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Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies
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We develop a simple analytical model for calculating the vibrational contribution to the nonlinear refractive
index n2 (Kerr coefficient) of a crystal in terms of known crystalline parameters such as the linear refractive
index, the coefficient of thermal expansion, the atomic density, and the reduced mass and the natural oscillation
frequency of the vibrational modes of the crystal lattice. We show that the value of this contribution in the terahertz
spectral region can exceed the value of the nonlinear refractive index n2 in the visible and near-IR spectral ranges
(which is largely electronic in origin) by several orders of magnitude. For example, for crystal quartz the value of
the Kerr coefficient in the low-frequency limit is n2 = 2.2 × 10−9 esu or, equivalently, 4.4 × 10−16 m2/W, which
is very much larger than its value of 3 × 10−20 m2/W in the visible range. Furthermore, we present an analysis
of the dispersion of n2 in the terahertz spectral range and show that even larger values of n2 occur at frequencies
close to the vibrational resonances.
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I. INTRODUCTION

Intensive research in the field of terahertz (THz) radiation
has celebrated the beginning of its third decade. Since their first
demonstrations, THz techniques continue to find new appli-
cations from medical diagnostics and therapy to the detection
of hidden substances, including explosives and drugs [1–3]. In
recent years, pulsed sources of THz radiation with sufficient
intensity for the observation of nonlinear optical effects have
appeared in a number of laboratories [4–9]. Investigation of
the nonlinear optical effects in the THz spectral range has now
become feasible [10,11]. The dependence of the refractive
index of an optical medium on light intensity is a fundamental
phenomenon in nonlinear optics. This phenomenon leads to
well-known self-action effects of light, including self-phase
modulation, self-focusing of light, or self-broadening of its
spectrum [12]. The nonlinear response of a medium that leads
to these self-action effects in a transparent medium (i.e., for
nonresonant interactions of light with matter) relies on its
nonlinear refractive index n2 as a material characteristic. This
quantity is responsible for the strength of self-action effects;
it is thus important to find ways to measure and theoretically
calculate the n2 coefficient in various material systems.

In this paper, we propose a method for calculating the
coefficient n2 of crystals in the THz spectral range. It is shown
that the vibrational contribution to the nonlinear response in
the far-infrared (IR) spectral range can be several orders of
magnitude larger than the electronic nonlinearity, which is
the dominant contribution for ultrashort pulses in the visible
and near-IR spectral ranges [12,13]. The paper is organized
as follows. In Sec. II, we introduce the basic expression
for the coefficient n2 of a crystal whose structural unit
is considered to be a classical anharmonic oscillator with
quadratic and cubic nonlinearities. In Sec. III, we calculate
expressions for the linear refractive index and the coefficient
of thermal expansion of the crystal in the framework of the
same model. The comparison of these results allows us to
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write the expression for the vibrational contribution to the
coefficient n2 in terms of known characteristics of the crystal.
To determine the contribution of the dynamic Stark shift of
the ion vibrational frequency to the nonlinear response, we
use a quantum mechanical approach. In Sec. IV, we evaluate
the derived formula for n2 for crystalline quartz. We show that
the values of that coefficient in the THz spectral range are
several orders of magnitude greater than the corresponding
values in the visible and near-IR ranges. In Sec. V, we discuss
the dispersion properties of the coefficient n2 of quartz in the
THz range. In conclusion, we summarize the main results of
the paper in Sec. VI.

II. THE VIBRATIONAL CONTRIBUTION TO THE
NONLINEAR REFRACTIVE INDEX OF CRYSTALS

There are many different mechanisms contributing to the
nonlinear optical response in optical media [12,13]. Some
of these mechanisms are based on the nonlinear response of
each atom or molecule to the radiation field, while others are
based on the change in the concentration of these particles,
for example, due to the thermal expansion of the substance
in the presence of high-intensity radiation. We refer to the
former situation as “low-inertia” sources of nonlinearity, and
to the latter as “high-inertia” sources. For the case of ultrashort
optical pulses, including intense picosecond THz pulses [4–9],
the dominant source of nonlinearity tends to be the low-inertia,
single-particle sources [13]. For the pulses in the visible and
near IR spectral ranges, the dominant low-inertia mechanism
of nonlinearity is electronic [12–14]. For the pulses in the far-
IR range, one expects the dominant mechanism of nonlinearity
to be associated with anharmonic vibrations of the lattice.

Let us analyze the vibrational nonlinearity of a crystalline
material by considering the dynamics of ions in the lattice
resulting from the force induced by the electromagnetic field.
In this analysis, we make use of a classical model of the
anharmonic oscillator:

ẍ + 2γ ẋ + ω2
0x + ax2 + bx3 = αE. (1)
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Here x is the deviation of an ion from its equilibrium position,
γ is the damping coefficient, E is the applied electric field, a

and b are the nonlinear coefficients, and

α = q

m
, (2)

where q is the ionic change, and m is the reduced mass of the
vibrational mode. We solve Eq. (1) using perturbation theory
that involves introducing an expansion parameter 0 � λ � 1,
characterizing the strength of the perturbation, to the right-
hand side of Eq. (1):

ẍ + 2γ ẋ + ω2
0x + ax2 + bx3 = λαE. (3)

We are looking for the solution to Eq. (3) in the form of a
power-series expansion with respect to λ:

x = λx(1) + λ2x(2) + λ3x(3) + . . . . (4)

We substitute x in the form of Eq. (4) into the Eq. (3), while
retaining the terms up to λ3. Equation (3) then splits into three
equations for the terms proportional to λ, λ2, and λ3:

ẍ(1) + 2γ ẋ(1) + ω2
0x

(1) = αE, (5a)

ẍ(2) + 2γ ẋ(2) + ω2
0x

(2) + a[x(1)]2 = 0, (5b)

and

ẍ(3) + 2γ ẋ(3) + ω2
0x

(3) + 2ax(1)x(2) + b[x(1)]3 = 0. (5c)

We assume that the electric field interacting with the ions
is monochromatic with the frequency ω:

E(ω) = Eωe−iωt + c.c. (6)

Within this study, we treat the nonlinear optical effects
that occur without change in the frequency spectrum. We
thus consider the oscillations of the crystalline ions at the
fundamental frequency only:

x = xωe−iωt + c.c. (7)

We are looking for the solution to Eq. (3) describing the
amplitude of the vibrations in the crystalline lattice at the
fundamental frequency. Substituting Eq. (7) into Eq. (5a), we
obtain the solution for x(1) in the form

x(1)
ω = αE

ω2
0 − ω2 − 2γ iω

. (8)

We next use Eqs. (6) and (8) to evaluate Eq. (5b). The resulting
solution breaks down into two equations:

x
(2)
2ω = − aα2

(
E2

ωe−i2ωt + c.c.
)

(
ω2

0 − ω2 − 2iωγ
)2(

ω2
0 − 4ω2 − 4iωγ

) (9a)

and

x
(2)
0 = − aα2 2|Eω|2

(ω2
0 − ω2 − 2iωγ )2ω2

0

(9b)

for the components of x oscillating at the frequencies 2ω and 0,
respectively. While these components are not of direct interest
in the current study, they contribute in a nonlinear fashion to the
oscillations of the deviation x at the fundamental frequency,

corresponding to self-action effects. We then use Eqs. (8) and
(9) in Eq. (5c) to find these nonlinear contributions:

x(3)
ω =

[
2a2α3(

ω2
0 − ω2 − 2γ iω

)4

3ω2
0 − 8ω2 − 8γ iω

ω2
0

(
ω2

0 − 4ω2 − 4γ iω
)

+ 3bα3(
ω2

0 − ω2 − 2γ iω
)4

]
|Eω|2E. (10)

Next, we combine Eqs. (8) and (10) for the terms oscillating at
the frequency ω in Eq. (4), while setting λ = 1, to obtain the
final expression for x:

xω = αEω

ω2
0 − ω2 − 2γ iω

+ 1(
ω2

0 − ω2 − 2γ iω
)4

×
[

2a2α3 3ω2
0 − 8ω2 − 8γ iω

ω2
0

(
ω2

0 − 4ω2 − 4γ iω
) + 3bα3

]
|Eω|2Eω.

(11)

We next turn to evaluating the nonlinear susceptibility
associated with the Kerr effect. We first introduce the total
polarization in the medium, including both electronic Pel and
vibrational Pv contributions.

P = Pel + Pv = Nqx = Pωe−iωt + c.c. (12)

The amplitude of the polarization component, oscillating
at frequency ω and including both linear and nonlinear
contributions, can be represented as

Pω = χ (1)Eω + 3χ (3)|Eω|2Eω. (13)

Introducing the effective susceptibility

χeff = χ (1) + 3χ (3)|Eω|2
= χ

(1)
el + χ (1)

v + 3χ
(3)
el |Eω|2 + 3χ (3)

v |Eω|2, (14)

where χ
(i)
el and χ (i)

v are its electronic and vibrational contribu-
tions, we can rewrite the polarization (13) as

Pω = χeffEω. (15)

The complex overall refractive index of the medium, including
its linear and nonlinear, electronic and vibrational contribu-
tions, can now be expressed in terms of χeff as

ñ2 = 1 + 4πχeff . (16)

Using the definition [12]

ñ = ñ0 + ˜̄n2〈E2〉, (17)

where 〈E2〉 is the time average of the field, (6), which is
explicitly given by

〈E2〉 = 2|Eω|2, (18)

we find that

ñ = ñ0 + 2 ˜̄n2|Eω|2. (19)

In Eqs. (16)–(19) and below, we emphasize the complex nature
of the refractive indices by adding a tilde above the letters that
denote them. We drop the tilde sign when we switch to the
real parts of these quantities later. Here and below, we use
the notation n̄2 for the Kerr coefficient to emphasize that it is
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considered in electrostatic units (esu). Later, when we convert
its value to SI units, we drop the bar sign.

Combining Eqs. (14)–(19), we obtain

ñ2
0 + 4ñ0 ˜̄n2|Eω|2 = 1 + 4πχ (1) + 12πχ (3)|Eω|2, (20)

and the expressions for the linear and nonlinear refractive
indices now take the forms

ñ0 =
√

1 + 4πχ (1) (21)

and

˜̄n2 = ˜̄n2,el + ˜̄n2,v = 3πχ (3)

ñ0
. (22)

Here ñ2,el and ñ2,v are the electronic and vibrational contribu-
tions to the nonlinear refractive index. Using Eqs. (11)–(13),
we can express the linear and nonlinear susceptibilities in terms
of the parameters of the resonance as

χ (1) = qN
α

ω2
0 − ω2 − 2γ iω

(23)

and

χ (3) = qN

3

α3(
ω2

0 − ω2 − 2γ iω
)4

×
[

2a2 3ω2
0 − 8ω2 − 8γ iω

ω2
0

(
ω2

0 − 4ω2 − 4γ iω
) + 3b

]
. (24)

Finally, substituting Eq. (24) into Eq. (22), we obtain the
equation for the nonlinear refractive index,

˜̄n2 = πqN

ñ0

α3(
ω2

0 − ω2 − 2γ iω
)4

×
[

2a2 3ω2
0 − 8ω2 − 8γ iω

ω2
0

(
ω2

0 − 4ω2 − 4γ iω
) + 3b

]
. (25)

Separating ñ0 and ˜̄n2 into their real and imaginary parts,
one can find the linear and nonlinear refractive indices and
absorption coefficients from Eqs. (21)–(25):

n0 = Re (ñ0) = Re (
√

1 + 4πχ (1)), (26)

α0 = 2ω

c
Im (ñ0) = 2ω

c
Im (

√
1 + 4πχ (1)), (27)

n̄2 = Re ( ˜̄n2) = 3π Re

(
χ (3)√

1 + 4πχ (1)

)
, (28)

and

α2 = 2ω

c
Im ( ˜̄n2) = 6π

ω

c
Im

(
χ (3)√

1 + 4πχ (1)

)
. (29)

Here n0 and α0 are the linear refractive index and absorption
coefficient, and n̄2 and α2 are the nonlinear refractive index
and two-photon absorption coefficient, respectively.

The general result for ˜̄n2 is given by Eq. (25). It is useful to
find the approximate form of this expression in three special
cases of interest.

(1) In the low-frequency limit ω � ω0, Eq. (25) takes the
form

n̄
ω�ω0
2 ≡ Re

[
˜̄nω�ω0

2

] ≈ πqN

n0

α3

ω8
0

(
6a2

ω2
0

+ 3b

)
. (30)

(2) At two-photon resonance, ω � ω0/2, and

˜̄nω�ω0/2
2 ≈

√
3ω2

0 − 4γ iω0

3ω2
0 − 4γ iω0 + 16πqNα

× 256πqNα3(
3ω2

0 − 4γ iω0
)4

×
[

2a2 −ω0 + 4iγ

2iγ ω2
0

+ 3b

]
. (31)

(3) For the near-resonance case (ω � ω0), we obtain

˜̄nω�ω0
2 ≈

√
iγ ω0

iγ ω0 − 2πqNα

πqNα3

16ω4
0γ

4

×
[

2a2 5ω2
0 + 8γ iω0

ω2
0

(
3ω2

0 + 4γ iω0
) + 3b

]
. (32)

(4) And, finally, at the frequencies much higher than the
vibrational resonance frequencies, the approximation ω � ω0

holds, and Eq. (25) becomes

n̄
ω�ω0
2 ≡ Re

[
˜̄nω�ω0

2

] ≈ πqN

n0

α3

ω8

(
4a2

ω2
0

+ 3b

)
. (33)

We performed the derivation of Eq. (25) under the as-
sumption that there is a single vibrational resonance. This
approximation is suitable for a situation in which a single
resonance dominates over the others. Equation (25) can,
however, be rewritten to treat the case of multiple resonances
contributing to the value of ˜̄n2:

˜̄n2 = πqNα3

ñ0

∑
i

1(
ω2

0, i − ω2 − 2γiiω
)4

×
[

2a2
i

3ω2
0, i − 8ω2 − 8γiiω

ω2
0, i

(
ω2

0, i − 4ω2 − 4γiiω
) + 3bi

]
, (34)

where the summation over i is to be performed over all of the
vibrational modes of the material.

III. RELATIONSHIP BETWEEN THE NONLINEAR
REFRACTIVE INDEX AND OTHER MEASURABLE

PARAMETERS OF THE CRYSTAL

Equation (25) allows one to estimate the value of the
vibrational contribution to n̄2 including both nonlinear terms
of Eq. (3). However, it is not always straightforward to make
use of this equation, because the values of the parameters
appearing in this equation are not well known. We therefore use
the model of Eq. (1) to calculate the values of other properties
of the crystal that are known or easily measurable. In this
manner we determine the values of many of the parameters
that appear in expression (25) for n̄2. As the first step, we
find the relationship between the vibrational contribution to
the nonlinear refractive index and the thermal expansion
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coefficient of the crystal. For our present purposes we assume
that there is one dominant vibrational resonance and that the
electronic contribution to both the linear and the nonlinear
refractive indices is swamped by the vibrational contribution.
We show below, in the discussion following Eq. (56), that this
assumption is satisfied to reasonably good accuracy.

In order to proceed, we first integrate the force term
F (x) of Eq. (1) to obtain the potential energy function
U = − ∫

F (x)dx in the form

U (x) = mω2
0

2
x2 + ma

3
x3 + mb

4
x4. (35)

The probability of the displacement of an atom from its
equilibrium position is given by the function

f (x) = Ae
− U (x)

kB T . (36)

The average deviation of the ion from its equilibrium position
in thermal equilibrium is given in [14] by

x̄ =
∫

xf (x) dx∫
f (x) dx

= −akBT

mω4
0

. (37)

Here kB is the Boltzmann constant and T is the temperature
of the crystal in kelvins. The deviation from the equilibrium
position determines the overall linear extension of a solid,
which can be expressed as

LT = L0(1 + αT T ). (38)

Here LT and L0 are the solid’s linear dimensions at tempera-
ture T and 0 K, respectively, and

αT = x̄

alT
(39)

is the linear expansion coefficient; here al is the lattice
constant. We can relate the thermal expansion coefficient
to the crystalline parameters by substituting Eq. (37) into
Eq. (39):

αT = − akB

mω4
0al

. (40)

Through use of this equation we are able to relate the
nonlinear coefficient a to the measurable thermal expansion
coefficient αT.

We now apply this result to the case of the nonlinear
refractive index in the low-frequency regime. We express
Eq. (30) as

n̄
ω�ω0
2,v ≈ πqN

n0

(
6a2α3

ω10
0

+ 3bα3

ω8
0

)
. (41)

We can express this result as the sum of two terms,

n̄
ω�ω0
2,v = n̄

(1)
2,v + n̄

(2)
2,v, (42)

where

n̄
(1)
2,v = πqN

n0

6a2α3

ω10
0

(43a)

and

n̄
(2)
2,v = πqN

n0

3bα3

ω8
0

. (43b)

Here and below, we use the subscript “v” to emphasize the
fact that the optical response in the frequency range ω � ω0

is primarily vibrational.
We next estimate the two contributions (43) to n̄THz

2,v in
terms of the readily measurable properties of the material.
We see that both contributions depend on the third power
of the parameter α of Eq. (2). Even though α is just equal
to q/m, it is not obvious what value to use for either of
these parameters. The quantity m can be identified as the
reduced mass of the vibrational mode, which, in principle,
can be calculated. However, the quantity q represents the
strength of the electrical coupling of the vibrational mode
to the electric field vector of the radiation field. The value of q

will thus depend on the degree to which the chemical bonding
is ionic or vibrational. We therefore choose a different means
to determine the value of the parameter α. First, we note that
Eq. (23) in the low-frequency limit becomes

χ (1), ω�ω0
v ≈ qNα

ω2
0

. (44)

We next relate the susceptibility of this equation to the
refractive index using the standard result n2 = 1 + 4πχ and
thereby find that the parameter α is related to the linear
refractive index through

α = ω2
0

4πqN

[(
n

ω�ω0
0, v

)2 − 1
]
. (45)

In addition, we use Eq. (40) to express the nonlinear coefficient
a in terms of the thermal expansion parameter as

a = −almω4
0

kB

αT . (46)

Using Eqs. (45) and (46) in Eq. (43a), we finally obtain

n
(1)
2,v = 3a2

l m
2ω4

0α
2
T

32n0π2q2N2k2
B

[(
n

ω�ω0
0,v

)2 − 1
]3

. (47)

Some remarks with regard to the relationship between the
vibrational nature of the linear refractive index and the thermal
expansion coefficient are available in the literature [13,15].

The second contribution to the vibrational nonlinear re-
fractive index, (43b), appears as a result of a change in the
frequency of oscillations to ω0 ± bx2 in the intense radiation
field (the dynamic Stark effect). In the most general case
(when we include in consideration all possible resonances),
the expression for the third-order susceptibility takes the form
given by Eq. (3.7.14) in [12]. If we limit our consideration
to the case of a nonresonant isotropic medium at low THz
frequencies (ω � ω0), this equation reduces to

χ
(3)
ST = 2N

3�3

′∑
lmn

μgnμnmμmlμlg

(ωng − ω)(ωmg − 2ω)(ωlg − ω)

− 2N

3�3

∑
ln

μgnμngμglμlg

(ωng − ω)(ωlg − ω)(ωlg − ω)
. (48)

Here the prime on the first summation indicates that the terms
corresponding to m = g are to be omitted from the summation
over m; these terms are displayed explicitly in the second
summation. See, for instance, the discussion on page 205
of Ref. [12]. If only one excited state makes a significant
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contribution (two-level atom model), and ω � ω0, Eq. (48)
further reduces to

χ
(3) ω�ω0
v,ST = −2N |μ|4

3�3ω3
0

. (49)

The corresponding expression for the Stark contribution to the
vibrational nonlinear refractive index can be found from Eqs.
(22) and (49):

n̄
ω�ω0
2,v,ST ≡ n̄

(2)
2,v = 3π

n0
χ

(3), ω�ω0
v,ST = −2πN |μ|4

n0�
3ω3

0

. (50)

Ideally, we would like to express the transition dipole
moment μ entering Eq. (50) in terms of a measurable material
parameter, e.g., the vibrational contribution to the linear
refractive index. For this, we can use the expression for the
linear susceptibility [12]:

χ (1) = N

3�

∑
n

|μna|2
[

1

(ωna − ω) − iγna

+ 1

(ωna + ω) + iγna

]
. (51)

For a two-level transition at ω � ω0, Eq. (51) reduces to

χ (1), ω�ω0
v = 2N

3�

|μ|2
ω0

. (52)

Then the corresponding linear refractive index can be ex-
pressed as

(
n

ω�ω0
0,v

)2 − 1 = 4πχ (1), ω�ω0
v = 8πN |μ|2

3�ω0
. (53)

Equation (50) can now be rewritten making use of Eq. (53) as

n̄
(2)
2,v = −[(

n
ω�ω0
0,v

)2 − 1
]2 9

32

1

πN

1

n0�ω0
. (54)

The formula for the total vibrational contribution to the
nonlinear refractive index, Eq. (42), can now be obtained by
adding the two contributions of Eqs. (54) and (47). We obtain

n̄
ω�ω0
2,v = n̄

(1)
2,v + n̄

(2)
2,v = 3a2

l m
2ω4

0α
2
T

32n0π2q2N2k2
B

[(
n

ω�ω0
0,v

)2 − 1
]3

− 9

32

1

πN

1

n0�ω0

[(
n

(ω�ω0)
0,v

)2 − 1
]2

. (55)

IV. NUMERICAL EXAMPLES

In this section, we use Eq. (55) to evaluate the nonlinear
refractive index of crystalline quartz. The values of the thermal
expansion coefficient in this case are αT = 7.6 × 10−6 (oC)−1

parallel to the optic axis and αT = 14 × 10−6 (oC)−1 perpen-
dicular to the optic axis (see, e.g., Ref. [16]). For simplicity,
we assume that there is a dominant vibrational mode, the
Si-O stretch mode, and we thus neglect the influence of
lower-frequency phonon resonances [17]. The justification
of this assumption is that the absorption spectrum of crystal
quartz [18] shows a dominant feature at the frequency of the
Si-O stretch mode and a very much weaker feature at lower
frequencies. The frequency of the fundamental vibrational
mode is 1242 cm−1, or 37.2 THz [19].

The lattice constant of crystalline quartz is 4.91 Å along
the c axis and 5.40 Å along the a and b axes. We can define
a mean lattice constant with the value 5.24 Å or 5.24 × 10−8

cm. The reduced mass m of the stretch mode is calculated as
follows. The mass of the silicon atom is mSi = 28.1 amu, and
that of the oxygen atom is mO = 16 amu. The reduced mass
is thus mSimO/(mSi + mO) = 10.2 amu or 1.69 × 10−23 g.

The number density N of the vibrational units is calculated
as follows. The specific gravity of crystal quartz is 2.65, and
the formula weight of SiO2 is 28 + 16 × 2 = 60. Each silicon
atom is thus associated with the total mass of 60 × 1.67 ×
10−24 g = 1.00 × 10−22 g. The number of silicon atoms in 1
cm3 of quartz is thus 2.65/(1.00 × 10−22) = 2.65 × 1022.

Our expression [Eq. (55)] for the nonlinear refractive index
depends both on the overall refractive index n0 and on its
vibrational contribution n0,v. We determine them individually
as follows. The low-frequency (ω � ω0) value of the refractive
index of quartz is known to have the value n0 = 2.1 [20].
This refractive index value has both a vibrational and an
electronic contribution. To good approximation, we take the
electronic contribution to correspond to the value 1.4, the same
value as in the visible for frequencies much lower than the
electronic resonance frequencies. To determine the vibrational
contribution to the low-frequency refractive index, we note
that Eq. (21) can be expressed as

n
ω�ω0
0 =

√
1 + 4πχ (1), ω�ω0

=
√

1 + 4πχ
(1), ω�ω0
el + 4πχ

(1), ω�ω0
v . (56)

We know that the low-frequency limit of n0 is 2.1, and we
thus see that χ

(1)
tot is equal to [(2.1)2 − 1]/4π = 0.27. We also

know that the nonresonant electronic contribution leads to a
refractive index of 1.4. We thus conclude that χ

(1)
el is equal to

[(1.4)2 − 1]/4π = 0.077. By taking the ratio of these values,
we see that, at the level of the susceptibility, the vibrational
response is 3.5 times stronger than the electronic response.
Also, because χ

(1)
tot = χ

(1)
el + χ (1)

v , we see that χ (1)
v = 0.19. We

also deduce that the value that the refractive index would
have due to the vibrational response alone is n

(ω�ω0)
0,v =√

1 + 4π (0.19) = 1.8. This is the value that should be used,
for example, for n

(ω�ω0)
0,v in Eq. (55).

Another parameter that enters the expressions for the
nonlinear refractive index is the ionic charge q associated
with a particular vibrational mode. As we noted above, the
value of q depends on the nature of the chemical bonding. For
simplicity, for the present calculation we take q = +e.

Using the parameter values given above, we evaluate the
two contributions to the nonlinear refractive index given by
Eq. (55), and we find n̄

(1)
2,v ≈ 2.24 × 10−9 esu and n̄

(2)
2,v ≈

−3.27 × 10−11 esu. The overall value of the nonlinear re-
fractive index of crystalline quartz is thus n̄

(ω�ω0)
2,v ≈ 2.21 ×

10−9 esu.
Many workers prefer to quote values of n2 in SI units of

m2/W rather than n̄2 in esu. We now briefly indicate how to
express the results of our calculation in SI units. We note that
the change in refractive index produce by the nonlinear optical
interaction must be the same for calculations performed in
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FIG. 1. (Color online) Dispersion of (a) n2 (solid red lines) and (b) α2 in the terahertz frequency range for crystalline quartz (solid blue
lines).

Gaussian and in SI units. We thus note that

�n = n̄2(esu)〈E(esu)2〉 = n2(m2/W) I (W/m2). (57)

We next note that 〈E(esu)2〉 = 2E0(esu)2, where E0 is the field
amplitude using the convention of Eq. (6). We also note that
I (W/m2) = 2n0ε0cE0(V/m)2. And we recall that E0(V/m) =
3 × 104 E0(esu). By introducing these results into Eq. (57) we
find that

n2(m2/W) = 4.2 × 10−7 n̄2(esu)

n0
. (58)

For n̄2 ≡ n̄
ω�ω0
2,v = 2.21 × 10−9 esu and n0 = 2.1, we obtain

n2 ≡ n
ω�ω0
2,v = 4.42 × 10−16 m2/W. By means of comparison,

we note that the value of n2 at optical frequencies is 3 ×
10−20 m2/W. Preliminary laboratory results [21] support the
conclusion that the value of n2 in the THz frequency range can
be 1000 times larger than its value in the visible range.

V. DISPERSION OF THE NONLINEAR REFRACTIVE
INDEX IN THE TERAHERTZ SPECTRAL RANGE

In Fig. 1, we plot the dispersion relation of the nonlinear
refractive index and absorption coefficient for crystalline
quartz in the frequency range from 0 to 60 THz. Figure
1(a) represents the frequency dependence of the real part of
Eq. (25), which is the nonlinear refractive index, while Fig.
1(b) shows the nonlinear absorption coefficient, obtained from

Eqs. (25) and (29). We chose for illustration purposes the
value for the resonant peak width γ = 5 × 1012 rad/s. The
value of the nonlinear parameter b that enters Eq. (25) was
estimated using Eq. (43b). A very strong vibrational resonance
with largely enhanced values of n2 and α2 is evident from the
graphs: the resonant value of n2 is 4 orders of magnitude higher
than its low-frequency value n2 ≈ 2.2 × 10−9 esu. Note that
with the sign conventions of our paper a positive (negative)
value of α2 implies absorption that increases (decreases)
with intensity. One example of such a decrease is nonlinear
absorption bleaching observed as a consequence of the change
in the carrier density in a GaAs semiconductor [22].

In Fig. 2, we plot the same data in the frequency range
between 0 and 25 THz. They resolve the two-photon resonance
that appears due to the presence of the term (ω2

0 − 4ω2) in the
denominator of Eq. (25). The resonant value of n2 exhibits
more than one order of magnitude enhancement compared to
its low-frequency value. It is evident from the inset in Fig. 2(a)
that one can neglect the dispersion of a wide-spectrum pulse,
as long as the entire pulse width lies in the range between 0 and
6 THz. In this case, one can treat the dynamics of the electric
field of a THz wave in an optical medium using the formalism
described in Ref. [23]. For waves with a spectrum in the range
between 0 and 12 THz, the nonlinear refractive index doubles
in value; one can no longer neglect the dispersion of n2 when
analyzing the interaction of a broad-spectrum radiation with
an optical medium. In the frequency range beyond 12 THz
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FIG. 2. (Color online) Dispersion of (a) n2 (solid red lines) and (b) α2 in the terahertz frequency range for crystalline quartz (solid blue
lines). The resonant feature appearing in these graphs is due to the two-photon resonance.
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the dispersion is significant; the optical nonlinearity exhibits
inertia. Some methods of calculating the dispersion of n2 are
described in Ref. [24].

VI. CONCLUSIONS

We have developed a simple analytical model that allows
one to deduced the dispersion characteristics of the nonlinear
refractive index n2 and two-photon absorption coefficient α2.
Additionally, we have established the relationship between the
vibrational contribution to n2 and some measurable parameters
of a crystal, such as the linear refractive coefficient and thermal
expansion coefficient. Using our model, we have performed
an estimate of the value of n2 for crystalline quartz in the
THz spectral range and found that in the low-frequency limit
it is four orders of magnitude larger than its value of n2 in
the visible range. Our model also predicts a large variation
of n2 with frequency, as well as the variation in α2 from
positive to negative values in the vicinity of the vibrational
resonance. The model we propose here is not limited to
dielectric materials. Despite their more complex nature, our

model could be extended to treat the vibrational nonlinearity
in semiconductors. Multiple phonon modes, as well as the local
vibrational modes of impurities, are expected to contribute to
the value of the vibrational Kerr coefficient in a similar fashion.

In the calculations reported here, we have assumed that the
THz radiation is quasimonochomatic. Many THz experiments
are conducted with very short pulses, which may contain only
a few optical cycles (or even just one) [11]. The nature of
the nonlinear phenomena under these conditions can differ
drastically from the case treated here. This represents an
interesting subject for future exploration.
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