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We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi
gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to
that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of
a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit.
The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more
pronounced than those in three dimensions. In this work, we show that the inclusion of the Gaussian quantum
fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the
missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near
the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the
known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite
boson scattering length aB to the fermion scattering length a2D. We find aB � 0.56a2D, in good agreement with
the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results
from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.
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I. INTRODUCTION

The experimental realization of ultracold atomic Fermi
gases with tunable interatomic interactions has opened a new
era for the study of some longstanding theoretical proposals
in many-fermion systems. One interesting proposal is the
smooth crossover from a Bardeen-Cooper-Schrieffer (BCS)
superfluid ground state with largely overlapping Cooper pairs
to a Bose-Einstein condensate (BEC) of tightly bound bosonic
molecules—a phenomenon suggested many years ago [1–3].
A simple but important system is a dilute attractive Fermi gas
in three dimensions (3D), where the effective range of the
short-ranged interaction is much smaller than the interparticle
distance. The system can be characterized by a dimensionless
gas parameter 1/(kFa3D), where a3D is the s-wave scattering
length of the short-ranged interaction and kF is the Fermi
momentum in the absence of interaction. The BCS-BEC
crossover occurs when the parameter 1/(kF a3D) is tuned
from negative to positive values [4–8], and the BCS and
BEC limits correspond to the cases 1/(kF a3D) → −∞ and
1/(kF a3D) → +∞, respectively.

The BCS-BEC crossover phenomenon in three-
dimensional dilute Fermi gases has been experimentally
demonstrated by using ultracold gases of 6Li and 40K
atoms [9–11], where the s-wave scattering length and
hence the gas parameter 1/(kF a3D) were tuned by means
of the Feshbach resonance [12,13]. The equation of state
(EOS) and various static and dynamic properties of the
BCS-BEC crossover have become a big challenge for
quantum many-body theory [14–24] because the conventional
perturbation theory is no longer valid. At the so-called
unitary point where a3D → ∞, the only length scale of the
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system is the interparticle distance. Therefore, the properties
of the system at the unitary point 1/(kF a3D) = 0 become
universal, i.e., independent of the details of the interactions.
All thermodynamic quantities, scaled by their counterparts
for noninteracting Fermi gases, become universal constants.
Determining these universal constants has been one of
the most intriguing topics in the research of cold Fermi
gases [25–31].

On the other hand, it was suggested that a two-dimensional
Fermi gas with short-ranged s-wave attraction can also
undergo a BCS-BEC crossover [32–34]. Unlike 3D, a two-
body bound state always exists in two dimensions (2D),
even though the attraction is arbitrarily weak. The BCS-
BEC crossover in 2D can be realized by tuning the binding
energy of the bound state. Studying the BCS-BEC crossover
in 2D will help us understand the physics of pseudogap
and Berezinskii-Kosterlitz-Thouless transitions in fermionic
systems [35]. In recent years, quasi-two-dimensional atomic
Fermi gases have been experimentally realized and studied
by a number of groups [36–45]. In cold-atom experiments, a
quasi-two-dimensional Fermi gas can be realized by arranging
a one-dimensional optical lattice along the axial direction
and a weak harmonic trapping potential in the radial plane,
such that fermions are strongly confined along the axial
direction and form a series of pancake-shaped quasi-two-
dimensional clouds. The strong anisotropy of the trapping
potentials, namely, ωz � ω⊥ where ωz (ω⊥) is the axial (radial)
frequency, allows us to use an effective two-dimensional
Hamiltonian to deal with the radial degrees of freedom.
Experimental studies of quasi-two-dimensional Fermi gases
have promoted great theoretical interest in the past few
years [46–74].

It is known that in 3D, even the mean-field theory predicts
that the system is a weakly interacting Bose condensate in
the strong attraction limit [5]. The composite boson scattering
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length is shown to be aB = 2a3D [5]. The inclusion of Gaussian
pair fluctuations (GPFs) [16–18] recovers the Fermi liquid
corrections in the weak attraction limit and modifies the
composite boson scattering length to aB � 0.55a3D, which is
close to the exact result aB � 0.6a3D [75]. Moreover, the EOS
in the BCS-BEC crossover agrees excellently with the quantum
Monte Carlo results and the experimental measurements if the
GPFs are taken into account [16–18]. In contrast, the mean-
field theory for two-dimensional Fermi gases does not predict
a weakly interacting two-dimensional Bose condensate in the
strong attraction limit [33,34]. The coupling constant between
the composite bosons is predicted to be energy independent,
which arises from the inadequacy of the Born approximation
for four-body scattering in 2D. As a result, the two-dimensional
mean-field theory predicts that the pressure of a homogeneous
two-dimensional Fermi gas is equal to that of a noninteracting
Fermi gas in the entire BCS-BEC crossover. However, recent
experimental measurements [37,41] and quantum Monte Carlo
simulations [46–48] show that the pressure in the strong
attraction limit is vanishingly small in comparison to that of a
noninteracting Fermi gas, which is consistent with the picture
that the system is a weakly interacting two-dimensional Bose
condensate. These results indicate that the two-dimensional
mean-field theory is not adequate even at the qualitative level,
and quantum fluctuations are much more important in 2D.

In analogy to the three-dimensional case, we expect that
the inclusion of GPFs in 2D naturally recovers the feature
of the weakly interacting two-dimensional Bose condensate
in the strong attraction limit. This has been demonstrated
recently by using the pole approximation for the Goldstone
mode and the dimensional regularization for the untraviolet
divergence, which leads to an elegant derivation of the
composite boson scattering length [73]. However, the pole
approximation is limited in the strong attraction limit because
of the use of the Bogoliubov dispersion for the Goldstone
mode. We also note that the ultraviolet (UV) divergence
arising from the pole approximation can be naturally avoided
in the full treatment of the collective modes [16–18]. In
this work, we study the influence of quantum fluctuations
on the EOS of two-dimensional Fermi gases in the entire
BCS-BEC crossover. With the full EOS beyond the pole
approximation, we determine the ratio of the composite boson
scattering length aB to the fermion scattering length a2D by
comparing our EOS near the vacuum-BEC quantum phase
transition with the known grand canonical EOS of weakly
interacting two-dimensional Bose gases [76–82]. We obtain
aB � 0.56a2D, in good agreement with the exact four-body
calculation [49] and the pole approximation treatment [73]. We
also perform numerical calculations for the canonical EOS of
a homogeneous two-dimensional Fermi gas in the BCS-BEC
crossover. In addition to recovering the weakly interacting
Bose condensate in the strong attraction limit, we find that
the Fermi liquid corrections [83–85] can also be recovered
at sufficiently weak attraction. We compare our EOS with
the recent results from quantum Monte Carlo simulations and
experimental measurements in the entire BCS-BEC crossover
and find good agreements.

The paper is organized as follows. We set up our theoretical
framework for two-dimensional Fermi gases beyond mean
field in Sec. II. We study the strong attraction limit and

determine the composite boson scattering length in Sec. III.
We present our theoretical predictions for the EOS in the
BCS-BEC crossover and compare our results with the quantum
Monte Carlo data and experimental measurements in Sec. IV.
We summarize in Sec. V. The natural units � = kB = 1 are
used throughout.

II. HAMILTONIAN AND GRAND POTENTIAL

We consider a spin-1/2 (two-component) Fermi gas in
two spatial dimensions with a short-ranged s-wave attractive
interaction between the unlike spins. In the dilute limit,
the interaction potential can be safely modeled by a contact
interaction. The grand canonical Hamiltonian density of the
system is given by

H =
∑

σ=↑,↓
ψ̄σ (r)H0ψσ (r) − Uψ̄↑(r)ψ̄↓(r)ψ↓(r)ψ↑(r), (1)

where ψ↑(r) and ψ↓(r) represent the annihilation field opera-
tors for the two spin states of fermions,H0 = −∇2/(2m) − μ

is the free single-particle Hamiltonian, with m being the
fermion mass and μ being the chemical potential, and U > 0
denotes the s-wave attractive interaction occurring between
unlike spins.

The contact coupling U is convenient for performing
theoretical derivations. However, it should be renormalized
by using some physical quantities so that we can obtain
finite results in the many-body calculations. With the contact
interaction U , the Lippmann-Schwinger equation for the
two-body T matrix reads

T −1
2B (E) = −U−1 − �(E), (2)

where E = k2/m is the scattering energy in the center-of-mass
frame and the two-particle bubble function �(E) is given by

�(E) =
∑

k

1

E + iε − 2εk
. (3)

Here ε = 0+ and εk = k2/(2m). We use the notation
∑

k ≡∫
d2k/(2π )2 throughout. The cost of the use of the contact

interaction is that the integral over k suffers from UV
divergence. We regularize the UV divergence by introducing
a hard cutoff 	 for |k|. For large 	 we obtain

�(E) = − m

4π
ln

	2

m
+ m

4π
ln (−E − iε). (4)

Next we match the scattering amplitude f (k) =
(4π/m)T2B(E) to the known two-dimensional s-wave
scattering amplitude in the zero-range limit, which is given
by f (k) = 1/[ln(εB/E) + iπ ] [33,34]. Here εB is the binding
energy of the two-body bound state, which characterizes the
attraction strength. Thus we obtain

1

U (	)
= m

4π
ln

	2

mεB

=
∑

|k|<	

1

2εk + εB

. (5)

The above results should be understood in the large-	 limit.
After renormalization of the bare coupling U through the
physical binding energy εB , the UV divergence in the many-
body calculations can be eliminated and we can set 	 → ∞
to obtain the final finite results.
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In the imaginary-time functional path integral formalism,
the partition function at temperature T is

Z =
∫

[dψ][dψ̄] exp{−S[ψ,ψ̄]}, (6)

where the action

S[ψ,ψ̄] =
∫

dx[ψ̄∂τψ + H (ψ,ψ̄)]. (7)

Here x = (τ,r), with τ being the imaginary time, and
∫

dx =∫ β

0 dτ
∫

d2r with β = 1/T . To decouple the interaction term,
we introduce an auxiliary pairing field 
(x) and apply the
Hubbard-Stratonovich transformation. Then the the partition
function can be expressed as

Z =
∫

[dψ][dψ̄][d
][d
∗] exp{−S[ψ,ψ̄,
,
∗]}, (8)

where the action reads

S =
∫

dx
|
(x)|2

U
−

∫
dx

∫
dx ′ψ̄(x)G−1(x,x ′)ψ(x ′). (9)

Here the Nambu-Gor’kov spinor ψ(x) = [ψ↑(x),ψ̄↓(x)]T is
employed and the inverse Green’s function G−1(x,x ′) in the
Nambu-Gor’kov representation is given by

G−1(x,x ′) =
(−∂τ −H0 
(x)


∗(x) −∂τ +H0

)
δ(x − x ′). (10)

Integrating out the fermion fields, we obtain

Z =
∫

[d
][d
∗] exp{−Seff[
,
∗]}, (11)

where the effective action reads

Seff[
,
∗] = 1

U

∫
dx |
(x)|2 − Trln[G−1(x,x ′)]. (12)

The partition function cannot be evaluated analytically
since the path integral over 
 and 
∗ cannot be carried
out. At T = 0, the pairing field 
(x) acquires a nonzero and
uniform expectation value 〈
(x)〉 = �, which serves as the
order parameter of superfluidity. Due to the U(1) symmetry,
we can set � to be real and positive without loss of generality.
Then we write 
(x) = � + φ(x), where φ(x) is the fluctuation
around the mean field. The effective action Seff[
,
∗] can be
expanded in powers of the fluctuation φ(x); that is,

Seff[
,
∗] = SMF + SGF[φ,φ∗] + . . . , (13)

where SMF ≡ Seff[�,�] is the saddle-point or mean-field
effective action and SGF[φ,φ∗] is the contribution from
Gaussian fluctuations (GFs). The higher-order contributions
from non-Gaussian fluctuations are not shown. Accordingly,
the grand potential can be expressed as

� = �MF + �GF + . . . , (14)

where �MF = SMF/(βV ), with V being the volume and �GF

the contribution from GFs.

A. Mean-field approximation

In the mean-field approximation, the effective action is
approximated asSeff[
,
∗] � SMF. The quantum fluctuations

are completely neglected. At T = 0, the mean-field grand
potential can be evaluated as

�MF = �2

U
+

∑
k

(ξk − Ek), (15)

where ξk = εk − μ and Ek =
√

ξ 2
k + �2. The UV divergence

can be eliminated by using Eq. (5). We obtain

�MF = �2
∑

k

(
1

2εk + εB

− 1

Ek + ξk

)
. (16)

The order parameter � should be determined as a function of
μ by using the extreme condition ∂�MF/∂� = 0. We obtain
the gap equation

1

U
=

∑
k

1

2Ek
(17)

or, explicitly,

∑
k

(
1

2εk + εB

− 1

2Ek

)
= 0. (18)

It is very fortunate that in 2D the integral over k can be
carried out. The grand potential reads

�MF = m�2

4π

(
ln

√
μ2 + �2 − μ

εB

− μ√
μ2 + �2 − μ

− 1

2

)
.

(19)

Using the extreme condition ∂�MF/∂� = 0, we obtain

�MF(μ) =
√

εB(2μ + εB) �(2μ + εB), (20)

which determines analytically the order parameter � as a
function of the chemical potential μ. Substituting this result
into �MF, we obtain the mean-field grand canonical EOS,

�MF(μ) = − m

8π
(2μ + εB)2�(2μ + εB). (21)

The mean-field contribution to the particle density is given by

nMF(μ) = m

2π
(2μ + εB)�(2μ + εB). (22)

The above mean-field results show that the system undergoes
a second-order quantum phase transition from the vacuum to a
matter phase with nonvanishing density. The critical chemical
potential is given by

μc = −εB

2
. (23)

B. Gaussian pair fluctuation theory

Now let us include the quantum fluctuations. We include the
GFs only and approximate the effective action asSeff[
,
∗] �
SMF + SGF[φ,φ∗]. The advantage of this Gaussian approxi-
mation is that the path integral over φ and φ∗ can be carried
out analytically. To evaluate the quadratic term SGF[φ,φ∗], we
make the Fourier transformation

φ(x) =
√

βV
∑
Q

φ(Q)e−iqlτ+iq·r, (24)
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where Q = (iql,q), with ql = 2lπT (l ∈ Z) being the boson
Matsubara frequency. We use the notation

∑
Q = T

∑
l

∑
q

throughout. After some manipulations, SGF[φ,φ∗] can be
expressed in a compact form,

SGF[φ,φ∗] = βV

2

∑
Q

(φ∗(Q) φ(−Q))M(Q)

(
φ(Q)

φ∗(−Q)

)
.

(25)

The inverse boson propagator M(Q) is a 2 × 2 matrix. At
T = 0, its elements are analytically given by

M11(Q) = M22(−Q)

= 1

U
+

∑
k

(
u2

ku
2
k+q

iql − Ek − Ek+q
− υ2

kυ2
k+q

iql + Ek + Ek+q

)

M12(Q) = M21(Q)

=
∑

k

(
ukυkuk+qυk+q

iql + Ek + Ek+q
− ukυkuk+qυk+q

iql − Ek − Ek+q

)
.

(26)

Here the BCS distribution functions are defined as υ2
k = (1 −

ξk/Ek)/2 and u2
k = 1 − υ2

k . Note that Eq. (5) should be used
to eliminate the UV divergence.

Considering the GFs only, the partition function is approx-
imated as

Z � exp (−SMF)
∫

[dφ][dφ∗] exp{−SGF[φ,φ∗]}. (27)

Carrying out the path integral over φ and φ∗, we obtain the
grand potential � = �MF + �GF, where the contribution from
the GFs can be formally expressed as

�GF = 1

2

∑
Q

ln det M(Q). (28)

However, this formal expression is divergent because the con-
vergent factors are not appropriately considered. Considering
the convergent factors leads to a finite result [16,17]:

�GF = 1

2

∑
Q

ln

[
M11(Q)

M22(Q)
det M(Q)

]
eiql0+

. (29)

The Matsubara frequency sum can be converted to a standard
contour integral. At T = 0, we have

�GF = 1

2

∑
q

∫ 0

−∞

dω

π
[δM(ω,q) + δ11(ω,q) − δ22(ω,q)],

(30)

where the phase shifts are defined as δM(ω,q) =
−Im ln det M(ω + iε,q), δ11(ω,q) = −Im ln M11(ω + iε,q),
and δ22(ω,q) = −Im ln M22(ω + iε,q).

A crucial element of the GPF theory is that the order
parameter � should be determined by the extreme of the
mean-field grand potential �MF rather than the full grand
potential � = �MF + �GF [16,17]. Therefore, we still use the
mean-field gap equation or the analytical result, (21). The
advantages of the use of the mean-field gap equation can be
summarized as follows:

(i) The mean-field solution for the order parameter, (21),
guarantees Goldstone’s theorem. The dispersion of the Gold-
stone mode can be obtained by solving the equation

det M(ω,q) = 0 (31)

for ω smaller than the two-particle continuum. The use of
the mean-field solution, (21), for the order parameter ensures
that det M(0,0) = 0. Therefore, the lightest collective mode is
gapless and has a linear dispersion at low momentum q. We
expect that the most important contribution from the quantum
fluctuations is the Goldstone mode fluctuation. The use of the
mean-field gap equation ensures that the Goldstone mode is
gapless and hence enables us to take into account correctly the
contribution from the Goldstone mode.

(ii) The use of the mean-field solution, (21), main-
tains the famous Silver Blaze property [86,87] even if we
consider the contributions from the quantum fluctuations.
Even though the critical chemical potential μc = −εB/2 for
the vacuum-matter transition is obtained from the mean-field
approximation, we expect that it is exact because the minimal
chemical potential to create a bound state is exactly 2μc =
−εB . For μ < μc and at T = 0, the system stays in the vacuum
phase with vanishing pressure and density. This is known as
the Silver Blaze problem [86,87]. Obviously, the mean-field
EOS satisfies this property. Now we show that the Gaussian
contribution �GF also satisfies this property. For μ < μc, we
have � = 0 and hence �GF is given by

�GF =
∑
Q

ln M0(iql,q)eiql0+
, (32)

where the pair susceptibility M0(iql,q) in the vacuum phase is
analytically given by

M0(iql,q) =
∑

k

(
1

iql − ξk+q/2 − ξk−q/2
+ 1

2εk + εB

)

= m

4π
ln

(
−iql + q2

4m
− 2μ

εB

)
. (33)

At T = 0, we obtain

�GF =
∑

q

∫ 0

−∞

dω

π
δ0(ω,q), (34)

where δ0(ω,q) = −Im ln M0(ω + iε,q). It is easy to show
that δ0(ω,q) = 0 for ω < 0 in the vacuum phase μ < μc.
Therefore, we have exactly �GF = 0 for μ < μc. Accordingly,
the particle density also vanishes in the vacuum.

C. Imaginary frequency integration formalism

For the Gaussian contribution �GF, it is convenient to em-
ploy an alternative formalism which automatically satisfies the
Silver Blaze property and also leads to faster convergence for
numerical calculations. To this end, we define two functions,
MC

11(z,q) and MC
22(z,q) [17], which are given by

MC
11(z,q) = MC

22(−z,q) = 1

U
+

∑
k

u2
ku

2
k+q

z − Ek − Ek+q
. (35)
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Using the gap equation, (17), and the fact that u2
k < 1, we can show that MC

11(z,q) has no singularities or zeros in the left
half-plane (Rez < 0). Therefore, the Matsubara sum

∑
ql

ln MC
11(iql,q) vanishes at T = 0 since ln MC

11(z,q) has no singularities
in the left half-plane. Therefore, the Gaussian contribution at T = 0 can be expressed as [17]

�GF = 1

2

∑
Q

ln

[
M11(iql,q)M22(iql,q) − M2

12(iql,q)

MC
11(iql,q)MC

22(iql,q)

]
. (36)

At T = 0, we replace the discrete Matsubara frequency sum with a continuous integral over an imaginary frequency; i.e.,

T

∞∑
l=−∞

X(iql) →
∫ ∞

−∞

dω

2π
X(iω). (37)

After some manipulations, we obtain

�GF(μ) =
∑

q

∫ ∞

0

dω

2π
ln

[
1 − 2�4(μ)

A(ω,q)C(ω,q) + ω2B(ω,q)D(ω,q) + 2F 2(ω,q)

A2(ω,q) + ω2B2(ω,q)
+ �8(μ)

C2(ω,q) + ω2D2(ω,q)

A2(ω,q) + ω2B2(ω,q)

]
,

(38)

where we have used the fact that the integrand is real and even in ω. The functions A, B, C, D, and F are defined as

A(ω,q) =
∑

k

[
1

2εk + εB

− 1

4

(
1

Ek+q/2
+ 1

Ek−q/2

)
(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

(Ek+q/2 + Ek−q/2)2 + ω2

]
,

B(ω,q) =
∑

k

1

4Ek+q/2Ek−q/2

(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

(Ek+q/2 + Ek−q/2)2 + ω2
,

C(ω,q) =
∑

k

1

4

(
1

Ek+q/2
+ 1

Ek−q/2

)
1

(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

1

(Ek+q/2 + Ek−q/2)2 + ω2
, (39)

D(ω,q) =
∑

k

1

4Ek+q/2Ek−q/2(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

1

(Ek+q/2 + Ek−q/2)2 + ω2
,

F (ω,q) =
∑

k

1

4

(
1

Ek+q/2
+ 1

Ek−q/2

)
1

(Ek+q/2 + Ek−q/2)2 + ω2
.

Note that �(μ) is given by the mean-field solution, (21). The
BCS-type dispersions Ek±q/2 in (39) are hence analytically
given by

Ek±q/2 =
√

(εk±q/2 − μ)2 + εB(2μ + εB)�(2μ + εB). (40)

The integrand in (38) vanishes in the vacuum μ < μc and
hence the Silver Blaze property is automatically satisfied.
Moreover, because we use the mean-field gap equation, (21),
we can replace 1/(2εk + εB) with 1/(2Ek) in the expression
of the function A(ω,q). Then we find that the integrand
in (38) diverges near (ω,q) = (0,0), which indicates that the
most important contribution is from the low-energy Goldstone
mode.

In summary, the grand canonical EOS in the GPF theory is
given by

�(μ) = �MF(μ) + �GF(μ). (41)

The particle density n(μ) reads

n(μ) = nMF(μ) + nGF(μ), (42)

where the GF contribution is formally given by

nGF(μ) = −d�GF(μ)

dμ
. (43)

Here d/dμ represents the full derivative with respect to μ; i.e.,

d�GF(μ)

dμ
= ∂�GF

∂μ
+ ∂�GF

∂�

d�

dμ
. (44)

In 3D, it was shown that the second term is crucial to produce
in the BEC limit the composite boson scattering length aB =
0.55a3D [16,17], which is very close to the result aB = 0.6a3D

from the exact four-body calculation [75]. It has been shown
that in 2D the second term is much more important than in
3D. Without this contribution, the fluctuation contribution to
the particle density, nGF(μ), is divergent [64,88]. The full
derivative leads to a convergent particle density and hence
an appropriate description of the BCS-BEC crossover.

III. STRONG COUPLING LIMIT: WEAKLY INTERACTING
TWO-DIMENSIONAL BOSE CONDENSATE

While the mean-field theory predicts a simple and analytical
EOS in the entire BCS-BEC crossover, it does not capture
correctly the interaction between the composite bosons in
the strong coupling (BEC) limit. At μ = μc, the system
undergoes a second-order quantum phase transition from the
vacuum to the dilute BEC of bound states. In the grand
canonical ensemble, the BEC limit corresponds to the regime
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μ = μc + 0+, where the particle density n is vanishingly
small. Alternatively, the chemical potential for composite
bosons is given by

μB = 2μ + εB. (45)

The BEC limit corresponds to μB → 0 or, more explicitly,
μB/εB → 0.

First, we show that the mean-field theory leads to a constant
coupling between the composite bosons [89]. To this end, we
derive the Gross-Pitaevskii free energy functional in the BEC
limit [87,90]. Since the order parameter becomes vanishingly
small for μ = μc + 0+, we can obtain a Ginzburg-Landau free
energy functional of the order parameter field �(x),

�GL[�] =
∫

dx

[
�∗

(
a

∂

∂τ
− b

∇2

4m
− c

)
� + d

2
|�|4

]
.

(46)

The coefficients a, b, and c can be determined by the normal-
state pair susceptibility M0(iql,q), which is given by (33). For
ql,q2/(4m) � εB and μB → 0+, we have

M0(iql,q) � m

4πεB

(
−iql + q2

4m
− μB

)
. (47)

Therefore, we obtain

a = b = m

4πεB

, c = mμB

4πεB

. (48)

The coefficient d contains the information of the interaction
between the composite bosons. In the mean-field theory, it
can be obtained by making the Taylor expansion of �MF near
� = 0. We obtain

d = m

4πε2
B

(49)

Therefore, if we define a new condensate wave function,

ϕ(x) =
√

m

4πεB

�(x), (50)

the Ginzgurg-Landau free energy reduces to the Gross-
Pitaevskii free energy of a dilute Bose gas:

�GP[ϕ] =
∫

dx

[
ϕ∗

(
∂

∂τ
− ∇2

2mB

− μB

)
ϕ + gB

2
|ϕ|4

]
.

(51)

Here mB = 2m is the mass of the composite bosons. In the
mean-field theory, the boson-boson coupling gB is a constant,

gB = 4π

m
. (52)

This result is consistent with the previous calculation above the
superfluid transition temperature [89]. However, it has been
shown that for two-dimensional bosons, the coupling gB is
energy (chemical potential) dependent [49,91], that is,

1

gB

= mB

4π
ln

(
4

μBmBa2
Be2γ

)
, (53)

where aB is the boson-boson scattering length and γ �
0.577 . . . is the Euler constant. The constant coupling, (52),
indicates that the BEC limit of the two-dimensional mean-field
theory corresponds to the Born approximation for four-body
scattering in 2D [92]. This is also true for 3D. However, in
3D, the Born approximation already predicts a weak coupling,
gB = 4πaB/mB with aB = 2a3D, and hence the 3D mean-field
theory is qualitatively correct.

Second, the incorrect boson-boson interaction can also
be seen from the EOS. In the mean-field theory, the grand
canonical EOS in the BEC limit can be expressed as

�MF(μB) = − mB

16π
μ2

B. (54)

However, it is known that the grand canonical EOS of weakly
interacting two-dimensional Bose gases in the Bogoliubov
theory is given by [81]

�(μB) = −mBμ2
B

8π

[
ln

(
4

μBmBa2
Be2γ+1

)
+ 1

2

]
. (55)

It was shown that the corrections beyond the Bogoliubov
theory can be expanded in powers of the small parameter
1/ ln[4/(μBmBa2

Be2γ+1)]. The leading-order correction was
presented in [81]. In the BEC limit μB → 0, the beyond-
Bogoliubov corrections are vanishingly small in comparison
to the Bogoliubov contribution. We expect that the Bogoliubov
EOS, (55), can be recovered in the BEC limit μB/εB → 0
if we include the contribution from the Gaussian quantum
fluctuations. If so, this allows us to determine the composite
boson scattering length by comparing our EOS with the
Bogoliubov EOS, (55), in the limit μB/εB → 0.

In the GPF theory, the grand canonical EOS is given by

�(μB) = −mBμ2
B

8π

[
f (ζ ) + 1

2

]
, (56)

where ζ = μB/εB and the function f (ζ ) is given by

f (ζ ) = − 2

πζ 2

∫ ∞

0
dx

∫ ∞

0
dy ln

[
1 − 2ζ 2A(x,y)C(x,y) + y2B(x,y)D(x,y) + 2F2(x,y)

A2(x,y) + y2B2(x,y)
+ ζ 4 C2(x,y) + y2D2(x,y)

A2(x,y) + y2B2(x,y)

]
. (57)

Here the dimensionless functionsA, B, C, D, and F are given by

A(x,y) =
∫ 2π

0

dθ

2π

∫ ∞

0
dz

[
1

z + 1
− 1

4

(
1

E+
+ 1

E−

)
(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + y2

]
,

B(x,y) =
∫ 2π

0

dθ

2π

∫ ∞

0
dz

1

4E+E−

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + y2
,
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C(x,y) =
∫ 2π

0

dθ

2π

∫ ∞

0
dz

1

4

(
1

E+
+ 1

E−

)
1

(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + y2
,

D(x,y) =
∫ 2π

0

dθ

2π

∫ ∞

0
dz

1

4E+E−(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + y2
,

F(x,y) =
∫ 2π

0

dθ

2π

∫ ∞

0
dz

1

4

(
1

E+
+ 1

E−

)
1

(E+ + E−)2 + y2
, (58)

where the dimensionless variables x,y, and z are defined
as x = q2/(4mεB), y = ω/εB , and z = k2/(mεB) and the
notations ξ± and E± are given by

ξ± = 1
2 (z + x ± 2

√
xz cos θ + 1 − ζ ), E± =

√
(ξ±)2 + ζ .

(59)

We can show that f (ζ ) is divergent at ζ = 0. To this end, we
evaluate the functions A, B, C, D, and F at ζ = 0, which is
denoted by the subscript 0. We have

A0(x,y) = 1

2
ln[(1 + x)2 + y2],

B0(x,y) = 1

y
arctan

y

1 + x
,

C0(x,y) =
∫ ∞

0
dz

L2 − 2xz

L2(L2 + y2)(L2 − 4xz)3/2
, (60)

D0(x,y) =
∫ ∞

0
dz

L2 − 2xz

L3(L2 + y2)(L2 − 4xz)3/2
,

F0(x,y) =
∫ ∞

0
dz

1

(L2 + y2)
√

L2 − 4xz
.

Here we define L ≡ z + 1 + x for convenience. In the infrared
limit, x → 0 and y → 0, the above functions behave as

A0(x,y) � x, B0(x,y) � 1,

C0(x,y) � 1
4 , D0(x,y) � 1

5 , (61)

F0(x,y) � 1
2 .

For further analysis it is convenient to employ the polar
coordinates x = ρ cos ϕ and y = ρ sin ϕ. By making use of the
Taylor expansion for the logarithm in (57) (see the Appendix),
we find that at precisely ζ = 0, the function f (ζ ) is divergent
because of the infrared behavior A2

0 + y2B2
0 � ρ2. We note

that this kind of divergence does not exist in 3D. In 3D, the
mean-field theory already predicts a weakly interacting Bose
condensate in the strong coupling limit with a composite boson
scattering length aB = 2a3D [5]. The inclusion of the Gaussian
contribution in the BEC limit leads to a modification of the
composite boson scattering length from the mean-field value
2a3D to 0.55a3D [16,17].

The divergence of the function f (ζ ) at ζ → 0 is not
surprising. It is actually consistent with the Bogoliubov
EOS, (55), where the logarithmic term in the brackets diverges
when μB → 0. Therefore, we expect that for ζ → 0, the
function f (ζ ) diverges as − ln ζ = ln(εB/μB ). To show this
logarithmic divergence, we separate the function f (ζ ) into a
divergent piece and a finite piece. The details are presented in

the Appendix. The divergent piece is given by

fd(ζ ) = 8

π

∫ ∞

0
dx

∫ ∞

0
dy

F2

A2 + y2B2 . (62)

To capture the asymptotic behavior of this divergent piece for
ζ → 0, we find that it is sufficient to expand the denominator
A2 + y2B2 to the order O(ζ 2) and approximate it as

A2 + y2B2 � J(x,y) = A2
0 + y2B2

0 + 2ζA0A1 + ζ 2A2
1.

(63)

The explicit form of the function A1(x,y) is shown in the
Appendix. In the infrared limit ρ → 0, we have A1 � 1. The
neglected terms in the above ζ expansion lead to vanishing
contributions for ζ → 0. Therefore, the infrared divergence in
the limit ζ → 0 behaves as

8

π

∫ π/2

0
dϕ

∫ ε

0
ρdρ

1/4

ρ2 + 2ζρ cos ϕ + ζ 2
∼ ln

εB

μB

. (64)

Thus we have shown that in the BEC limit μB → 0, the Gaus-
sian contribution �GF behaves exactly like the logarithmic
term in the Bogoliubov EOS, (55).

To obtain the composite boson scattering length aB , we
need to determine the finite piece λ, which can be defined as

λ = lim
ζ→0

[f (ζ ) + ln ζ ]. (65)

Using the definition of the fermion scattering length a2D,

εB = 4

ma2
2De2γ

, (66)

we obtain the composite boson scattering length

aB = κa2D, κ =
√

1

2e1+λ
. (67)

A careful numerical analysis (see the Appendix) shows that
λ � −0.54. Therefore, we obtain

κ � 0.56. (68)

This result is in good agreement with κ � 0.56 from the
exact four-body calculation [49] and κ � 0.55(4) from the
EOS predicted by the diffusion Monte Carlo simulation [46].
We also note that the pole approximation of the Gaussian
quantum fluctuations with a dimensional regularization of the
UV divergence in the BEC limit predicted an analytical result
λ = −1/2 and hence κ = 1/(21/2e1/4) � 0.55 [73].

IV. BCS-BEC CROSSOVER

In this section, we study numerically the EOS in the entire
BCS-BEC crossover. The determination of the grand canonical
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EOS is simple. The grand potential �(μ) can be obtained by
performing the numerical integration in (38) for −εB/2 < μ <

+∞. The BEC and BCS limits correspond to μ → −εB/2
and μ → +∞, respectively. In this work, we are interested
in the canonical EOS for a homogeneous two-dimensional
Fermi gas with fixed density n. This enables us to compare our
results with recent quantum Monte Carlo calculations of the
energy density [46,47] and experimental measurements of the
local pressure [37,41]. For convenience, we define the Fermi
momentum kF and the Fermi energy εF for a noninteracting
two-dimensional Fermi gas with the same density n. They
are given by kF = √

2πn and εF = πn/m. The BCS-BEC
crossover is controlled by the dimensionless ratio α = εB/εF

or the gas parameter

η = ln(kF a2D). (69)

The BCS and BEC limits correspond to η → +∞ and η →
−∞, respectively.

In the mean-field approximation, we have n � nMF(μ),
which gives rise to the mean-field results of the chemical
potential and the pairing gap [33,34],

μMF(n) = εF − εB

2
, �MF(n) =

√
2εBεF . (70)

The energy density and pressure in the mean-field theory are
given by

EMF(n) = �MF(μMF) + μMFn = EFG − 1
2nεB,

(71)
PMF(n) = −�MF(μMF) = PFG,

where EFG = nεF /2 and PFG = nεF /2 are the energy density
and pressure of a noninteracting two-dimensional Fermi gas
with density n, respectively. We see clearly from the pressure
that the mean-field theory does not recover a weakly interacting
Bose condensate in the strong attraction limit.

To show that the chemical potential and the energy density
suffer from the same problem, we define two dimensionless
quantities,

ν = μ + εB/2

εF

, R = E + nεB/2

EFG
. (72)

In the mean-field theory, the solutions of ν and R are
independent of the attraction strength in the entire BCS-BEC
crossover; i.e.,

νMF = 1, RMF = 1. (73)

On the other hand, the Bogoliubov theory predicts that the
canonical EOS of a two-dimensional Bose gas is given by [76–
82]

μB = 4πnB

mB

1

ln
(

1
nBa2

B

) , E = −nBεB + 2πn2
B

mB

1

ln
(

1
nBa2

B

) ,

(74)

where nB = n/2 is the density of tightly bound bosons.
Therefore, we expect that in the BEC limit (η → −∞) the
solutions of ν and R behave asymptotically as

ν ∼ 1

2

1

ln
(

4π
κ2

) − 2η
, R ∼ 1

2

1

ln
(

4π
κ2

) − 2η
, (75)

where κ � 0.56 from the exact four-body calculation [49]
or from our study in Sec. III. These results indicate that ν

and R become vanishingly small in the BEC limit. We note
that the use of the Bogoliubov EOS, (74), requires that the
parameter 1/ ln[1/(nBa2

B)] is sufficiently small or η → −∞.
The corrections beyond the Bogoliubov theory were studied in
Refs. [76–82]. On the other hand, in the BCS limit (η → +∞),
the pairing gap � becomes vanishingly small and hence
the GPF theory becomes equivalent to the particle-particle
ladder resummation [14–17]. Therefore, in the BCS limit,
the GPF theory naturally recovers the perturbative EOS of
a weakly interacting two-dimensional Fermi gas up to the
order O(1/η2). The perturbative EOS of a weakly interacting
two-dimensional Fermi gas is given by [83–85]

ν = 1 − 1

η
+ γ + 1 − 2 ln 2

η2
+ O

(
1

η3

)
,

(76)

R = 1 − 1

η
+ γ + 3/4 − 2 ln 2

η2
+ O

(
1

η3

)
.

Therefore, we expect that ν and R approach unity asymptoti-
cally for η → +∞.

In the GPF theory, the chemical potential μ is determined
by solving the full number equation

n = nMF(μ) + nGF(μ). (77)

Then we can determine the energy density E(n) = �MF(μ) +
�GF(μ) + μn and the pressure P (n) = −�MF(μ) − �GF(μ).
The Gaussian contribution nGF(μ) can be worked out ana-
lytically but it is rather tedious. In practice, we start from
the grand potential �(μ) = �MF(μ) + �GF(μ). To determine
the chemical potential μ, we calculate the energy density
as a function of μ; i.e., E(μ) = �(μ) + μn. We search
for the maximum of E(μ), which gives rise to the solution
of the chemical potential for the given density n. Meanwhile,
the energy density and the pressure for the given density n

are determined. To perform the numerical calculation, it is
convenient to use the dimensionless variable ν. The mean-field
contribution to the grand potential is �MF(μ) = −ν2EFG. The
Gaussian contribution to the grand potential can be expressed
as

�g(μ) = g(ν)EFG, (78)

where the function g(ν) is given by

g(ν) = 2

π

∫ ∞

0
ds

∫ ∞

0
dt ln

[
1 − 8α2ν2A(s,t)C(s,t) + t2B(s,t)D(s,t) + 2F2(s,t)

A2(s,t) + t2B2(s,t)
+ 16α4ν4 C2(s,t) + t2D2(s,t)

A2(s,t) + t2B2(s,t)

]
. (79)
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The dimensionless functionsA, B, C, D, and F are now defined as

A(s,t) =
∫ 2π

0

dθ

2π

∫ ∞

0
du

[
1

2u + α
− 1

4

(
1

E+
+ 1

E−

)
(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + t2

]
,

B(s,t) =
∫ 2π

0

dθ

2π

∫ ∞

0
du

1

4E+E−

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + t2
,

C(s,t) =
∫ 2π

0

dθ

2π

∫ ∞

0
du

1

4

(
1

E+
+ 1

E−

)
1

(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + t2
, (80)

D(s,t) =
∫ 2π

0

dθ

2π

∫ ∞

0
du

1

4E+E−(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + t2
,

F(s,t) =
∫ 2π

0

dθ

2π

∫ ∞

0
du

1

4

(
1

E+
+ 1

E−

)
1

(E+ + E−)2 + t2
,

where the variables s = q2/(8mεF ), t = ω/εF , and u =
k2/(2mεF ). Here the notations ξ± and E± are given by

ξ± = u + s ± 2
√

us cos θ − ν + α

2
,

(81)
E± =

√
(ξ±)2 + 2αν.

Using the function g(ν) we have defined, we can express
the dimensionless quantity R as

R(ν) ≡ E(μ) + 1
2nεB

EFG
= −ν2 + g(ν) + 2ν. (82)

The physical results of ν and R correspond to the maximum
point of the the function R(ν) in the range 0 � ν � 1. In the
mean-field theory, we neglect the Gaussian contribution g(ν)
and hence R(ν) � −ν2 + 2ν. The maximum of the function
R(ν) gives the results ν = 1 and R = 1, which are precisely
the mean-field predictions, (73). Including the Gaussian
contribution g(ν), the maximum of R(ν) will be modified since
the function g(ν) depends explicitly on the interaction strength
α or the gas parameter η. In Fig. 1, we show the curves of the
function R(ν) for several values of the gas parameter η. We
find that the quantum fluctuations become more and more
important when the attraction strength increases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ν

R
(ν

)

−0.5

0

0.5

1

1.5

η=2.5

FIG. 1. (Color online) Curves of the function R(ν) for various
values of the gas parameter η = ln(kF a2D). For comparison, we show
the mean-field prediction RMF(ν) = −ν2 + 2ν by the dashed line.

In Fig. 2, we show the evolution of the chemical potential
μ or, explicitly, the quantity ν = (μ + εB/2)/εF in the BCS-
BEC crossover. We find that ν → 1 in the BCS limit and ν → 0
in the BEC limit, in agreement with our general expectation.
The order parameter � is shown in Fig. 3. We find that the
inclusion of the quantum fluctuations leads to a large suppres-
sion of the order parameter in the strong coupling regime. At
weak coupling, it was shown that the induced interaction or
the Gor’kov–Melik-Barkhudarov (GMB) effect [93] leads to
a suppression of the critical temperature and hence the pairing
gap � by a factor of 1/e [49]. In Fig. 3, we also show the
prediction with the GMB effect in the weak coupling regime
(η > 2). Obviously, the current GPF theory does not take into
account the GMB effect.

In Fig. 4, we show the evolution of the energy density
E or, explicitly, the quantity R = (E + nεB/2)/EFG in the
BCS-BEC crossover. In the BEC limit (η → −∞), our result
approaches the Bogoliubov EOS, (74), of weakly interacting
two-dimensional Bose gases with the boson scattering length
aB � 0.56a2D. In the BCS limit (η → +∞), our result tends
to the perturbative EOS, (76), of weakly interacting two-
dimensional Fermi gases. The energy density was computed

−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln(k
F
a

2D
)

(μ
+

ε B
/2

)/
ε F

FIG. 2. Evolution of the chemical potential μ in the BCS-BEC
crossover. We show the quantity ν = (μ + εB/2)/εF as a function
of the gas parameter η = ln(kF a2D). The mean-field prediction is
represented by the dashed line.
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10
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F
a
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)

Δ/
ε F

FIG. 3. The order parameter or pairing gap � (divided by εF ) as
a function of the gas parameter η = ln(kF a2D). The dashed line is
the mean-field prediction. The dashed-dotted line corresponds to the
prediction with the GMB effect in the weak coupling regime (η > 2).

recently using the diffusion Monte Carlo simulation [46] and
the auxiliary-field Monte Carlo simulation [47]. In Fig. 4,
we also show these Monte Carlo results for comparison.
Even though our theory recovers the correct BCS and BEC
limits, there exists a slight deviation between our theoretical
prediction and the Monte Carlo results. This is not surprising
because the GPF theory, which considers only GPFs, is not
an exact treatment. Some many-body effects we have not
taken into account in the GPF theory may account for this
disagreement. First, the current GPF theory does not consider
the GMB effect [93], which leads to a suppression of the
pairing gap � by a factor of 1/e at weak coupling [49]. The
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0
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F
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(E
+

nε
B
/2

)/
E

F
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FIG. 4. (Color online) Evolution of the energy density E in the
BCS-BEC crossover. The quantity R = (E + nεB/2)/EFG is shown
as a function of the gas parameter η = ln(kF a2D). The dashed line
represents the mean-field prediction. The (blue) circles and (red)
squares represent the predictions from the diffusion Monte Carlo
simulation [46] and the auxiliary-field Monte Carlo simulation [47],
respectively. The bottom-left dashed (green) line represents the
Bogoliubov EOS of a weakly interacting two-dimensional Bose gas
with the boson scattering length aB = 0.56a2D [see Eq. (74)]. The
top-right dashed (purple) line shows the EOS of a weakly interacting
two-dimensional Fermi gas [see Eq. (76)].
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FIG. 5. (Color online) Evolution of the pressure P in the BCS-
BEC crossover. P/PFG as a function of the gas parameter η =
ln(kF a2D) is shown. The mean-field prediction is represented by the
dashed line. The (blue) circles with error bars are the experimental
data taken from [37].

inclusion of this effect may lead to a slight suppression of the
energy density and a faster convergence to the EOS, (76), of
weakly interacting two-dimensional Fermi gases. The GMB
effect may also be important in the crossover regime (roughly
−0.5 < η < 2). Second, in the GPF theory, we consider
only GPF. The contributions from non-Gaussian quantum
fluctuations (beyond quadratic order in φ and φ∗) may be
important to make for a better agreement with the Monte Carlo
results in the crossover regime.

As we have mentioned, the most important thermodynamic
quantity which shows the significance of the quantum fluctu-
ations is the pressure P . The mean-field theory predicts P =
PGF for arbitrary attraction strength. In the GPF theory, we have

P (n)

PFG
= 2ν − R, (83)

where ν and R have been determined by searching for the
maximum of the function R(ν). Therefore, the pressure de-
pends explicitly on the interaction strength. In Fig. 5, we show
the evolution of the pressure or, explicitly, the ratio P/PFG

in the BCS-BEC crossover. Recent experiments on quasi-two-
dimensional Fermi gases across a Feshbach resonance have
measured the local pressure at the center of the atom trap at
sufficiently low temperatures [37,41], which can be regarded as
the ground-state pressure of a homogeneous two-dimensional
Fermi gas in the BCS-BEC crossover. In Fig. 5, we also show
the experimental data reported in [37]. Except for the deep BCS
regime (η > 3), our theoretical prediction is in good agreement
with the experimental measurement. The observed high pres-
sure in the deep BCS regime could be attributed to the meso-
scopic nature of the experimental system: In the deep BCS
regime, the scattering length a2D becomes larger than the cloud
size and hence the interaction is effectively suppressed [37].
On the other hand, it has been argued that the temperature effect
may also be crucial to understand the observed high pressure
in the deep BCS regime [70]. In the future, it is necessary to
study the finite-temperature effect in the current GPF theory.
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FIG. 6. (Color online) Evolution of the contact C in the BCS-
BEC crossover. (C − CMF)/k4

F as a function of the gas parameter η =
ln(kF a2D), where CMF = α/2 is the mean-field prediction. The dashed
(blue) line and the dash-dotted (red) line represent the predictions
from the diffusion Monte Carlo simulation [46] and the auxiliary-field
Monte Carlo simulation [47], respectively.

Having determined the EOS, we can calculate the contact
C, which is a powerful quantity to relate the energy, pressure,
and the microscopic momentum distribution [94,95]. In 2D,
the contact C can be defined as [96]

C

k4
F

= 1

4

d(E/EFG)

dη
. (84)

After some simple manipulation, we obtain

C

k4
F

= μ

εF

− E

EFG
= 1

2

(
P

PFG
− E

EFG

)
. (85)

Using the mean-field result CMF/k4
F = α/2, we can show that

C − CMF

k4
F

= ν − R. (86)

In Fig. 6, we show the quantity (C − CMF)/k4
F in the BCS-BEC

crossover. We find that this difference is quite small in the entire
BCS-BEC crossover and is peaked around η � 0.7, which
agrees with recent quantum Monte Carlo results [46,47].

V. SUMMARY

The lack of a weakly interacting Bose condensate in the
strong attraction limit is a longstanding problem for the
theory of BCS-BEC crossover in two-dimensional Fermi
gases. Especially, the mean-field prediction for the pressure
in the BCS-BEC crossover shows the inadequacy of the mean-
field theory in 2D. The inadequacy of the two-dimensional
mean-field theory can be understood from the fact that the
Born approximation for four-body scattering in 2D predicts
an incorrect form of the composite boson coupling. In this
work, we showed that this problem can be solved by including
the contributions from the Gaussian quantum fluctuations.
In the BEC limit, the missing logarithmic dependence on
the boson chemical potential and hence the boson-boson
interaction is naturally recovered by the quantum fluctuations.

We determined the composite boson scattering length as
aB � 0.56a2D, in good agreement with the exact four-body
calculation and recent quantum Monte Carlo results. We cal-
culated the chemical potential, the energy density, the pressure,
and the contact for a homogeneous two-dimensional Fermi gas
in the BCS-BEC crossover. Our theoretical predictions are in
good agreements with recent quantum Monte Carlo results and
experimental measurements.

In the future, it is necessary to consider more many-
body effects to explain the slight discrepancy between our
theoretical prediction and the quantum Monte Carlo results,
such as the GMB effect and the non-Gaussian fluctuations.
In the BEC limit, an exact low-density expansion for the
composite bosons [97] could also exist in 2D. It is also
interesting to extend the present theoretical approach to
the finite-temperature case and the spin-imbalanced case.
The inclusion of the GFs may provide better predictions
for the Berezinskii-Kosterlitz-Thouless transition in the two-
dimensional BCS-BEC crossover [43] and the phase structure
of spin-imbalanced two-dimensional Fermi gases [41].
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APPENDIX: COUNTING THE INFRARED DIVERGENCE
OF THE FUNCTION f (ζ )

Using the Taylor expansion ln(1 − a) = −∑∞
n=1 an/n, we

can express the function f (ζ ) as

f (ζ ) = 4

π

∫ ∞

0
dx

∫ ∞

0
dy
AC+ y2BD+ 2F2

A2 + y2B2

− 2ζ 2

π

∫ ∞

0
dx

∫ ∞

0
dy
C2 + y2D2

A2 + y2B2

+ 2

π

∞∑
n=2

ζ 2n−2

n

n∑
k=0

(
n

k

)
2k(−1)n−kζ 2n−2k

∫ ∞

0
dx

×
∫ ∞

0
dy

(AC+ y2BD+ 2F2)k(C2 + y2D2)n−k

(A2 + y2B2)n

(A1)

To analyze the infrared divergence for ζ → 0, we expand the
quantitiesA and B in the denominators in powers of ζ ,

A(x,y) = A0(x,y) +
∞∑

n=1

ζ n

n!
An(x,y),

(A2)

B(x,y) = B0(x,y) +
∞∑

n=1

ζ n

n!
Bn(x,y),
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where An = ∂nA/∂ζ n|ζ=0 and Bn = ∂nB/∂ζ n|ζ=0. The ex-
pansion coefficients An and Bn can be evaluated to arbitrary
order by using Mathematica. Here we list the results for A1

and B1. We have

A1 =
∫ ∞

0
dz

1

L2 + y2

[
1 + 8xz

(L2 − 4xz)3/2

]

+
∫ ∞

0
dz

2L2

(L2 + y2)2

(
2√

L2 − 4xz
− 1

)
,

B1 = −
∫ ∞

0
dz

2L

L2 + y2

1

(L2 − 4xz)3/2

+
∫ ∞

0
dz

2L

(L2 + y2)2

(
1 − 2√

L2 − 4xz

)
, (A3)

where L ≡ z + 1 + x as defined in the text. In the infrared limit
x,y → 0, we have A1 → 1 and B1 → −1. The expansion of
the quantityA2 + y2B2 takes the form

A2(x,y) + y2B2(x,y)

= A2
0(x,y) + y2B2

0(x,y) +
∞∑

n=1

ζ n

n∑
k=0

1

k!(n − k)!

× [Ak(x,y)An−k(x,y) + y2Bk(x,y)Bn−k(x,y)]. (A4)

For further analysis, it is convenient to use the polar coordi-
nates x = ρ cos ϕ and y = ρ sin ϕ. At exactly ζ = 0, we have
A2

0 + y2B2
0 � ρ2 in the infrared limit ρ → 0. To capture the

leading asymptotic behavior, we find that it is sufficient to
approximate the quantityA2 + y2B2 as

A2(x,y) + y2B2(x,y)

� J(x,y) = A2
0(x,y) + y2B2

0(x,y)

+ 2ζA0(x,y)A1(x,y) + ζ 2A2
1(x,y). (A5)

In the infrared limit ρ → 0, the function J(x,y) behaves as

J(x,y) � ρ2 + 2ζρ cos ϕ + ζ 2. (A6)

The other contributions we neglected in approximation (A5)
behave in the infrared limit as( ∞∑

n=1

anζ
n

)
ρ2 +

( ∞∑
n=2

bnζ
n

)
ρ +

( ∞∑
n=3

cnζ
n

)
. (A7)

The above terms lead to vanishing contributions in the limit
ζ → 0. One can prove this observation by carefully analyzing
the infrared behavior of the following integral:

Imn =
∫ ε

0
ρdρ

ρm

(ρ2 + 2ζρ cos ϕ + ζ 2)n
. (A8)

The properties of the integral Imn can be summarized as
follows: For m > 2(n − 1), the integral is finite; for m =
2(n − 1), it diverges as Imn ∼ − ln ζ ; and for m < 2(n − 1),
we have Imn ∼ 1/ζ 2n−2−m for ζ → 0.

In the infrared limit ρ → 0, the second term in the
expansion, (A1), behaves as

−2ζ 2

π

∫ ∞

0
dx

∫ ∞

0
dy
C2 + y2D2

A2 + y2B2

∼ −2ζ 2

π

∫ π/2

0
dϕ

∫ ε

0
ρdρ

1
16 + 1

25ρ2 sin2 ϕ

ρ2 + 2ζρ cos ϕ + ζ 2
. (A9)

It vanishes in the limit ζ → 0. The third term in the
expansion, (A1), behaves as

2

π

∞∑
n=2

ζ 2n−2

n

n∑
k=0

(
n

k

)
2k(−1)n−kζ 2n−2k

∫ ∞

0
dx

∫ ∞

0
× dy

(AC+ y2BD+ 2F2)k(C2 + y2D2)n−k

(A2 + y2B2)n

∼ 2

π

∞∑
n=2

ζ 2n−2

n

n∑
k=0

(
n

k

)
2k(−1)n−kζ 2n−2k

∫ π/2

0
dϕ

∫ ε

0
ρdρ

(ρ cos ϕ/4 + ρ2 sin2 ϕ/5 + 1/2)k(1/16 + ρ2 sin2 ϕ/25)n−k

(ρ2 + 2ζρ cos ϕ + ζ 2)n
.

(A10)

A careful analysis shows that this term leads to a finite
contribution in the limit ζ → 0. The nonvanishing contribution
from the k = n terms can be expressed as

2

πζ 2

∞∑
n=2

1

n

∫ ∞

0
dx

∫ ∞

0
dy

(
4ζ 2F2

A2 + y2B2

)n

= − 2

πζ 2

∫ ∞

0
dx

∫ ∞

0
dy ln

(
1 − 4ζ 2 F2

A2 + y2B2

)

− 8

π

∫ ∞

0
dx

∫ ∞

0
dy

F2

A2 + y2B2 . (A11)

Next we analyze the first term in (A1), which develops the
logarithmic divergence. In the infrared limit, it behaves as

4

π

∫ ∞

0
dx

∫ ∞

0
dy
AC+ y2BD+ 2F2

A2 + y2B2

∼ 4

π

∫ π/2

0
dϕ

∫ ε

0
ρdρ

ρ cos ϕ/4 + ρ2 sin2 ϕ/5 + 1/2

ρ2 + 2ζρ cos ϕ + ζ 2
.

(A12)

Therefore, we can separate the above contribution into two
pieces. The finite piece is given by

4

π

∫ ∞

0
dx

∫ ∞

0
dy
AC+ y2BD
A2 + y2B2 . (A13)
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FIG. 7. The quantity f (ζ ) + ln(ζ ) as a function of ζ in the range
10−6 < ζ < 10−2. In the calculation we use Eq. (A16) for f (ζ ).

The divergent piece is given by

8

π

∫ ∞

0
dx

∫ ∞

0
dy

F2

A2 + y2B2 . (A14)

In the infrared limit, this piece behaves as

8

π

∫ π/2

0
dϕ

∫ ε

0
ρdρ

1/4

ρ2 + 2ζρ cos ϕ + ζ 2
∼ − ln ζ. (A15)

Therefore, it exactly develops the asymptotic behavior f (ζ ) ∼
− ln ζ + λ for ζ → 0. Summarizing the nonvanishing pieces
(A11), (A13), and (A14), we find that to capture the logarith-
mic divergence and determine the finite term λ, it is sufficient
to approximate the function f (ζ ) as

f (ζ ) � − 2

πζ 2

∫ ∞

0
dx

∫ ∞

0
dy ln

[
1 − 4ζ 2F

2
0(x,y)

J(x,y)

]

+ 4

π

∫ ∞

0
dx

∫ ∞

0
dy

× A0(x,y)C0(x,y) + y2B0(x,y)D0(x,y)

A2
0(x,y) + y2B2

0(x,y)
. (A16)

In Fig. 7 we show the numerical result of f (ζ ) + ln(ζ ) in the
range 10−6 < ζ < 10−2. It is clear that in the limit ζ → 0, it
converges to a constant. Thus we determine λ � −0.54.
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