear (0,t)]eiωct − i
√

2gecc(t)ei�t . (B8)

The fully interacting two-photon system dynamics can be obtained by solving these equations of motion. For an arbitrary set of
initial conditions, the system evolves in time according to the equations of motion to trace out the full spatiotemporal dynamics
of the process.

2. Side-coupled geometry

The total Hamiltonian for the inline geometry is given by

H = H ′
w + Ha + Hc + H ′

wc + Hac, (B9)

where Ha , Hc, and Hac are the same as those in Eq. (B1).
H ′

w is the photonic Hamiltonian corresponding to a single
waveguide

H ′
w = �

∫
dxc

†
R(x)(−iv∂x)cR(x)+�

∫
dxc

†
L(x)(iv∂x)cL(x),

(B10)

where c
†
R(x) and cR(x) are creation and annihilation operators

for a right-moving photon at position x; c
†
L(x) and cL(x) are

creation and annihilation operators for a left-moving photon
at position x.

H ′
wc describes cavity-waveguide coupling with regular

right- and left-moving modes, and is given by

H ′
wc =

∫
dx Vcδ(x)[c†R(x)ac+a†

ccR(x)+c
†
L(x)ac + a†

ccL(x)].

(B11)
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The general state with two photons is given by

|ψ〉 =
∫∫

dx1dx2 φRR(x1,x2,t)e
−iωgt

1√
2
c
†
R(x1)c†R(x2)a†

g|0〉 +
∫∫

dx1dx2 φRL(x1,x2,t)e
−iωgt

1√
2
c
†
R(x1)c†L(x2)a†

g|0〉

+
∫∫

dx1dx2 φLR(x1,x2,t)e
−iωgt

1√
2
c
†
L(x1)c†R(x2)a†

g|0〉 +
∫∫

dx1dx2 φLL(x1,x2,t)e
−iωgt

1√
2
c
†
L(x1)c†L(x2)a†

g|0〉

+
∫

dx ecR(x,t)e−i(ωg+ωc)t c
†
R(x)a†

ca
†
g|0〉 +

∫
dx ecL(x,t)e−i(ωg+ωc)t c

†
L(x)a†

ca
†
g|0〉 +

∫
dx eaR(x,t)e−iωet c

†
R(x)a†

e |0〉

+
∫

dx eaL(x,t)e−iωet c
†
L(x)a†

e |0〉 + ecc(t)e−i2ωct
1√
2
a†

ca
†
ca

†
g|0〉 + eac(t)e−i(ωe+ωc)t a†

ca
†
e |0〉, (B12)

where the amplitudes have analogous meanings to those for the inline cavity, except that RR, LL, RL, and LR terms indicate
the direction of travel for the photons rather than which branch of the waveguide they are in.

Solving the Schrödinger equation with this Hamiltonian and state yields the equations of motion

φ̇RR(x1,x2,t) = − v
(
∂x1 + ∂x2

)
φRR(x1,x2,t) − i

Vc√
2

[δ(x2)ecR(x1,t) + δ(x1)ecR(x2,t)]e
−iωct ,

φ̇RL(x1,x2,t) = (−v∂x1 + v∂x2

)
φRL(x1,x2,t) − i

Vc√
2

[δ(x2)ecR(x1,t)δ(x1)ecL(x2,t)]e
−iωct ,

φ̇LR(x1,x2,t) = (
v∂x1 − v∂x2

)
φLR(x1,x2,t) − i

Vc√
2

[δ(x2)ecL(x1,t) + δ(x1)ecR(x2,t)]e
−iωct ,

φ̇LL(x1,x2,t) = v
(
∂x1 + ∂x2

)
φLL(x1,x2,t) − i

Vc√
2

[δ(x2)ecL(x1,t) + δ(x1)ecL(x2,t)]e
−iωct ,

ėcR(x,t) = − v∂xecR(x,t) − i
Vc√

2
[φRR(0,x,t) + φRR(x,0,t) + φRL(x,0,t) + φLR(0,x,t)]eiωct

− i
√

2Vcδ(x)ecc(t)e−iωct − igeaR(x,t)e−i�t ,

ėcL(x,t) = v∂xecL(x,t) − i
Vc√

2
[φLL(0,x,t) + φLL(x,0,t) + φRL(0,x,t) − iφLR(x,0,t)]eiωct

− i
√

2Vcδ(x)ecc(t)e−iωct − igeaL(x,t)e−i�t ,

ėaR(x,t) = − v∂xeaR(x,t) − iVcδ(x)eace
−iωct − igecR(x,t)ei�t ,

ėaL(x,t) = v∂xeaL(x,t) − iVcδ(x)eace
−iωct − igecL(x,t)ei�t ,

ėcc(t) = − i
√

2Vc[ecR(0,t) + ecL(0,t)]eiωct − i
√

2geac(t)e−i�t ,

ėac(t) = − iVc[eaR(0,t) + eaL(0,t)]eiωct − i
√

2gecc(t)ei�t . (B13)

As for the inline geometry, the fully interacting two-photon
dynamics can be obtained by solving these equations of
motion. This set of equations is largely similar to those
describing the inline system, but with left- and right-moving
modes rather than two folded chiral modes.

3. T geometry

The total Hamiltonian for the T geometry is given by

H = Hw + Ha + H ′
c + H ′′

wc + Hcc + H ′
ac, (B14)

where Hw is the folded photonic Hamiltonian given in
Eq. (B2), and Ha is the same as that given previously. Other
terms are similar to those for the inline case, but with multiple
cavities. H ′

c is given by a sum over terms equivalent to the
previous cavity Hamiltonian

H ′
c =

∑
i=1,2

�ωca
†
ciaci , (B15)

where a
†
ci and aci are creation and annihilation operators for

the ith cavity, where i = 1 refers to the bare cavity and i = 2
refers to the cavity containing an atom.

H ′′
wc is analogous to H ′

wc, but with the necessary subscripts
to indicate that the folded waveguide modes couple to
cavity 1:

H ′′
wc =

∫
dx Vcδ(x)[c†l (x)ac1 + a

†
c1cl(x) + c†r (x)ac1

+ a
†
c1cr (x)]. (B16)

Hcc describes cavity-cavity coupling and is given by

Hcc = −�ξ (a†
c2ac1 + a

†
c1ac2), (B17)

where the sign can be determined by a symmetry
argument.
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H ′
ac is equivalent to Hac but with a subscript to indicate that the atom couples to cavity 2:

H ′
ac = �g(a†

c2a
†
gae + a†

eagac2). (B18)

The part of the Hamiltonian Ha + H ′
c + Hcc + H ′

ac is equal to the generalized JC Hamiltonian HGJC from the previous section.
The general two-photon state for the T geometry is given by

|ψ〉 =
∫∫

dx1dx2 φll(x1,x2,t)e
−iωgt

1√
2
c
†
l (x1)c†l (x2)a†

g|0〉 +
∫∫

dx1dx2 φlr (x1,x2,t)e
−iωgt

1√
2
c
†
l (x1)c†r (x2)a†

g|0〉

+
∫∫

dx1dx2 φLR(x1,x2,t)e
−iωgt

1√
2
c†r (x1)c†l (x2)a†

g|0〉 +
∫∫

dx1dx2 φLL(x1,x2,t)e
−iωgt

1√
2
c†r (x1)c†r (x2)a†

g|0〉

+
∫

dx ec1l(x,t)e−i(ωg+ωc)t c
†
l (x)a†

c1a
†
g|0〉 +

∫
dx ec1r (x,t)e−i(ωg+ωc)t c†r (x)a†

c1a
†
g|0〉

+
∫

dx ec2l(x,t)e−i(ωg+ωc)t c
†
l (x)a†

c2a
†
g|0〉 +

∫
dx ec2r (x,t)e−i(ωg+ωc)t c†r (x)a†

c2a
†
g|0〉 +

∫
dx eal(x,t)e−iωet c

†
l (x)a†

e |0〉

+
∫

dx ear (x,t)e−iωet c†r (x)a†
e |0〉 + ec1c1(t)e−i2ωct

1√
2
a
†
c1a

†
c1a

†
g|0〉 + ec1c2(t)e−i2ωcta

†
c1a

†
c2a

†
g|0〉

+ ec2c2(t)e−i2ωct
1√
2
a
†
c2a

†
c2a

†
g|0〉 + ec1a(t)e−i(ωe+ωc)t a

†
c1a

†
e |0〉 + ec2a(t)e−i(ωe+ωc)t a

†
c2a

†
e |0〉, (B19)

where all terms have analogous meanings to those described for the inline geometry.
Solving the Schrödinger equation with this Hamiltonian and state yields the equations of motion

φ̇ll(x1,x2,t) = − v
(
∂x1 + ∂x2

)
φll(x1,x2,t) − i

Vc√
2

[δ(x2)ecl(x1,t) + δ(x1)ecl(x2,t)]e
−iωct ,

φ̇lr (x1,x2,t) = − v
(
∂x1 + ∂x2

)
φlr (x1,x2,t) − i

Vc√
2

[δ(x2)ecl(x1,t) + δ(x1)ecr (x2,t)]e
−iωct ,

φ̇rl(x1,x2,t) = − v
(
∂x1 + ∂x2

)
φrl(x1,x2,t) − i

Vc√
2

[δ(x2)ecr (x1,t) + δ(x1)ecl(x2,t)]e
−iωct ,

φ̇rr (x1,x2,t) = − v
(
∂x1 + ∂x2

)
φrr (x1,x2,t) − i

Vc√
2

[δ(x2)ecL(x1,t) + δ(x1)ecL(x2,t)]e
−iωct ,

ėc1l(x,t) = − v∂xec1l(x,t) − i
Vc√

2
[φll(0,x,t) + φll(x,0,t) + φlr (x,0,t) + φrl(0,x,t)]eiωct

+ iξec2l(x,t) − i
√

2Vcδ(x)ec1c1(t)e−iωct ,

ėc1r (x,t) = − v∂xec1r (x,t) − i
Vc√

2
[φrr (0,x,t) + φrr (x,0,t) + φlr (0,x,t) + φrl(x,0,t)]eiωct

+ iξec2r (x,t) − i
√

2Vcδ(x)ec1c1(t)e−iωct ,

ėc2l(x,t) = − v∂xec2l(x,t) + iξec1l(x,t) − igeal(x,t)e−i�t − iV δ(x)ec1c2(t)e−iωct ,

ėc2r (x,t) = − v∂xec2r (x,t) + iξec1r (x,t) − igear (x,t)e−i�t − iV δ(x)ec1c2(t)e−iωct ,

ėal(x,t) = − v∂xeal(x,t) − iVcδ(x)eace
−iωct − igec2l(x,t)ei�t ,

ėar (x,t) = − v∂xear (x,t) − iVcδ(x)eace
−iωct − igec2r (x,t)ei�t ,

ėc1c1(t) = − i
√

2Vc[ec1l(0,t) + ec1r (0,t)]eiωct + i
√

2ξec1c2(t),

ėc1c2(t) = − iVc[ec2l(0,t) + ec2r (0,t)]eiωct + i
√

2ξec1c1(t) + i
√

2ξec2c2(t) − igec1a(t)e−i�t ,

ėc2c2(t) = + i
√

2ξec1c2(t) − i
√

2gec2a(t)e−i�t ,

ėc1a(t) = − iVc[eal(0,t) − iear (0,t)]eiωct − igec1c2(t)ei�t + iξec2a(t),

ėc2a(t) = − i
√

2gec2c2(t)ei�t + iξec1a(t). (B20)
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Again, the full two-photon system dynamics can be obtained
by solving these equations of motion.

APPENDIX C: SIMULATION OF A WEAK
COHERENT STATE

As mentioned in the main text, to properly simulate a
weak coherent input, one should use a truncated coherent
input that contains the vacuum state, a one-photon state, and
a two-photon state. A coherent state |α〉 with expected photon
number n̄ = |α|2 is written

|α〉 =
∞∑

n=0

cn|n〉, (C1)

where

cn = e−n̄/2 αn

√
n!

(C2)

and |n〉 is a photon number (Fock) state. With the real-space
representation used in this work, such a number state is
written

|n〉 = 1√
n!

[
n∏

i=1

∫
dxi φ(xi)c

†
R(xi)

]
|0〉, (C3)

that is, the photons are independent and completely spatially
overlapping with spatial distribution given by φ(x) which
has normalization

∫
dx |φ(x)|2 = 1. Equation (C3) supposes

a right-moving coherent state. A left-moving coherent state
would be generated by replacing the right-moving photonic
creation operator.

The second-order correlation function (considering right-
moving modes) is given by

g(2)(τ ) = 〈c†R(xm)c†R(xm + vτ )cR(xm + vτ )cR(xm)〉
〈c†R(xm)cR(xm)〉 〈c†R(xm + vτ )cR(xm + vτ )〉

,

(C4)
where xo is a reference location. Analytically, the resulting
second-order correlation should not depend upon the choice
of xm, but we find that choosing xm to correspond to the
center of the pulse (either scattered or input) yields better
numerical accuracy. Calculating the second-order correlation
for a coherent state described by Eq. (C1), one finds g(2)(τ ) = 1
for all τ as expected.

For a weak coherent state, the amplitudes cn will be
vanishingly small for n > 2, so the state can be approximated
by

|α〉′ = c′
0|0〉 + c′

1|1〉 + c′
2|2〉, (C5)

where the amplitudes c′
n are the same as the full

coherent state amplitudes cn but normalized such that
|c′

0|2 + |c′
1|2 + |c′

2|2 = 1. With such a state, one still finds
g(2)(τ ) = 1 for all τ . Such a truncated coherent state therefore
faithfully represents an input weak coherent state. After
choosing the input state corresponding to the two-photon
pulse given in the main text, we then find the scattered
second-order correlation by evolving the state until all cavity
and atomic excitations have died down and calculating g(2)(τ )
for the transmitted part of the state. Note that the zero- and
one-photon parts of the state only affect the normalization (not
the shape) of g(2)(τ ), so the second-order correlation function
can also be calculated by considering only the two-photon
part of the scattering process and multiplying by 2 [since for
a two-photon input Fock state one has g(2)(τ ) = 1

2 for all τ ].
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