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The relationship between natural orbitals, one-body coherences, and two-body correlations is explored for
bosonic many-body systems of definite parity with two occupied single-particle states. We show that the strength
of local two-body correlations at the parity-symmetry center characterizes the number-state distribution and
controls the structure of nonlocal two-body correlations. A recipe for the experimental reconstruction of the
natural-orbital densities and quantum depletion is derived. These insights into the structure of the many-body
wave function are applied to the predicted quantum-fluctuation-induced decay of dark solitons.
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I. INTRODUCTION

In an ideal Bose-Einstein condensate, all bosons occupy the
same single-particle state ¢o(r), whose density can directly
be inferred from an absorption image measurement of the
reduced one-body density p;(r) [1]. Yet in a nonideal world,
interactions between the atoms not only affect the shape
of the condensate wave function ¢((r) but also bring more
single-particle orbitals into play, even at zero temperature,
such that p;(r) equals an incoherent superposition of their
densities in general. Theoretically, the many-body state can
be characterized by the natural orbitals (NOs) ¢;(r) [2], i.e.,
eigenvectors of the reduced one-body density operator p; and
their populations, i.e., the corresponding eigenvalues: Given
a sufficiently large weight, the NO of the largest population
is identified with the condensate wave function and quantum
depletion manifests itself in the population of other NOs [3].
As a matter of fact, correlation effects can be traced back to
both the spatial shapes and the occupation-number distribution
of the NOs, allowing a microscopic understanding of various
phenomena. Examples of such phenomena are the Mott-
insulating phase, where, e.g., an intra-well Tonks-Girardeau
transition for a filling factor of 2 can be understood in the
NO framework [4,5]; the quantum-fluctuation-induced decay
of dark solitons [6-9], where a NO of particular shape is
dominantly responsible for the soliton contrast reduction in
the reduced one-body density; and fragmented condensates
[10-13], which are defined as many-body states with two
or more macroscopically occupied NOs. While there are
proposals for the detection of fragmentation and its de-
gree [14,15], the one-body density p;(r) has, to the best of
our knowledge, not yet been unraveled into the contributions
|¢;(r)|* of the individual NOs by means of a measurement
protocol.

In principle, the NOs can be obtained from a tomographic
reconstruction of the reduced one-body density matrix p; (r,r’)
and diagonalization. Such quantum-state tomography is a well-
established technique for qubit systems and quantized light
fields [16,17]. For interacting ensembles of ultracold atoms,
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information about the off-diagonal elements p;(r,r’) can be
extracted experimentally from the contrast of interfering slices
coupled out of a trapped Bose gas [18-20] or homodyning in
uniform systems, where one generates copies of one’s system
by Bragg pulses and lets them interfere [21,22]. Furthermore,
there are theoretical proposals for the p;(r,r’) reconstruction
based on Raman-pulse sequences [23], variable time-of-flight
(TOF) measurements [24], heterodyning with an auxiliary
Bose-Einstein condensate [25], or the Jaynes principle of
maximum entropy [26]. Yet due to its nonlocal character,
it is notoriously difficult to infer p;(r,r’) experimentally, in
particular for nonuniform systems.

Rather than aiming at a completely general reconstruction
scheme for the NOs, we focus here on bosonic many-body sys-
tems of definite parity with two occupied NOs. Assuming
only two occupied orbitals constitutes the simplest, natural
extension for bosons beyond the mean-field approximation
and is physically justified in various situations. For this class
of systems, we derive an experimentally accessible recon-
struction recipe in which density-fluctuation measurements
play a decisive role, and also gain insights into the generic
properties of two-body correlations. In particular, we show
how the character of the number-state distribution function,
the NO densities, the structure of two-body correlations and
the relationship between one-body coherences and nonlocal
two-body correlations crucially depend on the strength of
two-body correlations at the parity-symmetry center. All these
relations are derived exactly from the structure of the many-
body wave function. In order to show the importance of our
results as well as their validity when further NOs are slightly
populated, we apply our analytical methodology to the analysis
of numerical ab initio data of the quantum-fluctuation-induced
decay of dark solitons obtained by the multiconfiguration
time-dependent Hartree method for bosons (MCTDHB) [27-
29] and address also the impact of finite experimental
resolution.

This work is organized as follows: First, the setup is intro-
duced in Sec. II. Thereafter, we discuss the NO decomposition
of the reduced two-body density in Sec. IIT A, which forms
the basis for the reconstruction of the odd- and even-parity
NO densities as well as for the characterization of the
spatial structure of two-body correlations in Secs. III B, III C,
and IIID, respectively. Finally, we apply our insights to
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decaying dark solitons in Sec. IIIE and conclude with
Sec. IV.

II. SETUP

In the following, we consider a system of N bosons
which are energetically or dynamically restricted to occupying
only two single-particle states of opposite parity, 7|¢;) =
(=1)'|¢), i = 0,1. Here, # denotes the single-particle parity
operator which inverts either all coordinates or only x. For
simplicity, we suppress the y, z arguments in the position
representation and remark that our results are valid for
one-, two-, and three-dimensional quantum gases. The N-
body state is assumed to possess a definite N-body parity,
®£V:1 7w, |V) = [I|¥), IT € {—1,1} with 7, acting on the rth
atom, as it is the case for a nondegenerate ground state
of a parity-symmetric many-body Hamiltonian, e.g., of a
bosonic Josephson junction [30]. For this class of systems,
the many-body state is of the form

K
W) = ZAklno(k),N — no(k)), 6]

k=0

where |ng,n;) denotes a number state with n; bosons in |¢;).
In the cases of N even and I[T=1 or N odd and Il =
—1, the correct parity is ensured by ny(k) = 2k. Otherwise,
no(k) = 2k + 1 has to be chosen. In all cases, K denotes
the largest integer with ny(K) < N. By tracing out N — 1
bosons, one obtains for the reduced one-body density operator
01 = Algo)Xdo| + (1 — A)|d1)¢1| sothat the NOs are given by
|¢;). Here, we have introduced the average fraction of bosons
in the even orbital, A = ny/N, where (...) denotes the average
with respect to the number-state probability distribution
|Ag|>. Thus, the quantum depletion equals min{A,1 — A}
and the reduced one-body density is given by the incoherent
superposition

p1(x) = (x]p1lx) = Algo()* + (1 — A)lpr1 ()% (2)

By measuring p;(x) and the real-valued off-diagonal ele-
ments p;(x,—x) = (x|p;|—x) for all x, one could in principle
reconstruct the NO densities and A without knowledge about
the full density matrix p;(x,x’). As a consequence of the
NO parities, one finds |@o/1(x)|* o pi(x) £ pj(x,—x) and
A=[1+ fdx p1(x,—x)1/2 = [1 + tr(7 p1)]/2, which links
A to the average single-particle parity. The drawback of
this scheme, however, lies in the fact that it requires precise
knowledge about p;(x,—x) for all x, which is a challenging
quantity to measure.

III. RESULTS
A. NO decomposition of the two-body density

Since two-body correlations will indeed provide us an
alternative pathway to the reconstruction of the NO densities,
we investigate here how the structure of the many-body
wave function (1) manifests itself in absorption image noise
correlations. The latter have theoretically been proven to give
valuable physical insights in particular for low-dimensional
systems [31-36] and are measurable both after TOF and in situ
nowadays [37-48]. For this purpose, we derive the two-body
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density p2(x1,x2) = (T (x)T ) e2)d (x1) /IN(N = D),

where 1r(x) denotes the bosonic field operator:
p2(x1,X2) = 2Refa 11(x1,X2) 0 (x1,X2)] + Bloo(x1,x2)|
+ 2y o1 (x1,2) > + 8111 (x1,%2) [, 3)

with ¢;;(x,x) abbreviating the normalized symmetrization of
the Hartree product ¢;(x1)¢;(x2). In the following derivation,
we will eliminate the off-diagonal term with the coefficient
a, which is a function of the coherences Aj 1Ak between the
respective number states, by virtue of the parity symmetry.
The second coefficient is related to the second moment of the
number-state distribution |A;|> via 8 = [n(z) —nol/[N(N —
1)] and determines the remaining coefficients y = A — § and
§=1+p8—-2A.

Assuming a finite central density, p;(0) > 0, we cal-
culate the two-body correlation function gs(x1,x2) =
P2(x1,x2)/[p1(x1)p1(x2)] [49,50] at the symmetry center

_ﬁ_ N var(ng) — 7o
£200.0) = - -N_1(1+ = ) )

where var(ng) = nj — ﬁ%. By measuring the central density
and its fluctuations, one can in principle deduce g,(0,0)
and, thereby, characterize the number-state distribution in the
categories Poissonian, sub-Poissonian, and super-Poissonian.
Similarly, a measurement of the nth-order correlation function
gn(x1 =0,...,x, =0) gives insights into the nth moment
of the number-state distribution (see, e.g., the experiment
in [51] for n = 3). As we will show, the strength of two-
body correlations at the symmetry center constitutes a key
parameter, which controls both the reconstruction of the NO
densities and the relationship between local and nonlocal two-
body correlations. Regarding the impact of an unavoidably
given finite experimental resolution, we refer to the discussion
at the end of Sec. III E.

B. Density reconstruction of odd NO

In order to eliminate the term proportional to « in Eq. (3),
we make use of ¢(0) = 0 and consider the nonlocal two-body
correlations g,(x,0) = [Blgo(x)|> + ¥ 1¢1(x)1*1/[Ap; (x)]. Af-
ter substituting the density of the even NO |¢y(x)|? via Eq. (2)
and employing Eq. (4), we obtain

2 8200,0) — g2(x,0)

|1 ()" = 00.0) — 1 p1(x), )
which holds! for nontrivial two-body correlations at the
symmetry center, i.e., g2(0,0) #% 1. Under this condition, we
have thus shown that the density of the odd NO is proportional
to the total reduced one-body density spatially modulated
by the strength of nonlocal two-body correlations between
the symmetry center and the position x of interest. This
relationship constitutes a key result of this work since it
provides an explicit reconstruction scheme for the microscopic
quantity |¢; (x)|? in terms of the measurable densities p; (x) and

'In the limit g,(0,0) — 1, the right-hand side of Eq. (5) tends to
|1 (x)|? such that no information about the NO is gained. This fact is
also reflected by £,(0,0) = 1 implying g,(x,0) = 1 (see Sec. III D).
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FIG. 1. (Color online) (a) Structure of two-body correlations for the case g,(0,0) = 1. (b) g2(x1,x2) at t = 5.57, for a density-engineered
initial state of N = 100 bosons with y = 0.04 in a one-dimensional box of length L = 20& (obtained by (ML-)MCTDHB simulations). The
dashed lines indicate the positions of two counterpropagating gray solitons and the arrows point into their directions of motion. The circles
indicate the characteristic correlation pattern observed for a single gray soliton in [9]. Strength of two-body correlations at the symmetry center:

£2(0,0) ~ 1.003.

02(x,0). In particular, this simple reconstruction recipe does
not require to measuring the off-diagonal elements p;(x,—x).
For the ground state of a parity-symmetric Hamiltonian with
short-range interactions, the many-body parity turns out to
be even [52] and, for not too strong interactions, most of
the bosons occupy the NO of even parity. Thus, Eq. (5)
gives experimental access to the density of the orbital whose
population is responsible for quantum depletion. Besides, the
positive semidefiniteness of |¢;(x)|*> and p;(x) implies that
(anti)bunching at the symmetry center yields g,(0,0) as an
upper (lower) bound for the nonlocal correlation g,(x,0).

C. Density reconstruction of even NO

Due to the presence of the unknown A in Eq. (2), density
and density-fluctuation measurements can only be employed to
relate the NO density difference |¢o(x)|> — |¢;(x)|? at different
points in space, x = X2, but not to extract |po(x)|? itself.
Nevertheless, using Eq. (5) the possible candidates for |o(x)]?
can be restricted to a one-parametric family,

}, (6)

o (x)[? _ [l n (1 B l) £2(0,0) — g2(x,0)
p1(x) A A £2(0,0) — 1

where A € (0,1). Thus, a theoretical estimate for A by means
of, e.g., number-conserving Bogoliubov theory [53-57] would
allow the unique determination of the density of the even
NO. In order to obtain a measurement protocol for A as an
alternative, we inspect the first-order coherences g;(x,—x) =
p1(x,—x)//p1(x)pi(—x) [49,50]. Substituting |¢o;1(x)|* by

Egs. (6) and (5), respectively, in p;(x,—x), we arrive at
82(0,0) — g2(x,0)
£2(0,0) — 1

Thus, the additional knowledge of g;(x*,—x*) for some
convenient position x* with g,(x*,0) # £,(0,0) is sufficient

gir(x,—x) =1-2(1-A4A) (7

In the g,(0,0) — 1 limit, this equation becomes equivalent to
Eq. (2) such that no information is gained.

for determining A. In the case when we have only ex-
perimental access to the modulus of g;(x,—x) but not to
its sign, we may extract A = Ay(x) for both signs, i.e.,
+|g1(x,—x)|, from Eq. (7) for all x of finite density with
22(x,0) # g2(0,0). One easily verifies A, (x) > A_(x) and,
in many situations, the local sign of g;(x,—x) can then be
fixed by requiring A not to depend on x. Knowing A and
an estimate for N, we may also infer var(ng) from (4).
Finally, Eq. (7) gives the conceptual insight that the average
fraction of bosons in the even NO mediates a relationship
between the first-order coherences g;(x,—x) and two-body
correlations g,(x,0).

D. Spatial structure of two-body correlations

While the two-body correlation function features a particle
exchange and a two-body parity symmetry, it does not remain
invariant under a parity operation acting on one atom only.
By inspecting p2(x1,X2) + p2(x1,—x2) — 2p1(x1)p1(x2), ie.,
essentially the sum of density-density correlations at (x|, =x,),
the parities of the NOs can be employed to eliminate the
off-diagonal term o< o such that a relationship between
g2(x1,x2) and g,(x1,—x,) can be established. Here, we have to
distinguish two cases:

(i) In the absence of two-body correlations at the symmetry
center, i.e., g2(0,0) = 1, we obtain the relation g»(x;,x;) +
g2(x1,—x2) = 2, which has three important consequences.
First, the g, function is fully determined by its values in
the sector S = {(x1,x2)|0 < x1 < xp} [see Fig. 1(a) for an
illustration]. Second, local bunching (antibunching) structures
g2(x1,x2) > 1[g2(x1,x2) < 1]forx; & x; translate into nonlo-
cal antibunching (bunching) structures of the same magnitude
at (x1,—x2). Third, pairs of atoms are uncorrelated on the x>
axis, i.e., g2(x,0) = g2(0,x) = 1.

(ii) In the presence of two-body correlations at the sym-
metry center, we may employ the reconstruction formula (5)
to obtain the following functional equation, which has to be
fulfilled for every g, with g,(0,0) # 1 in order to be compatible
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with the many-body wave function (1):

fx) f(x2) )) @)
[£2(0,0) — 1]
with f(x) = g2(x,0) — 1. This restriction on the functional

form of g, may be used experimentally as a necessary condi-
tion for testing the validity of the two-orbital approximation.

82(x1,x2) + ga(x1,—x2) = 2(1 +

E. Applications

Dark solitons, being well known for their stability within
the mean-field approximation (see [58] and references therein),
suffer from a quantum-fluctuation-induced decay due to an
incoherent scattering of atoms from the soliton orbital into an
orbital localized at the soliton position; see, e.g., Refs. [6-9].
Due to the increasing population of this orbital, the depth of
the characteristic minimum in the reduced one-body density
is reduced; i.e., the soliton contrast decreases on average
over many absorption image measurements. Since this decay
process can qualitatively be understood within a two-orbital
approximation, dark solitons constitute a straightforward
example for testing the validity of the above insights in
situations when further orbitals participate with, however,
minor weight. In the following, we consider N bosons of
mass m in a one-dimensional box potential of length L with a
contact interaction strength g. This system is governed by the
Hamiltonian H =", p?/2 + VY 28k — %)) in a unit
system based on the chemical potential iy = gN /L, the heal-
ing length & = h/,/mu, and the correlation time 7. = h/ o,
where y = mgL/(h*N) denotes the Lieb-Liniger parameter.

Both for finding the initial state and for the sub-
sequent propagation in the following two scenarios, we
employ our recently developed multilayer multiconfigu-
ration time-dependent Hartree method for bosons (ML-
MCTDHB) [28,29], which reduces to the pioneering MCT-
DHB method [27] if applied to a single species in one spatial di-
mension as in the considered cases. This method is based on an
expansion of the total many-body wave function with respect
to bosonic number states with an underlying time-dependent,
dynamically optimized single-particle basis of M states. All
conceivable number-state configurations for the given M
single-particle states are taken into account. Being based on
a variational principle, the MCTDHB equations provide us
with a variationally optimized solution to the time-dependent
many-body Schrodinger equation. By incrementing M, we
found in both scenarios discussed below that convergence
is ensured on the considered time scale if M = 4 (see [9]).
A NO analysis of the full numerical data reveals that two
NOs contribute with significant weight while the probability
of finding an atom in one of the other two NOs does not exceed
0.023 for the time scales of Figs. 1(b) and 2.

First, we start with the ground state of N = 100 atoms
in the box with an additional Gaussian barrier V(x) =
hexp[—x2/Qw?)], h = 600, and w &~ 0.07£ so that we en-
gineer a pronounced density notch at x = 0. Having switched
off the barrier, we let the interacting many-body system evolve
in the box potential. In the course of time, the single density
minimum splits into a pair of counterpropagating gray solitons,
which are slowly decaying due to quantum fluctuations [9].
We have shown that a single gray soliton is accompanied
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density (units of 1/¢)
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FIG. 2. One-body density and density of the two most dominant
NOs at times (a) t = 27, and (b) ¢ = 3.57, for a many-body system
initially featuring a black soliton centered at x = 0. All parameters
are as in Fig. 1(b). Dotted line: p;(x). Solid lines: Exact NO densities
|o(x)|? (black) and |¢,(x)|* (gray, reduced by factor 2). All these
curves are obtained from (ML-)MCTDHB ab initio simulations.
Dashed lines: Corresponding reconstructions of the NO densities.
Estimated A ~ 0.079, 0.088 for (a), (b), respectively. Exact values:
A = (0.073, 0.098. Two-body correlations at the symmetry center:
£2(0,0) = 2.699, 2.013.

by highly localized two-body correlations in the vicinity of
the instantaneous soliton position resulting in a bunching of
atoms in the soliton flank opposite to its direction of movement
[see the circles in Fig. 1(b)]. Yet the g, function of two
counterpropagating gray solitons turns out to be more than
the sum of the local correlation patterns of the individual gray
solitons; additional nonlocal correlations occur between the
two solitons [Fig. 1(b) and Ref. [9]]. Observing numerically
that |g,(0,0) — 1| <« 1, we may now understand these nonlocal
correlations as a generic property of parity-symmetric systems
with essentially two occupied NOs: With x (x) denoting the
position of the soliton moving to the right (left), our above re-
sults imply gr(xg — €,xp + €) & 2 — gr(xg — €,xg — €) such
that bunching in the back of a single soliton (¢ > 0) translates
into antibunching of approximately the same magnitude for
finding an atom each in the back of each soliton.

Second, in order to realize a situation with significant
deviations of g,(0,0) from unity, we additionally imprint
a relative phase of m between the two half spaces at ¢t =
0 [6-9]. Thereby, a black soliton is initialized at x = 0.
As time evolves, the density minimum becomes filled up
by incoherently scattered atoms inducing strong bunching
correlations at the symmetry center. Figure 2 clearly shows
that the density of the dominant NO of odd parity, |¢;(x)|?,
features the characteristic density notch of a black soliton
and can be reliably reconstructed by the scheme (5) at times
when the soliton contrast in the full density p;(x) has been
reduced. For longer times, the reconstructed |¢; (x)|> deviates
slightly more from the full numerical results since the third
and fourth dominant NO have gained more population. The
reconstruction of |¢o(x)|?, i.e., the NO mostly responsible
for the soliton decay and strong two-body correlations, turns
out to be more sensitive to the slight population of these
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NO: Due to the phase-imprinting scheme, we expect most
of the atoms to reside in an odd NO. Finding numerically
A_(x) < 1/2 < Ay(x), we thus take the negative sign of
gi1(x,—x) and estimate A by averaging A_(x) over some
interval. As a result, we can fairly well reconstruct |gy(x)|?
according to Eq. (6) for not too long times [Fig. 2(a)]. Thus, our
scheme can be used to experimentally verify the microscopic
decay mechanism of a black-soliton contrast in the reduced
one-body density via a NO being localized at the position
of the soliton, given that thermal excitations are sufficiently
suppressed as achievable in today’s experiments [59]. At
longer times [¢ 2 37, see Fig. 2(b)], i.e., when the assumption
of only two occupied orbitals becomes less valid, however,
the reconstructed |¢y(x)|? deviates much more from the full
numerical results compared to the reconstruction of |¢;(x)|>.
The reconstruction formulas (5) and (6) have been derived
under the assumption of perfect experimental resolution. To
test the robustness of the reconstruction recipe against finite
resolution, we have (i) embedded our numerical simulation
results for the considered purely one-dimensional model into
three-dimensional coordinate space by assuming all atoms
to reside in the ground state of the transverse harmonic
oscillator and (ii) convoluted the one- and two-body densities
with a Gaussian point-spread function of variable width
o. These coarse-grained quantities have then been inserted
in the reconstruction formulas (5) and (6). We have found
that the NO densities and thereby the decay mechanism of
the soliton contrast in the reduced one-body density can be
reconstructed as long as o < &/4, which was to be expected
(plots not shown). This requirement on the optical resolution
is demanding, of course, but not out of reach since the healing
length could be raised above the resolution limit by a Feshbach
resonance, for example. For such values of o, the reconstructed
|o(x)|? density happens to be sufficiently robust against errors
in the depletion A, for which we assumed a relative uncertainty
of 20%. Finally, we remark that not p>(x;,x;) but density-
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density correlations ([ (x1)¥ (x1)— Ny )1 (x2) 9 (x2) —
Npi(x,)]) are measured in experiments. Due to the canonical
commutation relations for bosonic field operators, however,
these two quantities essentially differ by an autocorrelation
peak o 6(x; — x3), which becomes smooth when convoluted
with a point-spread function and whose contribution is
suppressed as 1/N for large particle numbers.

IV. CONCLUSIONS

We have shown how physical knowledge about the structure
of the many-body wave function can be employed for
deriving generic properties of two-body correlations and an
experimentally relevant reconstruction scheme for the NO
densities. In addition to the discussed dark-soliton example,
our results should be applicable to many other systems such
as Bose gases in a double-well potential [30], fragmenting
bright solitons [12,13], or symmetrically colliding fragments
in a harmonic trap [15,60]. If the central density turns out
to be vanishing or too small such that g,(0,0) becomes
effectively ill defined, the whole analysis has to be carried out
in momentum space via long TOF measurements. We hope that
our work stimulates the interest in NO-reconstruction schemes
such that these microscopic quantities become experimentally
accessible for a broad class of systems.
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