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We study the dynamics of a single-photon pulse traveling through a linear atomic chain coupled to a
one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for
this collective many-body system which allows us to study the real time evolution of the photon transport
and the atomic excitations. Our analytical result is consistent with previous numerical calculations when
there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the
waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be
tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms
in the chain. The reflectivity of a single-photon pulse with finite bandwidth can even approach 100%. The
spectrum of the reflected and transmitted photon can also be significantly different from the single-atom case.
Many interesting physical phenomena can occur in this system such as the photonic band-gap effects, quantum
entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve
as a single-photon frequency filter, single-photon modulation, and may find important applications in quantum
information.

DOI: 10.1103/PhysRevA.92.023806 PACS number(s): 42.50.Nn, 42.50.Ct, 32.70.Jz

I. INTRODUCTION

Photons are ideal carriers for quantum information. Hence,
manipulating and routing photons can have important appli-
cations in the quantum information technology which has
been extensively studied [1–6]. However, the photons rarely
interact with each other. Therefore, we have to resort to the
photon-atom interaction to modulate and control the photons.
The photon-atom coupling in the vacuum is usually very
weak. We can, however, modify this coupling strength by
changing the environment of the vacuums by Purcell effect [7].
Strong photon-atom interaction can be achieved by confining
the photon in reduced dimensions such as in a quasi-one-
dimensional (1D) photonic waveguide with transverse cross
sections on the order of a wavelength square [8,9]. There are a
number of systems that can act as a quasi-1D waveguide such
as optical nanofibers [10], photonic crystal with line defects
[11], surface plasmon nanowire [12], and superconducting
microwave transmission lines [13,14]. This kind of waveguide
is extremely interesting because it can not only enhance the
interaction but also guide the photon which is important for
the information transport.

A single photon scattered by a single atom embedded
in a one-dimensional waveguide has been studied in the
pioneering work by Shen and Fan [15,16]. They employed
the real-space description of the Dicke Hamiltonian and
Bethe-ansatz to derive the stationary transport properties of
a single-photon–atom interaction. It shows that the photon
transmission spectra can be strongly modified. In particular, a
photon with frequency resonant to the two-level atom can be
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even completely reflected. Since then, this method has been
generalized to the case for multilevel atom and multiphoton
interactions [17–22]. In the stationary calculations, the photon
is assumed to be a plane wave with single frequency. However,
in the real case the photon is always a pulse with a finite
bandwidth. An extension of the stationary theory was devel-
oped by Rephaeli et al. to derive the perfect inverting pulse
where they project the initial quantum state to the stationary
eigenstates of the system and then apply a time evolution
operator [23]. In 2011, Chen et al. illustrated a time-dependent
theory for a single-photon absorption by single emitter coupled
to one-dimensional photonic waveguide [24]. This theory can
be used to study the dynamics of the photon wave packet and
the atomic excitation in real time. The spontaneous emission
from a pair of two-level atoms near a nanofiber has also been
studied where a substantial radiative exchange is predicted
between distant atoms [25].

The collective spontaneous emission by an ensemble of
identical atoms has been extensively studied since the pioneer-
ing work of Dicke in 1954 [26–33]. The Dicke super-radiance
provides a valuable example for studying the many-body
physics of photons and atoms [34]. The interaction between the
atoms mediated by the common vacuum field can dramatically
change the decay rate and the eigenspectrum of the atomic
ensemble [35]. The decay rate of the system can be superra-
diant or subradiant. The Dicke symmetric state of maximum
cooperation has decay rate N times the single-atom decay
rate [26]. The emission spectrum can also be significantly
altered. The stationary calculation of a single photon scattered
by multiple emitters coupled to a one-dimensional photonic
waveguide has also been studied where it is shown how
the transmission spectrum can be strongly modified by the
quantum interference effects [36,37]. However, in this analysis
the collective dipole-dipole interactions between the atoms are
not included.
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A general master equation for describing the interaction
between a quantum system and a continuous-mode Fock
state has been studied [38]. In this paper, we use a different
approach to derive a time-dependent theory of a single photon
scattered by an atomic chain coupled to a 1D waveguide
where the collective many-body interaction can play a crucial
role. We can calculate how the atomic excitations evolves
in real time and how the single-photon pulse is reflected
and transmitted. We also show how the reflectivity and the
spectrum are modified by this collective many-body system.
Many interesting physical phenomena can occur in this system
such as the photonic band-gap effects, quantum entanglement
generation, Fano-like interference, and superradiant effects.
This system may serve as a single-photon frequency filter,
single-photon modulation and may find important applications
in quantum information.

This paper is organized as follows. In Sec. II, we derive the
time-dependent theory for a single-photon transport through
an atomic chain coupled to a one-dimensional photonic
waveguide. In Sec. III, we discuss the one-atom case where we
derive an analytical solution which has not yet been obtained
before and our result is consistent with the previous numerical
results. In Sec. III, we numerically study how a single photon
can be scattered by a two-atom system and show some different
features compared to the one-atom case. In Sec. IV, we study
the N -atom case and show how the atomic separation and
atom numbers affect the reflection and transmission of a single
photon. In Sec. V, we study the effects of spontaneous decay
to the free space. Finally, we summarize the results.

II. THEORY

We consider a linear atomic chain coupled to a one-
dimensional single-mode waveguide (Fig. 1). We assume that
the atoms are equally spaced with separation a and the number
of atoms is Na . A linearly polarized single-photon pulse with
spectral width �ω propagates through and interacts with the
atomic chain. The Hamiltonian of the system in the rotating
wave approximation is given by [26,39]

H = �

(
ωa − i

γ

2

) Na∑
j=1

S+
j S−

j + �

∑
k

ωka
†
kak

+ �

Na∑
j=1

∑
k

(gke
ikrj akS

+
j + g∗

k e
−ikrj a

†
kS

−
j ) (1)

where the first term is the atomic energy including the
spontaneous decay to the free space, the second term is the
energy of the guided photon, the third term is the coupling
between the atoms and the guided photon modes. Here ωa

is the transition frequency of the two-level atoms, γ is the

FIG. 1. (Color online) Single-photon transport through a linear
atomic chain coupled to a one-dimensional photonic waveguide. The
atoms can be coupled by the waveguide vacuum modes.

rate of spontaneous decay to the nonguided modes, S+
j =

|e〉j 〈g|(S−
j = |g〉j 〈e|) is the raising (lowering) operator of

the j th atom, a
†
k(a−

k ) is the creation (annihilation) operator
of a photon with wave vector k, gk is the coupling strength
between the atoms and the guided photon mode. ωk is the
angular frequency of the photon with wave vector k and rj is
the position of the j th atom. Assuming that ωa is far away
from the cutoff frequency of the photonic waveguide and
the guided photon has a narrow bandwidth, the dispersion
relation for the guided photon can be approximately linearized
as ωk = ωa + (|k| − ka)vg where ka is the wave vector at
frequency ωa and vg is the group velocity [40].

For the single-photon excitation, The quantum state of the
system at any time can be expressed as

|�(t)〉 =
Na∑
j=1

αj (t)e−iωat |ej ,0〉 +
∑

k

βk(t)e−iωkt |g,1k〉, (2)

where |ej ,0〉 is the state in which all the atoms except the j th
atom are in the ground state with zero photon in the waveguide
and the free space, |g,1k〉 is the state in which all the atoms
are in the ground state and one photon with wave vector k is
in the waveguide.

The dynamics of the system is given by

α̇j (t) = −i
∑

k

gke
ikrj βk(t)e−iδωkt − γ

2
αj (t), (3)

β̇k(t) = −i

Na∑
j=1

g∗
k e

−ikrj αj (t)eiδωkt , (4)

where δωk ≡ ωk − ωa = (|k| − ka)vg is the detuning between
the atomic transition frequency and the frequency of the guided
photon.

Integrating Eq. (4) we obtain

βk(t) = βk(0) − i

Na∑
j=1

g∗
k e

−ikrj

∫ t

0
αj (t ′)eiδωkt

′
dt ′, (5)

where βk(0) is the initial photon amplitude. On substituting
from Eq. (5) into Eq. (3) we get the dynamic of the atomic
excitations

α̇j (t) = − i
∑

k

gke
ikrj βk(0)e−iδωkt − γ

2
αj

−
Na∑
l=1

∑
k

|gk|2e−ik(rj −rl )
∫ t

0
αl(t

′)eiδωkt
′
dt ′e−iδωkt

(6)

For a long 1D waveguide we can replace the summation
over k by integration

∑
k

→ L

2π

∫ ∞

−∞
dk, (7)

where L is the quantization length in the propagation direction.
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According to the Weisskopf-Wigner approximation, on
summing over k and integrating over t ′, Eq. (6) becomes

α̇j (t) = bj (t) −
Na∑
l=1

(



2
eikarjl + γ

2
δjl

)
αl

(
t − rjl

vg

)
, (8)

with

bj (t) = − i

2π

√

vgL

2

∫ ∞

−∞
βk(0)eikrj −iδωkt dk (9)

being the excitation by the input photon, 
 = 2L|gka
|2/vg

being the coupling strength between the atom and the guided
photon, and rjl = |rj − rl|. The second term is the collective
many-body coupling between the atoms induced by the guided
photon modes. It is noted that the collective interactions
induced by the guided photon is a long-range effect and
there is a time retarded effect for these interactions. The real
parts of the collective coupling give the collective damping
while the imaginary parts yield an energy shift. Given the
initial conditions, we can calculate the atomic excitations at an
arbitrary time from Eq. (8). However, the analytical solution
for Eq. (8) is usually difficult and we need to resort to numerical
methods such as finite-difference time-domain (FDTD) [41].

Knowing the atomic excitation αj (t), we can also calculate
the amplitude of each guided photon mode at an arbitrary time
using Eq. (5). To be specific, if the input photon comes from
the left end, the right propagating modes at time t are given by

βR
δk(t) = βk(0) − i

√

vg

2L

Na∑
j=1

e−i(ka+δk)rj

∫ t

0
αj (t ′)eiδkvgt

′
dt ′,

(10)
where δk = k − ka with k > 0. For the left propagating modes
we have

βL
δk(t) = −i

√

vg

2L

Na∑
j=1

ei(ka+δk)rj

∫ t

0
αj (t ′)eiδkvgt

′
dt ′, (11)

where δk = |k| − ka with k < 0.
To calculate the photon spectrum when t → ∞, we define

χj (δk) =
∫ ∞

−∞
αj (t)eiδkvgt dt, (12)

where αj (t) = 0 when t < 0 with j = 1,2, . . . ,Na . We then
have

αj (t) = vg

2π

∫ ∞

−∞
χj (δk)e−iδkvgt dδk. (13)

Inserting Eq. (13) into Eq. (8) we obtain a set of linear
equations which are given by

−iδkvgχj (δk) = bj (δk) − γ

2
χj (δk) +

Na∑
l=1

V
jl

Na
(δk)χl(δk),

(14)
where

bj (δk) = −i

√

L

2vg

βδk(0)ei(ka+δk)rj (15)

and the collective coupling matrix V is given by

VNa
(δk) = −


2

⎡
⎢⎢⎢⎣

1 eika · · · ei(Na−1)ka

eika 1 · · · ei(Na−2)ka

...
...

. . .
...

ei(Na−1)ka ei(Na−2)ka · · · 1

⎤
⎥⎥⎥⎦
(16)

with k = ka + δk.
Let M(δk) = VNa

(δk) + (γ /2 − iδkvg)INa
where INa

is a
Na × Na unit matrix. We have

χj (δk) =
Na∑
l=1

M−1
j l (δk)bl(δk). (17)

We can then calculate the photon spectra for the right and left
propagating field at t → ∞:

βR
δk(t → ∞) = βδk(0) − i

√

vg

2L

Na∑
j=1

e−i(ka+δk)rj χj (δk),

(18)

βL
δk(t → ∞) = −i

√

vg

2L

Na∑
j=1

ei(ka+δk)rj χj (δk). (19)

We can calculate the photon pulse shape after the interaction
by the Fourier transformations as given by

βR
x (t) = eikax

∫ ∞

−∞
βR

δk(t)eiδk(x−vgt)dδk, (20)

βL
x (t) = e−ikax

∫ ∞

−∞
βL

δk(t)e−iδk(x+vgt)dδk. (21)

We can also calculate the reflectivity R and the transmittivity
T of this system and they are given by

R = L

2π

∫ ∞

−∞

∣∣βL
δk(t → ∞)

∣∣2
dδk, (22)

T = L

2π

∫ ∞

−∞

∣∣βR
δk(t → ∞)

∣∣2
dδk. (23)

In a pure 1D photonic waveguide or a quasi-1D photonic
waveguide with 
 	 γ , we can neglect the spontaneous decay
(γ ) to the nonguided modes. In the following sections, we first
neglect γ and mainly focus on the collective effects induced by
the guided modes. We analytically and numerically study the
dynamics of a single-photon pulse interacting with one atom,
two atoms, and N equally spaced atoms. In Sec. VI, we briefly
discuss the effects of the spontaneous decay to the free space.
In all calculations, we assume that the atoms are initially in the
ground state and the input single-photon pulse has a Gaussian
shape which is given by

βδk(0) = (8π )1/4

√
�L

e−(ka+δk−k0)2/�2
, (24)

where k0 is the wave vector corresponding to the center
frequency of the pulse and � is the width in the k space
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with the full width at half maximum of the spectrum being√
2 ln 2�vg . A single photon with Gaussian pulse shape

can be generated by single-photon electric-optic modulation
as has been experimentally demonstrated in [42]. We note
that L

2π

∫ ∞
−∞ |βδk(0)|2dδk = 1 which is the requirement for a

single-photon number.

III. SINGLE ATOM

In [24], Chen et al. have numerically studied the case of
a single Gaussian photon pulse scattered by a single atom
coupled to a 1D waveguide. Here we present some analytical
results based on the method shown in the previous section.

From Eq. (8), the atomic excitation for the one-atom case
with γ = 0 is governed by

α̇1(t) = b1(t) − 


2
α1(t), (25)

where b1(t) is given by Eq. (9) with j = 1. The formal solution
of this equation is given by

α(t) = −iS{erf(C +
√

Bt0) − erf(C)}e−(
/2)t , (26)

where C = (A − 2Bt0)/2
√

B with t0 = r1/vg , A = −
/2 +
i(k0 − ka)vg , and B = �2v2

g/4. S = (π/8)1/4
√


/�vg

e−At0+A2/4Beikar1 , and erf(x) = (2/
√

π)
∫ x

0 e−t2
dt is the error

function. This result has been derived in Ref. [24] with k0 = ka .
Here we generalize this result to include the case when k0 �= ka ,
i.e., when the center frequency of the input photon pulse is
not equal to the transition frequency of the atom.

The atomic excitation as a function of time when 
 = �vg

and k0 = ka is shown as the black solid line in Fig. 2(a). When
t = 0, the center of the input photon pulse is 10/� away from
the atom. The atom is first excited and then deexcited when
the photon pulse propagates through the atomic chain. The
photon pulse incident from one direction can be separated as
odd and even modes [23]. Since only even mode can couple to
the atom, the maximum excitation by a photon incident from
one direction is 50%. The maximum atomic excitation for the
Gaussian input in our example is about 40% which is close to
the 50% limit. The 50% limit can be reached by the inversion
pulse incident from one side as discussed in Ref. [23] [see the
red dotted line in Fig. 2(a)].

For one atom, Eq. (14) becomes

−iδkvgχ1(δk) = b1(δk) − 


2
χ1(δk) (27)

whose solution is

χ1(δk) = −i

√

L

2vg

ei(ka+δk)r1
βδk(0)



2 − iδkvg

. (28)

The photon spectra after the interaction can then be calculated
from Eqs. (18) and (19), and given by

βR
δk(t → ∞) = − (2iδkvg/
)βδk(0)

1 − 2iδkvg/

, (29)

βL
δk(t → ∞) = −e2i(ka+δk)r1

βδk(0)

1 − 2iδkvg/

, (30)

with βδk(0) given by Eq. (24). The spectra of the photon
before and after the interaction when k0 = ka and 
 = �vg

FIG. 2. (Color online) (a) The atomic excitation as a function of time where black solid curve is the result for Gaussian input while the red
dotted curve is the result for the inversion pulse given by Ref. [23]. When t = 0 the center of the input pulse is 10/� away from the atom.
(b) The spectrum of the incoming, reflected, and transmitted photon when 
 = �vg and k0 = ka . (c) The pulse shapes of the incoming (at
t = 6/
), reflected (at t = 20/
), and transmitted (at t = 20/
) photon when 
 = �vg and k0 = ka . The atom is at the position x = 0. (d)
The reflectivity, transmittivity, and relative full width at half maximum of the reflected pulse as a function of coupling strength. The unit of the
reflection bandwidth is

√
2 ln 2�vg . (e) The spectrum of the incoming, reflected, and transmitted photon when 
 = �vg and k0 − ka = �/2.

(f) The reflectivity and transmittivity as a function of detuning k0 − ka when 
 = �vg . Here, I is incoming; R is reflection; T is transmission.
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are shown in Fig. 2(b) where we see that the reflected spectrum
is similar to the initial spectrum but the transmitted spectrum
has two peaks. However, the reflected spectrum is narrower
than the incoming spectrum and the reflected bandwidth can
be controlled by changing the coupling strength. The smaller
the coupling strength becomes, the narrower the reflected
bandwidth is. In this case, there is about 66% possibility
that the photon is reflected. When δk = 0, we have |βL

δk(t →
∞)|2 = |βδk(0)|2 and |βR

δk(t → ∞)|2 = 0 which means that
the resonant frequency component is completely reflected and
it is independent of the input pulse shape. This is consistent
with the stationary calculations in Ref. [15]. The positions of
the peaks δk± in the transmitted spectrum are given by

δk±
�

= ± η

2
√

2

[(
−1 +

√
1 + 8

η2

)]1/2

, (31)

where η = 
/�vg is the the ratio between the coupling
strength and the input photon bandwidth. We can see that the
peaks depend only on this ratio. When η → 0, δk± → 0. The
splitting of these two peaks increases when we increase η and
it approaches

√
2� when η → ∞. When η = 1, δk± = ± 1

2�

which are the peak positions of the transmitted spectrum shown
in Fig. 2(b).

The photon pulse shape before and after the interaction can
be calculated by Eqs. (19) and (20) and they are shown in
Fig. 2(c) where the black solid curve is the incoming photon
pulse while the red dotted curve is the reflected photon pulse
and the blue dashed curve is the transmitted photon pulse. The
reflected pulse shape is similar to the incoming pulse shape
while the transmitted pulse shape is quite different where there
are two peaks due to the interference between the incoming
photon amplitude and the re-emitted photon amplitude.

The reflectivity and transmittivity of this system, obtained
from Eqs. (21) and (22), are given by

R =
√

π

2

∫ ∞

−∞

e−2y2

1 + 4y2/η2
dy, (32)

T = 1 − R. (33)

The reflectivity and transmittivity of a single-atom system
also depends only on the ratio 
/�vg . When η → 0, R → 0
and T → 1, i.e., the photon can completely transmit when
there is no coupling. When η → ∞, R → 1 and T → 0,
i.e., the photon is completely reflected when the coupling
strength is very large compared with the photon bandwidth.
The reflectivity and transmittivity, as a function of the ratio

/�vg , are shown in Fig. 2(d) where we see that the reflectivity
increases when 
/�vg increases and it can approach 100%
reflectivity when 
/�vg 	 1. The reflection bandwidth can
also be controlled by changing the ratio 
/�vg . The smaller
the 
/�vg is, the narrower the reflection bandwidth is [see the
green line with triangle symbol in Fig. 2(d)]. This may be used
to generate a single photon with ultranarrow linewidth.

We also study the case when the center frequency of the
incoming photon is detuned from the resonant frequency, i.e.,
k0 �= ka . For example, the result when k0 − ka = �/2 is shown
in Fig. 2(e) where we can see that the spectrum is quit different.
Both the reflected and transmitted spectra are asymmetric.
However, the resonant frequency component here is also

completely reflected. The reflectivity and transmittivity, as a
function of center frequency detuning k0 − ka when 
 = �vg ,
are shown in Fig. 2(f) where we see that the reflectivity
decreases as the detuning increases and the highest reflectivity
here is about 66%. The full width at half maximum of the
reflection curve is about 1.8�vg .

IV. TWO ATOM

In this section, we study how a single-photon pulse is
scattered by a two-atom system coupled to a 1D waveguide.
This is the simplest collective many-body system.

From Eq. (8), the atomic excitation dynamics for a two-
atom system are given by

�̇α(t) = �b(t) + V2(δk = 0)�α
(

t − a

vg

)
, (34)

where �α = (α1,α2)T , �b = (b1,b2)T , and the effective collective
coupling matrix is

V2(δk = 0) = −


2

[
1 eikaa

eikaa 1

]
(35)

with a being the atomic separation. The analytical solutions
for the coupled equations (33) are difficult to obtain. We can
apply a numerical method to calculate the atomic excitation in
arbitrary time.

To calculate the spectrum, we follow the procedures shown
in Sec. II. For a two-atom system, Eq. (14) becomes

−iδkvg �χ(δk) = �b(δk) + V2(δk) �χ(δk), (36)

where �χ = (χ1,χ2)T , �b = (b1,b2)T , and V2(δk) is given by
Eq. (16) with Na = 2. The solutions for these equations can be
readily obtained. After inserting these solutions into Eqs. (18)
and (19), we can get the photon spectra when t → ∞ which
are given by

βR
δk = βδk(0)

−4δk2v2
g/
2

(1 − 2iδkvg/
)2 − e2ika
, (37)

βL
δk = βδk(0)e2ikr1

(1 + e2ika)(1 − 2iδkvg/
) − 2e2ika

(1 − 2iδkvg/
)2 − e2ika
,

(38)

where k = ka + δk.
Before discussing the detailed results, we first look at

what has been modified by the effective collective coupling.
Since αj (t) are the one-photon excitation amplitudes, we
have �α(t) = α1(t)|eg〉 + α2(t)|ge〉 and the coupling matrix can
be written as V2(δk = 0) = −(
/2)(|eg〉〈eg| + |ge〉〈ge| +
eikaa|eg〉〈ge| + eikaa|ge〉〈eg|). It is noted that this coupling
matrix is non-Hermitian because it includes the effects of
dissipation to the photon modes [43]. The eigenvalues and
the eigenstates of V2(δk = 0) can be calculated to be

λ± = −


2
[1 ± cos(kaa)] ± i




2
sin(kaa), (39)

|±〉 = 1√
2

(|eg〉 ± |ge〉). (40)

023806-5



LIAO, ZENG, ZHU, AND ZUBAIRY PHYSICAL REVIEW A 92, 023806 (2015)

FIG. 3. (Color online) (a), (d), (g) The atomic excitations (A1: atom 1; A2: atom 2) as a function of time. When t = 0 the center of the
input pulse is 10/� away from the first atom. Here, A1 is for atom 1 and A2 is for atom 2. (b), (e) The pulse shapes of the incoming (I , at
t = 6/
), reflected (R, at t = 20/
), and transmitted (T , at t = 20/
) photon. (c), (f), (h), (i) The spectrum (arb. units) of the incoming (I ),
reflected (R), and transmitted (T ) photon. Parameters: 
 = �vg , (a)–(c) a = λ/2, (d)–(f) a = λ/4, (g), (h) a = λ/8, (i) a = 3λ/8.

The real parts of the eigenvalues give the collective coupling
strength while the imaginary parts give the energy shifts.
The eigenstates of the coupling matrix are two Dicke states.
We can change the atomic separation to tune the collective
coupling strength and the energy shift. In the following we
compare the results for four different atomic separations, i.e.,
a = λ/4, λ/2, λ/8, and 3λ/8.

The results are shown in Fig. 3 where we assume that the
center of the input pulse is initially 10/� away from the
first atom. In Figs. 3(a)–3(c) we present the results when
a = λ/2 and 
 = �vg . In this case, the eigenvalues of the
coupling matrix are λ+ = 0 and λ− = −
. The collective
coupling between the two atoms when a = λ/2 modifies the
collective coupling strength but does not shift the energy.
The two single-photon excitation eigenstates are degenerate.
Different from the usual case, here |λ−〉 is superradiant while
|λ+〉 does not couple to the waveguide modes. This is because
of the extra phase factor eiπ caused by the spatial separation
between the two atoms. Therefore, the system is prepared in
the |λ−〉 eigenmode where the two atoms can have almost
equal probabilities to be excited [Fig. 3(a)]. Since only one
eigenmode couples to the ground state, the photon pulse shape

[Fig. 3(b)] and photon spectrum [Fig. 3(c)] before and after
the interaction are similar to the one-atom cases. However, the
reflectivity here is about 84% which is larger than the one-atom
case due to the enhanced collective coupling strength.

For a = λ/4, the eigenvalues of the coupling matrix are
λ± = −
/2 ± i
/2. The collective interaction only cause
energy shift but does not modify the collective coupling
strength. The two eigenmodes have different energies but they
couple to the ground state with the same coupling strength.
In Fig. 3(d) we show the excitation probabilities of the two
atoms as a function of time where the black solid line is
the excitation for the first atom while the red dotted line is
the excitation for the second atom. Due to the interference
between the two excitation channels, the first atom has a
maximum excitation probability larger than 50% which is
not allowed for single-atom case. The second atom has much
smaller excitation probability and experiences two cycles of
excitation and deexcitation and reaches a minimum excitation
in between due to the destructive interference. The photon
pulses before and after the scattering are shown in Fig. 3(e)
where we can see that the reflected pulse is similar to incoming
pulse while the transmitted pulse has three peaks instead
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of two peaks as in the one-atom scattering. The spectrum
is shown in Fig. 3(f). Different from the single-atom case,
there is a frequency bandwidth around the resonant frequency
that cannot be transmitted. The bandwidth with less than 1%
transmittance is about 30% of input pulse width. This is similar
to the photonic band-gap effects. In principle, we can tune the
coupling strength to tune this bandwidth.

When a = λ/8, λ± =−(
/2)[(1 ±√
2/2) ∓ i

√
2/2] where

the collective coupling affects both the collective decay rate
and the energy shift. The excitation probability as a function of
time when a = λ/8 is shown in Fig. 3(g) where we see that the
second atom also experiences a population oscillation due to
the destructive interference. The dip in between does not touch
zero because of the unequal excitation of the two eigenmodes.
The reflected and transmitted spectra are shown in Fig. 3(h)
where the spectrum is very different from the previous cases.
Both the reflected and transmitted spectra are asymmetric.
Most of the higher frequency components are reflected while
most of the lower frequency components can transmit. This
can be explained by the coupling matrix. The single-photon
excitation states are split into two states where |+〉 is shifted up
while |−〉 is shifted down. Meanwhile, the |+〉 state has a larger
coupling strength. Therefore the higher frequency components
have a larger reflectivity. On the contrary, the |−〉 state has
smaller coupling strength which result in a smaller reflectivity.
In addition, there is a dip in the reflected spectrum due to
the spontaneous emission cancellation between the two decay
channel and it is a kind of Fano-like interference [44–47].
The dip occurs at the position when δk = 
/2vg . We can
also reflect the lower frequency components but transmit the
higher frequencies by changing the atomic separation such that
a = 3λ/8. The spectra are shown in Fig. 3(i) where we can
see that it is similar to the result of a = λ/8 but the spectrum
is opposite. This tunability may be found useful as a single-
photon frequency filter.

The reflectivity as a function of atomic distance is shown
in Fig. 4(a) for three different coupling strengths. We can
see that the reflectivity periodically changes with the atomic
separation. With small coupling strength 
 = 0.5�vg (blue
line with up triangle), the reflectivity is maximal when the
atomic distance is half integer of the wavelength. However,
when we increases the coupling strength, the reflectivity
increases significantly when the atomic separation is one

quarter wavelength. When 
 = 2�vg , the reflectivity with
a = λ/4 is 97% which is even larger than that with a = λ/2
(95%). We also study how the reflectivity changes when the
center frequency of the Gaussian pulse deviates from the
resonant frequency. The results are shown in Fig. 4(b) where
we consider four atomic separations. When a = λ/4 and
a = λ/2, the reflectivity is maximum if the center frequency
of the Gaussian pulse is the same as the resonant frequency.
The full width at half maximum of the reflection curve when
a = λ/2 is about 2.6�vg which is larger than that when
a = λ/4. It is also larger than the result in single-atom case
which is the result of the superradiant effect. However, when
a = λ/8 (a = 3λ/8) the reflectivity is maximum if center
frequency of the Gaussian pulse is blue (red) detuned from the
resonant frequency which is due to the asymmetric coupling of
the two eigenmodes. The reflectivity as a function of coupling
strength for three different atomic separations are shown in
Fig. 4(c). We can see that in all cases the reflectivity increases
rapidly as we increase the coupling strength. The reflectivity
can approach 100% when 
 is large comparing with �vg .

Due to the collective interaction between the two atoms,
quantum entanglement can also be generated in this process.
After tracing over the photonic parts in Eq. (2), the bipartite
quantum entanglement is calculated to be

C(t) = max{0,
√

|α1(t)||α2(t)| −
√

2|α1(t)||α2(t)|}, (41)

where C(t) denotes the quantum concurrence of the two-atom
system at time t [48]. The concurrences as a function of time for
three different atomic separations (a = 0.5λ,0.25λ,0.125λ)
are shown in Fig. 5. For all three cases, quantum entanglement
between the two atoms can be generated when the photons
propagate through which is consistent with the results shown in
[49]. When a = λ/2, the concurrence increases to a maximum
value of about 0.17 when the atoms are excited and stays
at the maximum values for about 2/
 before decreasing to
zero (black solid curve). More interestingly, when a = λ/4 the
quantum entanglement undergoes several oscillations (sudden
death and revival, red dotted line) due to the interference
between the two decay channels. When a = λ/8, the quantum
entanglement also undergoes small oscillations and it lasts
longer than the other two cases (blue dashed line) because one
of its eigenstates is a subradiant state.

FIG. 4. (Color online) (a) The reflectivity as a function of atomic distance with three different coupling strengths: 
 = 0.5�vg (blue line
with up triangles), 
 = �vg (green line with squares), and 
 = 2�vg (red line with circles). (b) The reflectivity as a function of frequency
detuning with four different atomic separations when 
 = �vg: a = λ/2 (black line with asterisk), a = λ/4 (red line with circles), a = λ/8
(blue line with up triangles), and a = 3λ/8 (green line with down triangles). (c) The reflectivity as a function of 
/�vg with three different
atomic separations: a = λ/2 (black line with square), a = λ/4 (red line with circles), and a = λ/8 (blue line with up triangles).
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FIG. 5. (Color online) The concurrences as a function of time
for three different atomic separations (a = 0.5λ: black solid line;
a = 0.25λ: red dotted line; a = 0.125λ: blue dashed line). When
t = 0 the center of the input pulse is 10/� away from the first atom.
Parameter: 
 = �vg .

V. N-ATOM CHAIN

The dynamics of the atomic excitations for an N -atom
system with Gaussian input are given by Eq. (8) with
j = 1,2, . . . ,Na . The analytical solution for a many-atom
system is difficult to obtain. We need to apply the numerical
method to study the dynamics of the system. The spectrum
of the photon after the interaction can be calculated by
Eqs. (12)–(19).

The effective N -atom coupling matrix is given by

VNa
= −


2

⎡
⎢⎢⎢⎣

1 eikaa · · · ei(Na−1)kaa

eikaa 1 · · · ei(Na−2)kaa

...
...

. . .
...

ei(Na−1)kaa ei(Na−2)kaa · · · 1

⎤
⎥⎥⎥⎦.

(42)

For general cases, this matrix cannot be analytically
diagonalized. However, when a = λ/2, the matrix can be
diagonalized and the eigenvalues are given by λ1 = Na
/2
and λ2,...,Na

= 0. Only one eigenmode can couple to the
waveguide modes and the coupling strength is Na times
the single-atom coupling strength which is the collective
superradiant effect. The superradiant eigenstate is given by
(1/

√
Na)

∑Na

i=1(−1)i |g, . . . ,ei, . . . ,g〉 which is the timed
Dicked state [50]. For general cases, multiple eigenstates can
couple to the ground state and they may interfere with each
other.

Let us take Na = 5 as an example to study the behaviors of
the photon transport in this multiple-atom system. The results
when a = λ/2 and 
 = �vg are shown in Figs. 6(a)–6(c)
where (a) is the excitation probability for each atom as a
function of time when the photon passes through, (b) is the
photon pulse before and after the interaction, and (c) is the
corresponding spectra. In this case, only the superradiant
eigenstate is coupled with the guided photon and we can
prepare the system in a timed Dicke state where each atom has
an equal probability to be excited. From Fig. 6(a), we can see
that all of the atoms are indeed excited and deexcited at almost
the same rate. The small differences in each amplitude come
from the time-retarded effect. The reflected and transmitted

photon pulse shape and spectrum are similar to the single-atom
case because the collective coupling only affects the collective
decay but not the energy shift when a = λ/2. Since the
collective coupling and decay rate here is five times larger than
that of the single-atom case, the reflectivity here is much larger
which is about 96% comparing with 66% in the single-atom
case.

The results when a = λ/4 and 
 = �vg are shown
in Figs. 6(d)–6(f). The atomic excitation probability as a
function of time is shown in Fig. 6(d) where we can see
that the five atoms have quite different excitation dynamics
and they oscillate with time due to the interferences between
each coupling channel. In addition, the atomic excitations
last much longer than one-atom case because some photon
energy is trapped in the subradiant states of the system.
The reflected and transmitted pulses are also quite different
here [Fig. 6(e)]. Both the reflected and transmitted pulses
have multiple peaks and valleys due to the interferences
of the reflected and transmitted photon amplitude. A finite
bandwidth of frequencies around the resonant frequency
are almost completely reflected which is the demonstration
of photonic band-gap effect [Fig. 6(e)]. The reflection and
transmission window here is about 0.8�vg which is larger than
that in the two-atom case and it can also be tuned by changing
the coupling strength which may be used as a single-photon
frequency filter. Different from the two-atom cases, the
reflection spectrum here has two dips due to the Fano-like
interferences between the multiple decay channels [44,46,47].

The results when a = λ/8 and 
 = �vg are shown in
Figs. 6(g)–6(i). Similar to the case when a = λ/4, the atomic
excitation can exist for a very long time and the excitation
probability can oscillate with time [Fig. 6(g)]. However, the
oscillation period here is longer than that when a = λ/4. The
reflected and transmitted photon shapes are shown in Fig. 6(h).
The spectra are shown in Fig. 6(i) where we see that most of
the higher frequency components are reflected and most of the
lower frequency components can transmit. This property may
be used as a single-photon frequency filter. There are multiple
dips in the reflected spectrum due to Fano-like interferences
between multiple eigenstates [44,46,47].

The reflectivity as a function of center frequency deviation
for four different atomic separations is shown in Fig. 7(a).
Similar to the two-atom cases, the reflectivity is maximum if
the center frequency of input photon is resonant with the atomic
transition frequency for the cases when a = λ/4 and a = λ/2,
while the reflectivity is maximum if the center frequency of
input photon is blue or red detuned from the resonant frequency
for the cases when a = λ/8 and a = 3λ/8 due to asymmetric
coupling [see Fig. 7(a)]. The full width at half maximum of
the reflectivity curve when a = λ/2 is about 5.2�vg which is
much broader than the one-atom and two-atom cases which is
a superradiant effect of this collective many-body system [26].

Finally, we study how reflectivity changes as we increase
the atom numbers in the chain. The results are shown in
Fig. 7(b) where we consider two atomic separations, i.e., a =
λ/2 and a = λ/4. When a = λ/2, the reflectivity increases as
the atom number increases and the reflectivity can approach
100% if the atom number is large enough. However, when
a = λ/4 the reflectivity does not significantly change when we
increase the atom number. Therefore, to effectively reflect a
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FIG. 6. (Color online) (a), (d), (g) The atomic excitation probabilities as a function of time when the photon passes through. When t = 0
the center of the input pulse is 10/� away from the first atom. Here Ai is for the ith atom. (b), (e), (h) The pulse shapes of the incoming (I ,
at t = 6/
), reflected (R, at t = 30/
), and transmitted (T , at t = 30/
) photon. (c), (f), (i) The spectrum (arb. units) of the incoming (I ),
reflected (R) and transmitted (T ) photon. Parameters: 
 = �vg . (a)–(c) a = λ/2, (d)–(f) a = λ/4, (g)–(i) a = λ/8.

photon, one way is by increasing the coupling strength and the
other way is by increasing the collective coupling. To increase
the collective coupling, we can increase the atom numbers but
the separation between atoms need to be a half integer of the
wavelength.

VI. EFFECTS OF THE SPONTANEOUS DECAY

In previous sections, we have neglected the effects of
the spontaneous decay to the free space. In this section we
numerically study how the spontaneous decay of the atom to
the free space affects the scattering properties. Let us take

FIG. 7. (Color online) (a) The reflectivity as a function of center frequency deviation for different atomic separations: a = λ/2 (black line
with asterisk), a = λ/4 (red line with circles), a = λ/8 (blue line with up triangles), and a = 3λ/8 (green line with down triangles). (b) The
reflectivity as a function of atom numbers for two atomic separations: a = λ/2 (red line with squares) and a = λ/4 (blue line with circles).
Parameters: 
 = �vg .
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N = 2 atom for example. For a two-atom system, Eq. (14)
including γ becomes

−iδkvg �χ(δk) = �b(δk) − γ

2
�χ (δk) + V2(δk) �χ(δk) (43)

with �χ = (χ1,χ2)T , �b = (b1,b2)T . It is readily solved for χ1

and χ2 from Eq. (43). The spectra after the interaction can then
be calculate from Eqs. (18) and (19) and they are given by

βR
δk = βδk(0)

γ 2 − 4iδkvgγ − 4δk2v2
g

(
 + γ − 2iδkvg)2 − 
2e2ika
, (44)

βL
δk = βδk(0)e2ikr1

(1 + e2ika)(
 + γ − 2iδkvg) − 2
e2ika

(
 + γ − 2iδkvg)2 − 
2e2ika
,

(45)

where k = ka + δk.
The results are shown in Figs. 8(a) and 8(b) where the black

solid line is the spectrum of the input photon, the red dashed
line is the spectrum of the reflected photon, the blue dotted line
is the spectrum of the transmitted photon, and the green solid
line is the summation of the reflected and transmitted photon
in the waveguide. When there are only two atoms, the result for
γ = 
/5 is shown in Fig. 8(a) and the result if γ = 
 is shown
Fig. 8(b). In both cases, the total probability that the photon
stays in the waveguide is reduced because the photon can leak
out to the free space. However, we notice that the general
features of the scattering spectrum do not change for smaller
decay rate when γ = 
/5, i.e., there is a range of spectrum that
cannot transmit. In this case the photon has a probability about
68% staying in the guided modes. For larger decay rate when
γ = 
, only about 26% probability the photon can stay in the
waveguide and the general features change where the photonic
band-gap effect disappears. This is because the spontaneous
decay can eliminate the interference of the emitted photon from
the two atoms. However, if we increase the atom number such
that Na = 5 the photonic band-gap effect appears again even
if γ = 
 [Fig. 8(c)]. This is because the collective coupling
can be much larger than the spontaneous decay rate.

Here, we should note that we have neglected the dipole-
dipole interaction between the atoms induced by the vacuum
modes in the free space. This is a good approximation if the
atomic separation is not very small (e.g., larger than λ/10)

[51,52]. However, if the atomic separation is very small (e.g.,
smaller than λ/10), the dipole-dipole interaction between the
atoms induced by the vacuum modes can be comparable with
or even larger than the spontaneous decay rate γ and it should
be included in the calculations. In this paper, we focus on the
dipole-dipole interaction between the atoms induced by the
guided modes which is a long-range effect and the smallest
atomic separation used in the numerical calculations is λ/8
where the dipole-dipole interaction induced by the vacuum
modes in the free space can be safely neglected.

VII. SUMMARY

In summary, we derive a time-dependent theory to study the
dynamics of a single-photon pulse propagates through a linear
atomic chain which is coupled to a 1D single mode photonic
waveguide. This theory allows us to study the real time
evolution of a single-photon transport and atomic excitations.
The shape of the single-photon pulses and the arrangements of
the atoms can both be arbitrary. Our result is consistent with the
previous calculations when there is only one atom. For more
atoms, the collective interactions can significantly modify the
dynamics of the system. The reflectivity can approach 100%
for a photon with finite bandwidth by changing the ratio of
coupling strength and the photon linewidth or by changing the
number of atoms in the chain to increase the collective coupling
strength. The spectrum of the reflected and transmitted photon
can also be significantly different from that of the single-atom
case. We numerically show the photonic band-gap effects
where a bandwidth of frequency cannot transmit and we
can also tune this gap by changing 
/�vg or by changing
the number of atoms. We can also reflect a certain part of
the frequency components but transmit the other part of the
frequency by controlling the collective coupling between the
atoms. This may find important applications for a single-
photon frequency filter. The quantum entanglement between
distant atoms can also be created by the guided photon which
may find important applications in quantum information and
quantum computing. Besides, we also demonstrate the Fano-
type interference and the supperradiant effects in this system.

The spontaneous decay to the free space can reduce the
photon amplitude that stays in the photonic waveguide. If
the coupling strength between the atom and the waveguide
mode is much larger than the spontaneous decay rate, the

FIG. 8. (Color online) The spectrum (arb. units) of the input (I ), reflected (R) and transmitted (T ) photon with spontaneous decay to the
free space. The black solid line is the input spectrum. The red dashed line is the spectrum of the reflected photon. The blue dotted line is
the spectrum of the transmitted photon. The green dash-dotted line is the total spectrum of the photon remains in the waveguide. (a) N = 2,

 = �vg , and γ = 
/5; (b) N = 2, 
 = �vg , and γ = 
; (c) N = 5, 
 = �vg , and γ = 
.
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general feature is similar to the case when we neglect the
spontaneous decay. However, when the spontaneous decay
rate is comparable to the coupling strength between the atom
and the waveguide mode, the feature of the reflected and
transmitted spectrum can be quite different. However, if we
increase the atom number to increase the collective coupling
strength, the reflected and transmitted spectrum can have
features similar to the case without spontaneous decay rate.
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APPENDIX: CONCURRENCE OF TWO-QUBIT MIXED STATE

The quantum entanglement of a two-qubit system can be well quantified by quantum concurrence which is given by [48]

C(ρ) = max{0,λ1 − λ2 − λ3 − λ4}, (A1)

where λi(i = 1,2,3,4) are the eigenvalues, in decreasing order, of the Hermitian matrix � = √√
ρρ̃

√
ρ with ρ̃ = (σy ⊗

σy)ρ∗(σy ⊗ σy).
For the two-atom system in this paper, we have

ρAF (t) = |�(t)〉〈�(t)| (A2)

with

|�(t)〉 =
2∑

j=1

αj (t)e−iωat |ej ,0〉 +
∑

k

βk(t)e−iωkt |g,1k〉. (A3)

The density matrix of the atomic system is ρA(t) = TrF [ρAF (t)] which can be calculated to be

ρA(t) =

⎡
⎢⎢⎢⎣

∑
k |βk(t)|2 0 0 0

0 |α1(t)|2 α1(t)α∗
2 (t) 0

0 α∗
1 (t)α2(t) |α2(t)|2 0

0 0 0 0

⎤
⎥⎥⎥⎦. (A4)

The Hermitian matrix �(t) is then given by

�(t) =

⎡
⎢⎢⎢⎣

0 0 0 0

0 |α1(t)|2|α2(t)|2 |α1(t)||α2(t)|α1(t)α∗
2 (t) 0

0 |α1(t)||α2(t)|α∗
1 (t)α2(t) |α1(t)|2|α2(t)|2 0

0 0 0 0

⎤
⎥⎥⎥⎦ (A5)

and its eigenvalues are given by λ1(t) = √|α1(t)||α2(t)|,λ2(t) = √
2|α1(t)||α2(t)|,λ3(t) = λ4(t) = 0. Hence, the concurrence of

the two-atom system is given by

C(t) = max{0,
√

|α1(t)||α2(t)| −
√

2|α1(t)||α2(t)|} (A6)

which is Eq. (41).

[1] J. M. Raimond, M. Brune, and S. Haroche, Rev. Mod. Phys. 73,
565 (2001).

[2] M. Pelton, C. Santori, J. Vučković, B. Zhang, G. S. Solomon, J.
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