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Cluster Gutzwiller study of the Bose-Hubbard ladder: Ground-state phase diagram and many-body
Landau-Zener dynamics
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We present a cluster Gutzwiller mean-field study for ground states and time-evolution dynamics in the
Bose-Hubbard ladder (BHL), which can be realized by loading Bose atoms in double-well optical lattices. In
our cluster mean-field approach, we treat each double-well unit of two lattice sites as a coherent whole for
composing the cluster Gutzwiller ansatz, which may remain some residual correlations in each two-site unit.
For an unbiased BHL, in addition to conventional superfluid phase and integer Mott insulator phases, we find
that there are exotic fractional insulator phases if the interchain tunneling is much stronger than the intrachain
one. The fractional insulator phases cannot be found by using a conventional mean-field treatment based upon
the single-site Gutzwiller ansatz. For a biased BHL, we find there appear single-atom tunneling and interaction
blockade if the system is dominated by the interplay between the on-site interaction and the interchain bias. In
the many-body Landau-Zener process, in which the interchain bias is linearly swept from negative to positive
or vice versa, our numerical results are qualitatively consistent with the experimental observation [Nat. Phys. 7,
61 (2011)]. Our cluster bosonic Gutzwiller treatment is of promising perspectives in exploring exotic quantum
phases and time-evolution dynamics of bosonic particles in superlattices.
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I. INTRODUCTION

The unprecedented experimental techniques of manipu-
lating and detecting ultracold atoms in optical lattices [1,2]
provide an ideal testing ground to investigate Bose-Hubbard
(BH) models [1–8]. The remarkable cleanness and high
tunability of ultracold atomic systems allow one to explore
various many-body quantum phenomena in BH models [9–
11]. For an example, the experimental realization of the
one-dimensional (1D) atomic Hubbard model [12] provides
new opportunities to exploring quantum statistical effects
and strong correlation effects in low-dimensional quantum
many-body systems [13]. Quantum dynamics as well as
quantum phase transition between superfluid (SF) phase and
Mott insulator (MI) phase in BH models are of great interest
and have been widely investigated [14–21].

Recently, by loading ultracold Bose atoms into a double-
well optical lattice potential, the Bose-Hubbard ladder (BHL)
had been realized and the many-body Landau-Zener (LZ)
dynamics has been explored [22]. Different from the single-
particle LZ process, the breakdown of adiabaticity in the
inverse sweeping from the highest excited state had been
observed in the many-body LZ process of the BH ladder.
This experiment has stimulated extensive investigation of both
stationary and dynamic behaviors in the BHL via different
theoretical methods, such as full diagonalization method [23]
and time-dependent density-matrix renormalization group (t-
DMRG) technique [24–26]. However, the full diagonalization

*Corresponding author: chleecn@gmail.com

and t-DMRG methods should cost a huge number of compu-
tational resources.

To simulate the BHL with less computational resources, the
bosonic Gutzwiller method [27,28] is an alternative option.
Although the Gutzwiller method has common restrictions of
the mean-field methods, it has provided versatile applications
in qualitative calculations of both stationary states and time-
evolution dynamics. Recently, cluster bosonic Gutzwiller
methods [29–34] have been developed by coupling multisite
clusters rather than single sites with the mean field. By
employing the cluster Gutzwiller method, some properties
of many-body LZ phenomena in repulsive BHL [35] and
some quantum phases in attractive BHL [36] have been
explored. In Ref. [35], the phase diagram and LZ dynamics for
fixed average number of particles per site have been shown.
However, it does not discuss how the phase diagram and LZ
dynamics depend on the chemical potential. In the large-size
multisite Gutzwiller method [36], the three-body constraint has
been imposed to each lattice site. In a realistic experimental
system, the number of particles in each lattice site may break
this constraint. In addition, the ground-state phase diagrams of
BH systems have been obtained by the analytical mean-field
approach [37], the cell strong-coupling perturbation technique
[38], and the composite boson mean-field theory [39,40], etc.

In this article, we present a cluster Gutzwiller mean-field
study for the ground-state phase diagram and many-body
LZ dynamics of a BHL. In our mean-field treatment, we
regard each double-well unit of two lattice sites as a coherent
whole for composing the cluster Gutzwiller ansatz, which
leaves some residual intersite correlations in each double-well
unit. For a unbiased BHL, in addition to superfluid (SF) and
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integer Mott insulator (MI) phases which may be found by
single-site Gutzwiller treatment, we find that there exist exotic
fractional insulator phases if the interchain tunneling is much
stronger than the intrachain one. When the on-site interaction
approaches to infinity, the exotic fractional insulator phase in
our BHL reaches the rung-Mott phase in hard-core BH system
[36,41]. We also obtain the phase diagram for the asymmetry
BHL, which have not yet been reported. Furthermore, by
linearly sweeping the interchain bias from negative to positive
or vice versa, we analyze many-body LZ dynamics in the
system and confirm the existence of adiabaticity breakdown.

This article is organized as follows. In Sec. II, we give
the physical model and discuss its realization. In Sec. III,
we present the cluster Gutzwiller mean-field method and
obtain the ground-state phase diagram for both symmetric and
asymmetric BHLs. In Sec. IV, we study the many-body LZ
dynamics and show the adiabaticity breakdown. At last, in
Sec. V, we briefly summarize and discuss our results.

II. MODEL

We consider an ensemble of Bose atoms confined within a
double-well superlattice potential,

V (x,z) = Vxl sin2(2πx/λxl) + Vxs sin2(2πx/λxs)

+Vz sin2(2πz/λz), (1)

where the first and second terms are generated by superim-
posing two standing-wave lasers along the x direction with
wavelengths λxl and λxs . The two potential depths Vxs and Vxl

are determined by the laser intensities. To form the double-well
lattice potential, the wavelengths are set to be λxl = 2λxs . The
last term describes a lattice potential along the z direction with
the wavelength λz and the depth Vz. During the experiment, the
energy difference between the lattices in each double-well unit
can be ramped up or down with time. The schematic diagram
for the double-well lattices is shown in Fig. 1.

If the barriers between neighboring double-well units along
the x direction is sufficiently high, the system can be described
by several parallel BHLs with ignorable interladder couplings.
The Hamiltonian for a single BHL reads as

Ĥ (t) = −J‖
∑
〈jk〉σ

b̂
†
jσ b̂kσ − J⊥

∑
j

(b̂†jLb̂jR + H.c.)

+U

2

∑
jσ

n̂jσ (n̂jσ − 1̂) − �(t)

2

∑
j

(n̂jR − n̂jL)

−μ
∑
jσ

n̂jσ , (2)

where 〈jk〉 indicates the summation comprising all nearest-
neighboring sites in the same chain and the index σ = (L,R)
denotes the left or right chain. The symbols b̂

†
jσ (b̂jσ ) create

(annihilate) a Bose atom on the j th lattice of the σ chain,
and n̂jσ = b̂

†
jσ b̂jσ stands for the atomic number operator.

The parameters J‖ and J⊥ are the intra- and interchain
nearest-neighbor hopping strengths, respectively. The on-site
interaction U is determined by the s-wave scattering lengths
and the chemical potential μ determines the particle filling.

FIG. 1. (Color online) Schematic diagram of the superlattice
potential (1) projected onto the x-z plane. The time-dependent bias
�(t) can be achieved by ramping up the lattices to obtain the
tilted potential along the x axis. Here, the parameters are set as
λz = λxl = 2λxs and Vz = 1.5Vxl = 1.5Vxs . The potential along the
x axis within a period of λxl is an asymmetric double-well potential
and the potential along the z axis is a standing-wave potential. The
two lattice sites in each double-well potential are packed as a cluster,
which are depicted by the gray rectangles. The clusters are decoupled
by applying the Gutzwiller mean-field treatment, in which the crosses
stand for the decoupling between neighboring clusters and the gray
dashed and solid lines respectively denote the intra- and interchain
tunneling.

To characterize different regimes of the BHL, we introduce
the ratio between the intra- and interchain hopping strengths
β = J‖/J⊥. If β � 1, the intrachain tunneling is ignorable
and the ladder system can be regarded as isolated double
wells. However, if β � 1, the intrachain tunneling becomes
dominant and the system can be treated as two decoupled
single BH chains. The parameter �(t) represents the interchain
energy bias.

III. GROUND-STATE PHASE DIAGRAM

In this section, we show how to obtain the ground-state
phase diagram via the cluster Gutzwiller mean-field treatment.
In the first subsection, we describe the cluster Gutzwiller mean-
field approach for the BHL. Then in the second subsection, we
present the self-consistent procedure for determining ground
states. In the last subsection, we give the ground-state phase
diagram.

A. Cluster Gutzwiller mean-field approach

The standard Gutzwiller method assumes the wave function
of the whole system as a product state of single-site wave
functions. By implementing the standard Gutzwiller proce-
dure, the BH model is decoupled as single sites which couple
with surround sites via their average mean fields. Furthermore,
attributing to the equivalence of all lattice sites in the model,
one can replace the mean fields of surround sites with the
mean field of the site itself so that the mean-field version for
the original Hamiltonian can be written as a sum of single-site
terms.

In the following, the cluster Gutzwiller mean-field approach
is an extension of the single-site Gutzwiller mean-field
approach. As shown in Fig. 1, the decoupling holds for each
double-well cluster which includes one lattice site in the
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left chain and one lattice site in right chain. Therefore, all
clusters are equivalent and the state for the whole system is
written as a product state of the single-cluster states which
remains the correlations between lattice sites in the same
cluster. Unlike the single-site Gutzwiller approach, in which all
tunneling terms are decoupled, the cluster Gutzwiller approach
keeps the intracluster tunneling terms and only decouples
the intercluster tunneling terms. By using the mean-field
treatment, the intercluster tunneling terms are decoupled as

b̂
†
jσ b̂kσ ≈ b̂

†
jσ 〈b̂kσ 〉 + 〈b̂†jσ 〉b̂kσ − 〈b̂†jσ 〉〈b̂kσ 〉

= b̂
†
jσ ϕkσ + ϕ∗

jσ b̂kσ − ϕ∗
jσ ϕkσ , (3)

where ϕkσ = 〈b̂kσ 〉 and the high-order fluctuations δ
b̂
†
jσ

δb̂kσ
=

(b̂†jσ − 〈b̂†jσ 〉)(b̂kσ − 〈b̂kσ 〉) are neglected. Therefore, the orig-
inal Hamiltonian (2) is decoupled as

Ĥ MF =
∑

j

Ĥ MF
j , (4)

with the single-cluster mean-field Hamiltonian

Ĥ MF
j = −J‖

∑
σ,k=j±1

(ϕkσ b̂
†
jσ + ϕ∗

kσ b̂jσ − Re[ϕ∗
jσ ϕkσ ])

− J⊥(b̂†jLb̂jR + H.c.) + U

2

∑
σ

n̂jσ (n̂jσ − 1̂)

−�

2
(n̂jR − n̂jL) − μ

∑
σ

n̂jσ . (5)

Making use of the Gutzwiller ansatz, the state for the whole
system can be expressed as a product state of single-cluster
states,

|	GA〉 =
∏
j

|	〉j , (6)

where the state for the j th cluster |	〉j can be expanded as

|	〉j =
Nmax∑
N=0

N∑
m=−N

f
(j )
N,m|N,m〉j , (7)

with |N,m〉j denoting the state basis for the j th cluster.
Here, N = NL + NR , m = NL − NR , NL (NR) stands for the
number of particles in the left (right) chain, the probability
amplitudes f

(j )
N,m are complex numbers, and Nmax is the

truncation of the maximum particle number.
Obviously, it is easy to find that the eigenequation

Ĥ MF|	GA〉 = E|	GA〉 for the whole system is equivalent to
the single-cluster eigenequation

Ĥ MF
j |	〉j = Ej |	〉j , (8)

with E = ∑
j Ej . By substituting the single-cluster state (7)

into the single-cluster eigenequation (8), we obtain

Ejf
(j )
N,m = − J‖√

2
φjL

√
N + mf

(j )
N−1,m−1

− J‖√
2
φjR

√
N − mf

(j )
N−1,m+1

− J‖√
2
φ∗

jL

√
N + m + 2f

(j )
N+1,m+1

− J‖√
2
φ∗

jR

√
N − m + 2f

(j )
N+1,m−1

+ J‖Re[ϕ∗
jLφjL + ϕ∗

jRφjR]f (j )
N,m

− J⊥
2

√
N + m

√
N − m + 2f

(j )
N,m−2

− J⊥
2

√
N + m + 2

√
N − mf

(j )
N,m+2

+
[
U

4
(N2 + m2 − 2N ) + �

2
m − μN

]
f

(j )
N,m.

(9)

Here, the order parameters are quantum expectation values
of bosonic annihilation operators, i.e., ϕjL = 〈	GA|b̂jL|	GA〉
and ϕjR = 〈	GA|b̂jR|	GA〉. After some mathematical calcu-
lation, we have

ϕjL =
∑
N,m

√
N + m + 2

2
f

(j )∗
N,mf

(j )
N+1,m+1, (10)

ϕjR =
∑
N,m

√
N − m + 2

2
f

(j )∗
N,mf

(j )
N+1,m−1. (11)

For convenience, we define φjL = ϕ(j+1)L + ϕ(j−1)L and
φjR = ϕ(j+1)R + ϕ(j−1)R .

B. Self-consistent procedure for determining ground states

As the single-cluster Hamiltonian (5) depends on the mean
fields, one has to implement a self-consistent procedure for
determining the mean fields and the ground states. Given the
parameters U , J‖, J⊥, μ, and �, one can obtain the ground
state from the single-cluster eigenequation (8) and the self-
consistent relations ϕσ = 〈b̂σ 〉. In Fig. 2, we show the key
steps of the self-consistent procedure for determining ground
states.

(i) Initialize ϕσ = 0, ϕ′
σ = ϕσ and set the trial ground state

energy Emin
GS an arbitrary value.

(ii) Substitute ϕσ into the single-cluster Hamiltonian, and
diagonalize the Hamiltonian to obtain its ground state with
eigenenergy EGS.

(iii) If EGS < Emin
GS , replace Emin

GS and ϕ′
σ with EGS and ϕσ ,

respectively. Otherwise, let ϕσ = ϕσ + �ϕσ and implement
step (ii) again.

(iv) Repeat steps (ii) and (iii) until ϕσ �
√

Nmax.
(v) Set ϕI

σ = ϕ′
σ and calculate the ground state |GSI〉 from

the single-cluster eigenequation.
(vi) Calculate the order parameters ϕII

σ for the ground state
|GSI〉.

(vii) Compare ϕI
σ and ϕII

σ , if |ϕI
σ − ϕII

σ | < ε (where ε is
pregiven tolerance), then output |GSI〉 as the ground state.
Otherwise, set ϕI

σ = ϕII
σ and return to step (v).

Through the procedure from step (i) to step (iv), one can
numerically minimize the system energy with respect to the
order parameters in the interval of ϕσ ∈ [0,

√
Nmax]. Usually,

steps (v)–(vii) are the so-called self-consistent procedure.
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maxFor parameters , , ,  and, tolerance: J J U N

min
GS GSE E

Y
N

1/2
maxN

min
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min
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MFdiagonal )(H
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Y
N

I

MF Idiagonal  ( )H
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II
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II I

I II

I
I,  GS

Y
N

FIG. 2. Numerical self-consistent procedure for solving the
single-cluster eigenequation.

C. Phase diagram

In this subsection, we show the ground-state phase diagram
for the BHL. Our cluster mean-field approach can be applied
to both symmetric and asymmetric systems. Below, we first

consider the symmetric system with no interchain bias (i.e.,
�(t) = 0), then consider the asymmetric cases with nonzero
interchain bias �.

In Fig. 3, we show the ground-state phase diagram for
symmetric BHL with �(t) = 0 and different ratios β =
J‖/J⊥. Due to the absence of asymmetry, the two chains are
completely equivalent and the order parameters of both chains
are always equal ϕjL = ϕjR = ϕj . Therefore, it is enough to
give the phase diagram via analyzing the order parameter for
one of the two chains. The ground states sensitively depend
on the chemical potential μ, the on-site interaction U , the
intrachain hopping J‖, and the interchain hopping J⊥.

Usually, determined by the superfluid order parameter, the
BH systems have two typical phases: (i) the superfluid (SF)
phase of nonzero order parameter and (ii) the Mott insulator
(MI) phase of zero order parameter and integer filling number.
For our atomic BHL system, when the intercluster hopping
J‖ is sufficiently strong, the atoms can move freely between
neighboring double-well clusters and there appears a SF along
the chain direction. In contrast, when the on-site interaction
U becomes sufficiently strong, the atoms are localized in
each cluster and there is no SF along the chain direction.
The chemical potential μ controls the filling number, i.e., the
average atomic number per site.

Under the condition of β = J‖/J⊥ � 1, i.e., the intrachain
tunneling is much stronger than the interchain tunneling,
the BHL can be regarded as two decoupled chains and the
corresponding phase diagram is almost the same as the one
for a single BH chain. In Fig. 3(c), we show the phase
diagram for β = 10. At the side of strong intrachain tunneling,
J‖/U → +∞, the ground states are SF phases of nonzero
order parameter. At the side of strong interaction, J‖/U → 0,
there appear several integer MI lobes which has integer filling
numbers per lattice site and zero order parameter. The blue
region in the bottom corresponds to the vacuum state without
any atoms. The biggest lobe corresponds to the MI phase with

0.02 0.0401
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1n

1 2n

3 2n

2n
( ) 0.1a ( ) 1b

1n
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| |J U
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( ) 10c

0 0.2 0.4 0.6 0.8 1.0 1.2

2n 2n
5 2n

0.050.030.01 0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05

FIG. 3. (Color online) Ground-state phase diagram for the symmetric Bose-Hubbard ladder (� = 0) with the on-site interaction U = 1
and different values of β = J‖/J⊥: (a) β = 0.1, (b) β = 1, and (c) β = 10. In our calculation, we set the truncation of maximum particle
number Nmax = 6 whose validity has been numerically verified. The blue areas are the insulator phases with zero order parameter ϕj = 0 with
n denoting the filling number (the average atomic number per lattice site). The Mott insulator (MI) lobes have integer filling numbers, while the
loophole insulator (LI) phases have half-integer filling numbers. The regions outside the blue areas are the superfluid (SF) phases with nonzero
order parameters ϕj �= 0.
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definitely one atom (n = 1) in each site and the smaller one
stands for the MI phase of n = 2. This phase diagram reminds
us of the one for the one-dimensional BH model [42].

The areas of MI lobes shrink if the ratio β decreases;
see Figs. 3(a)–3(c). Qualitatively, the shrinking of MI lobes
can be understood by the intrachain tunneling assisted by the
interchain tunneling. When the ratio β becomes very small, the
interchain hopping J⊥ are much stronger than the intrachain
hopping J‖, the areas of MI lobes shrink dramatically, and,
interestingly, several loophole insulator (LI) phases of zero
order parameters appear between the conventional MI lobes;
see Fig. 3(a).

To distinguish the LI and MI phases, we calculate the filling
numbers (the average atomic numbers per site) and find that
the LI phases have half-integer filling numbers, while the MI
phases have integer filling numbers. The half-integer filling
numbers mean that the total atomic numbers per cluster are
odd integer numbers and the residual atom in each double-
well cluster can freely move between the two wells of each
cluster. Furthermore, we calculate the intracluster first-order
correlation Cor(1)

⊥ = |〈b̂†jLb̂jR〉| and find that the LI phases

have nonzero Cor(1)
⊥ .

The appearance of the LI phases is a direct result of
U � J‖ and J⊥ � J‖. As U � J‖, the tunneling along the
chain direction is suppressed and the order parameter vanishes.
However, the atoms in each double-well cluster may still freely
move between the two wells so that the total atomic numbers
per cluster may be odd integer numbers. The insulator phases
of fractional filling numbers have also been found in one-
dimensional superlattice BH models [16,29] via mean-field
method, quantum Monte Carlo simulation, and numerical den-
sity matrix renormalization-group simulation. Different from
the one-dimensional superlattice BH chains [16,29], our ladder
system includes two coupled one-dimensional BH chains and
the coupling between different clusters are more complex.

Now, we discuss the ground-state phase diagrams for BHL
with nonzero bias �. Due to nonzero bias �, the two chains are
no longer equivalent so that the order parameters ϕjL and ϕjR

for the left and right chains may have different values. In Fig. 4,
we show the two order parameters (ϕjL, ϕjR) (the second and
third rows) and the intracluster first-order correlation Cor(1)

⊥
(the first row).

In our numerical simulation, by employing the cluster
mean-field method presented in subsection A, we consistently

FIG. 4. (Color online) Ground-state phase diagrams for the biased Bose-Hubbard ladder with different values of β = J‖/J⊥ vs the bias �.
In our calculation, we fix the on-site interaction U = 1, the intrachain hopping J‖ = 0.01, and set the truncation of maximum particle number
Nmax = 6. The first row shows the intracluster first-order correlation Cor(1)

⊥ , and the second and third rows respectively correspond to the order
parameters ϕL,R for the left and right chains. The hopping ratios are chosen as β = 0.1 (the first column), β = 1 (the second column), and
β = 10 (the third column), respectively.
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obtain the ground-state phase diagram in the (�/U,μ/U )
plane for the intrachain hopping strength J‖ = 0.01, the on-site
interaction U = 1, and different values of the hopping ratio
β = J‖/J⊥ = (0.1,1,10). Our results show that, for given J‖,
β, and μ, the order parameter for the left chain ϕjL with bias �

is equal to the order parameter for the right chain ϕjR with bias
−�. Therefore, the ground-state phase diagrams of ϕjL and
ϕjR are symmetric with each other about the axis � = 0 for
given J‖ and β. Moreover, the intracluster correlation Cor(1)

⊥ is
also symmetric about the axis � = 0.

If the interchain tunneling is very weak, that is the hopping
ratio β � 1, the BHL can almost be treated as two independent
chains. In the third column of Fig. 4, we show the interchain
coherence Cor(1)

⊥ and the order parameters (ϕjL, ϕjR) for
β = 10. In phase diagrams of (ϕjL, ϕjR), there appear several
parallel and equal-spaced SF stripes with nonzero order
parameters ϕjL or ϕjR; see Figs. 4(f) and 4(i). The SF stripes of
ϕjL become narrower and their corresponding values become
smaller as the bias � increases from the negative to the positive
side; see Fig. 4(f). Meanwhile, for the order parameter ϕjR ,
its SF stripes change oppositely as they are symmetric with
the ones of the order parameter ϕjL about the axis � = 0;
see Fig. 4(i). The blue regions correspond to MI phases with
zero order parameters ϕjL or ϕjR . For the interchain coherence
Cor(1)

⊥ , nonzero values only appear in the vicinity surrounding
some specific points, which form an inverted triangle lattice
structure; see Fig. 4(c).

The interplay between the interchain bias and the on-site
interaction under weak hopping leads to the exotic single-atom
tunneling [the bright spots in Fig. 4(c)] and the interaction
blockade [the blue regions in Fig. 4(c)]. Under strong on-site
interactions, that is U � J‖ and U � J⊥, the system behavior
can be understood by a perturbation picture. As U � J‖ and
U � J⊥, the hopping terms can be regarded as perturbations
and the dominant part of the BHL Hamiltonian reads as

Ĥd = U

2

∑
jσ

n̂jσ (n̂jσ − 1̂) − �

2

∑
j

(n̂jR − n̂jL)

−μ
∑
jσ

n̂jσ . (12)

From the Fock states for a cluster, a single Fock state
|nL,nR〉 corresponds to a MI phase of zero order parameters,
the quasidegeneracy of |nL,nR〉 and |nL + 1,nR〉 will result
a nonzero order parameter ϕjL, and the quasidegeneracy
of |nL,nR〉 and |nL,nR + 1〉 will induce a nonzero order
parameter ϕjR .

In the MI regions of ϕjL (i.e., ϕjL = 0), the cluster
state is a single Fock state |nL,nR〉. The quasidegeneracy
of |nL,nR〉 and |nL + 1,nR〉 under weak intrachain hopping,
which means that one atom can freely move in the left chain,
will result in a nonzero order parameter ϕL. From the energy
quasidegeneracy relation E(nL,nR) = E(nL + 1,nR), we have
the system parameters obeying

μ = �

2
+ UnL (nL = 0,1,2, . . .). (13)

Obviously, the above relation (13) between the chemical
potential μ and the bias � well agrees with the SF stripes

shown Fig. 4(f). Similarly, from the energy quasidegeneracy
relation E(nL,nR) = E(nL,nR + 1), we have

μ = −�

2
+ UnR (nR = 0,1,2, . . .) (14)

for the SF stripes of nonzero order parameter ϕjR shown in
Fig. 4(i).

In addition to the single-atom tunneling along a specific
chain, there exists single-atom tunneling between two chains,
which corresponds to a nonzero intracluster first-order corre-
lation Cor(1)

⊥ . The interchain single-atom tunneling is caused
by the quasidegeneracy of |nL,nR〉 and |nL + 1,nR − 1〉.
Therefore, from the energy quasidegeneracy E(nL,nR) =
E(nL + 1,nR − 1), we have

� = U (nR − nL) (nL,R = 0,1,2, . . .). (15)

As nonzero Cor(1)
⊥ appears in the region of both ϕjL �= 0 and

ϕjR �= 0, the corresponding chemical potential μ is given as

μ = U

2
(nL + nR), (16)

with nL,R = (0,1,2, . . .). This means that nonzero Cor(1)
⊥

appears in the vicinity surrounding (�∗/U,μ∗/U ) = (nR −
nL, 1

2 (nL + nR)) with nL,R = (0,1,2, . . .); see the bright spots
in Figs. 4(b) and 4(c). For a given chemical potential
μ = 1

2 (nL + nR)U , a sequence of single-atom tunneling and
interaction blockade takes place when the bias � increases
from negative infinity to positive infinity. The single-atom
tunneling and interaction blockade in the BHL with fixed
chemical potential is reminiscent of that of the quantized
Bose-Josephson junction with strong interaction [43,44]. The
single-atom tunneling and interaction blockade in the BHL
have been reported here.

In the second column of Fig. 4, we show the phase diagrams
for the case of β = 1. The parallel SF stripes of ϕjL or ϕjR

still appear but blur at the quasidegenerate regions in the
vicinity of (�∗/U,μ∗/U ). Different from the case of large
β, ϕjL �= 0 and ϕjR �= 0 may coexist in some specific regions.
Correspondingly, due to the increase of J⊥, the area of nonzero
Cor(1)

⊥ surrounding (�∗/U,μ∗/U ) extends.
In the first column of Fig. 4, we show the phase diagrams

for the case of β = 0.1. The strong intrachain tunneling
makes the occurrence of interchain intracluster single-atom
tunneling more easy; the regions of Cor(1)

⊥ �= 0 extend and
merge into an entire area. Correspondingly, due to the strong
interchain hopping, the properties of ϕjL and ϕjR change
dramatically. The parallel SF stripes are tailored and several
avoided crossings appear in the vicinity of (�∗/U,μ∗/U ).
The avoided crossings, which have Cor(1)

⊥ �= 0 and zero order
parameters (ϕjL = ϕjR = 0), correspond to the LI phases
shown in Fig. 3(a). This means that atoms may move freely
between the two chains although there is no superfluid along
the chain direction.

IV. LANDAU-ZENER DYNAMICS

In this section, we analyze the many-body LZ dynamics in
the BHL. In the many-body LZ process, the interchain energy
bias �(t) is linearly swept from negative to positive or vice
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versa. The linear sweep of bias is described by �(t) = �0 + αt

with �0 being the initial bias and α denoting the sweeping rate.
In the first subsection, we show how to apply the Gutzwiller
mean-field to the time-evolution problem of our BHL system.
In the second subsection, we present the population dynamics
in the ground-state sweep and the inverse sweep, respectively.
In the ground-state sweep, the initial state is the ground state,
while in the inverse sweep, the initial state is the highest excited
state.

A. Time-evolution problem

The time evolution obeys the Schrödinger equation

i�
d

dt
|	(t)〉 = Ĥ (t)|	(t)〉, (17)

where Ĥ (t) is the original time-dependent Hamiltonian (2).
By applying the dynamical Gutzwiller mean-field method,
the time evolution is described by the dynamical Gutzwiller
equations

i�
d

dt
|	GA(t)〉 = Ĥ MF(t)|	GA(t)〉, (18)

where Ĥ MF(t) is the time-dependent mean-field Hamilto-
nian and |	GA(t)〉 = ∏

j |	(t)〉j denotes the time-dependent

Gutzwiller ansatz. Here, the single-cluster state reads as

|	(t)〉j =
Nmax∑
N=0

N∑
m=−N

f
(j )
N,m(t)|N,m〉j . (19)

Similar to determining the ground states, the time-
dependent mean-field Hamiltonian Ĥ MF(t) can be decoupled
as a sum of single-cluster Hamiltonians. Therefore, the
dynamical Gutzwiller equations (18) can be simplified to the
single-cluster equations

i�
d

dt
|	j (t)〉 = Ĥ MF

j (t)|	j (t)〉, (20)

with the time-dependent single-cluster Hamiltonian

Ĥ MF
j (t) = −J‖

∑
σ,k=j±1

(ϕkσ b̂
†
jσ + ϕ∗

kσ b̂jσ − Re[ϕ∗
jσ ϕkσ ])

−J⊥(b̂†jLb̂jR + H.c.) + U

2

∑
σ

n̂jσ (n̂jσ − 1̂)

−�(t)

2
(n̂jR − n̂jL) − μ

∑
σ

n̂jσ , (21)

in which the time-dependent order parameters are given as
ϕjσ (t) = 〈	j (t)|b̂jσ |	j (t)〉. Substituting Eq. (19) and Eq. (21)
into Eq. (20), one can obtain the following differential
equations for the expansion coefficients:

i�
d

dt
fN,m(t) = − J‖√

2
φjL(t)

√
N + mfN−1,m−1(t) − J‖√

2
φjR(t)

√
N − mfN−1,m+1(t)

− J‖√
2
φjL(t)∗

√
N + m + 2fN+1,m+1(t) − J‖√

2
φjR(t)∗

√
N − m + 2fN+1,m−1(t)

− J⊥
2

√
N + m

√
N − m + 2fN,m−2(t) − J⊥

2

√
N + m + 2

√
N − mfN,m+2(t)

+
[
U

4

(
N2 + m2 − 2N

) + �(t)

2
m − μN + J‖Re

[
ϕjL(t)∗φjL(t) + ϕjR(t)∗φjR(t)

]]
fN,m(t), (22)

with the time-dependent order parameters

φjσ (t) = ϕj+1,σ (t) + ϕj−1,σ (t), (23)

ϕjL(t) =
∑
N,m

√
N + m + 2

2
f

(j )∗
N,m(t)f (j )

N+1,m+1(t), (24)

ϕjR(t) =
∑
N,m

√
N − m + 2

2
f

(j )∗
N,m(t)f (j )

N+1,m−1(t). (25)

By using the fourth-order Runge-Kutta method, we simulate
the dynamics obeying Eq. (22). The flow chart for the
numerical procedure is shown in Fig. 5. Given the parameters
J‖, J⊥, U , the initial bias �0, the sweeping rate α, and the initial
state, the time-dependent order parameters should be estimated
by the instantaneous states step by step. That is, for a specific
time step, based upon the current state and the current order
parameters, we need to estimate not only the time-dependent
state but also the time-dependent order parameters for the next
time step.

B. Population dynamics

We consider two typical sweep processes: the ground-state
sweep and the inverse sweep. In the ground-state sweep, the
system is prepared in the ground state of all particles in the
lower chain, and the initial bias between left and right chains
is set as �0 = −50 and then the bias �(t) is linearly swept
from �0 to −�0 with the sweep rate α = −2�0/T > 0. In the
inverse sweep, the system is prepared in the highest excited
state of all particles in the higher chain, and the initial bias
between left and right chains is set as �0 = 50 and then
the bias �(t) is linearly swept from �0 to −�0 with the
sweep rate α = −2�0/T < 0. Here T is the total sweep
time. For convenience, we assume that the initial state for
both two sweep processes is the state of all atoms in the left
chain. To show the many-body LZ dynamics, we calculate the
transfer fraction nR(t) = NR(t)/N , which is the fraction of
the particles in the right chain at a given time t . Obviously, the
bias �(t) vanishes at time t = T/2, which corresponds to an
instantaneous symmetric BHL.
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N

( )jRn t

t t t

FIG. 5. Numerical simulation procedure for the time evolution of
Bose-Hubbard ladder system via our cluster Gutzwiller mean-field
method.

If there are no intrachain hopping and no on-site interaction,
i.e., J‖ = 0 and U = 0, the physical picture for the many-body
LZ dynamics is the same as the one for the conventional
two-level LZ problem. This means the final transfer effi-
ciency is given by the conventional LZ formula nR(+∞) =
1 − exp(−2πJ 2

‖ /�|α|) and there is no significant difference
between the ground-state and inverse sweeps. However, taking
into account the on-site interaction and the intrachain hopping,
the many-body LZ dynamics becomes very different from the
conventional two-level LZ problem. Below, we analyze the
many-body LZ dynamics for the on-site interaction U = 0.5,
the interchain hopping J⊥ = 1, the intrachain hopping J‖ =
0.25, and different sweep rates α.

Independent on the sweep rate α, significant population
transfers from the left chain to the right chain appear around
the time t = T/2. This significant population transfer between

the two chains is caused by the avoided level crossing in the
vicinity of the bias �(t) = 0. However, the transfer fraction
nR(t) = NR(t)/N sensitively depends on the sweep rates, the
physical parameters, and the initial states. In particular, for
slow sweep rates, there appear significant difference of the final
transfer fraction for the ground-state sweep and the inverse
sweep; see Fig. 6.

For a large sweep rate, |α| = 25, both the ground-state
sweep (α = +25) and the inverse sweep (α = −25) are
nonadiabatic; see Fig. 6(a). The dynamics of the ground-state
sweep and the inverse sweep are very similar. The transfer
fraction nR(t) rapidly increases around �(t) = 0 and then
keeps oscillating around a specific value. The final transfer
fraction nR(T ) is much below 1 because of the nonadiabatic
evolution under fast sweeps.

For an intermediate sweep rate, |α| = 5, the nonadiabatic
excitation in the ground-state sweep is not very significant,
while the nonadiabatic excitation in the inverse sweep is very
significant; see Fig. 6(b). After the system goes through the
avoided level crossing region around �(t) = 0, the transfer
fraction for the ground-state sweep (α = +5) is very close to
1 and its oscillation amplitude is very small. Meanwhile, in
the inverse sweep (α = −5), the final transfer fraction is much
below 1 and the corresponding oscillation amplitude is much
larger than the one for the ground-state sweep.

For a small sweep rate, |α| = 1, the ground-state sweep
undergoes adiabatic evolution but the inverse sweep still
shows significant nonadiabatic excitations; see Fig. 6(c). In
the ground-state sweep (α = +1), there are no significant
oscillations in the transfer fraction and the final transfer
fraction is almost the perfect limit nR(T ) = 1, which means
that all particles in the left chain can be completely transferred
into the right chain. However, in the inverse sweep (α = −1),
the final transfer fraction is still much below 1 and the
oscillation amplitude is still very significant, which indicates
that there still exist significant nonadiabatic excitations.

0 0.2 0.4 0.6 0.8 1

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

/t T

( ) 25a ( ) 5b ( ) 1c

Ground-state Sweep Inverse Sweep

FIG. 6. (Color online) Many-body Landau-Zener dynamics in the Bose-Hubbard ladder for different sweeping rates |α|. Here, nR(t) stands
for the transfer fraction; the cutoff of the maximum particle number is fixed as Nmax = 6. The other parameters are chosen as |�0| = 50,
μ = 3, U = 0.5, J‖ = 0.25, and J⊥ = 1. Red-dashed lines and blue-solid lines correspond to the ground-state sweep and the inverse sweep,
respectively. (a) For a large sweep rate, |α| = 25, the transfer fractions nR(T ) for both the ground-state sweep and the inverse sweep are much
smaller than 1. The difference between the two sweeps is small. (b) For an intermediate sweep rate, |α| = 5, the transfer fractions nR(T ) for the
ground-state sweep increase to almost 1, and nR(T ) for the inverse sweep is still far below 1. (c) For a small sweep rate, |α| = 1, the transfer
fractions nR(T ) for the ground-state sweep reach 1, while nR(T ) for the inverse sweep is still below 1. This means that the ground-state sweep
evolves adiabatically, while the inverse sweep evolves nonadiabatically.
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The adiabaticity breakdown in the inverse sweep qualita-
tively explains the recent experimental observation [22,24].
The observed adiabaticity breakdown, which cannot be found
in the conventional two-level LZ problem, is a result of the
interparticle interaction. Due to the interparticle interaction,
swallow-tail-shaped loop structures [45,46], which correspond
to the macroscopic quantum self-trapping in mean-field
models [47–55], may appear in the energy spectrum for our
BHL system. Unlike the conventional two-level LZ problem,
whose energy-level structures for the ground state and the
highest-excited state are similar, the energy-level structures
for the ground state and the highest-excited state of our
BHL system are very different. Because of their different
energy-level structures, the ground-state sweep and the inverse
sweep show different adiabatic and nonadiabatic dynamics.

V. CONCLUSION AND DISCUSSION

In summary, we present a cluster Gutzwiller mean-field
approach to explore the static and dynamical behavior of the
BHL, which can be experimentally realized by loading Bose
atoms into a double-well optical superlattice potential. In our
mean-field treatment, the wave function of the whole system
is assumed in the form of the Gutzwiller ansatz, the two sites
in each double-well unit are packed as a cluster, and the
intercluster hopping is decoupled by using the conventional
mean-field approximation. Through implementing the numer-
ical self-consistent procedure, for both unbiased and biased
BHLs, we obtain the ground states and give the phase diagram
by calculating the order parameters.

For an unbiased BHL, if the intrachain hopping is much
stronger than the interchain hopping (i.e., β � 1), there appear
several exotic loophole-shaped insulator regions of the half-
integer filling numbers, which lie between the conventional MI
lobes of integer filling numbers. As β increases, the loophole-
shaped insulator regions gradually shrink and disappear.
Differently, if the interchain hopping is much stronger than
the intrachain hopping (i.e., β � 1), the unbiased BHL system
can be regarded as two single BH chains and the corresponding
phase diagram is almost the same as the one for a single BH
chain.

For a biased BHL, single-atom tunneling and interaction
blockade appear if the hopping terms are weak enough to be
treated as perturbations. We present an analytical interpretation
for the single-atom tunneling and interaction blockade based
upon the quasidegeneracy of different Fock states for the
considered cluster. If the interchain hopping is much stronger
than the intrachain one, there appear exotic LI phases with no
superfluids along the chain direction but nonzero interchain
coherence.

Furthermore, we analyze the many-body LZ process of
the BHL, in which the interchain bias is linearly swept from
positive to negative or vice versa. We consider two different
sweeps: the ground-state sweep and the inverse sweep. In the
ground-state sweep, the initial state is the ground state and
the final transfer fraction can reach 1 if the sweep rate is
small enough. Meanwhile, in the inverse sweep, whose initial
state is the highest excited state, there still exist significant
nonadiabatic excitations when the corresponding ground-state
sweep obeys adiabatic evolution. The breakdown of adiabatic-
ity in the inverse sweep, which are well consistent with the
recent experimental observations [22,24], is a result of the
swallow-tail-shaped loop structures induced by interparticle
interaction [45,46].

Although the cluster MF approach provides a powerful
tool to explore Bose-Hubbard systems, it is still insufficient
to capture the enhanced quantum fluctuations. For a given
hard-core BHL, the cluster MF approach predicts a critical
hopping ratio βc ∼ 0.5 for the appearance of the fractional
Mott insulator [36]. However, it has been analytically shown
that the fractional Mott insulator extends down to zero
interchain hopping (i.e., βc → ∞) [56]. In addition, like other
MF approaches, the cluster MF approach fails to reproduce the
sharpened-tip-shape of the Mott lobes. The shape of the Mott
lobes become sharp when one employs a more sophisticated
method that captures the enhanced quantum fluctuations (e.g.
[57]).

Recently, for ultracold atoms in optical lattices, artificial
gauge fields have been realized by lattice shaking technique
[58] or laser-induced tunneling [59]. The artificial gauge fields,
which allow one to generate spin-orbit couplings and effective
magnetic fields, open another path to explore quantum Hall
effect and topological phases of matters. Our cluster Gutzwiller
mean-field approach can also be extended to investigate the
bosonic ladders in the presence of an artificial magnetic field
[26,59–65], such as the observation of chiral currents [59], the
measurement of Chern number in Hofstadter bands [60,65],
and the two-leg Bose-Hubbard ladder under a magnetic
flux [26,63]. In addition, our cluster Gutzwiller mean-field
approach may also be used to explore the nonequilibrium
dynamics of two coupled one-dimensional Luttinger liquids
[66] and the dynamical instability of interacting bosons in
disordered lattices [67].
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Bloch, Quantum phase transition from a superfluid to a Mott
insulator in a gas of ultracold atoms, Nature (London) 415, 39
(2002).

[2] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys.
1, 23 (2005).

[3] O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein
condensates in optical lattices, Rev. Mod. Phys. 78, 179 (2006).

023618-9

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1038/nphys138
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179
http://dx.doi.org/10.1103/RevModPhys.78.179


DENG, DAI, HUANG, QIN, XU, ZHONG, HE, AND LEE PHYSICAL REVIEW A 92, 023618 (2015)

[4] M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen
(De), and U. Sen, Ultracold atomic gases in optical lattices:
Mimicking condensed matter physics and beyond, Adv. Phys.
56, 243 (2007).

[5] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[6] S. Will, T. Best, U. Schneider, L. Hackermüller, D. Lühmann,
and I. Bloch, Time-resolved observation of coherent multi-body
interactions in quantum phase revivals, Nature (London) 465,
197 (2010).

[7] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Colloquium: Nonequilibrium dynamics of closed interacting
quantum systems, Rev. Mod. Phys. 83, 863 (2011).

[8] D. Chen, M. White, C. Borries, and B. DeMarco, Quantum
quench of an atomic Mott insulator, Phys. Rev. Lett. 106, 235304
(2011).

[9] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac,
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U. Schollwöck, and T. Vekua, Spontaneous increase of magnetic
flux and chiral-current reversal in bosonic ladders: Swimming
against the tide, arXiv:1504.06564v2.

[63] A. Tokuno and A. Georges, Ground states of a Bose-Hubbard
ladder in an artificial magnetic field: Field-theoretical approach,
New J. Phys. 16, 073005 (2014).

[64] X. Li, A. Paramekanti, A. Hemmerich, and W. V. Liu, Proposed
formation and dynamical signature of a chiral Bose liquid in an
optical lattice, Nat. Commun. 5, 3205 (2014).
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