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Analytic models for the density of a ground-state spinor condensate
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We demonstrate that the ground state of a trapped spin-1 and spin-2 spinor ferromagnetic Bose-Einstein con-
densate (BEC) can be well approximated by a single decoupled Gross-Pitaevskii (GP) equation. Useful analytic
models for the ground-state densities of ferromagnetic BECs are obtained from the Thomas-Fermi approximation
(TFA) to this decoupled equation. Similarly, for the ground states of spin-1 antiferromagnetic and spin-2 antiferro-
magnetic and cyclic BECs, some of the spin-component densities are zero, which reduces the coupled GP equation
to a simple reduced form. Analytic models for ground-state densities are also obtained for antiferromagnetic and
cyclic BECs from the TFA to the respective reduced GP equations. The analytic densities are illustrated and
compared with the full numerical solution of the GP equation with realistic experimental parameters.
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I. INTRODUCTION

The advent of optical traps paved the way for the first
realization of a Bose-Einstein condensate (BEC) with internal
spin degrees of freedom [1], also known as a spinor BEC.
Since then, a lot of theoretical and experimental studies have
been performed on the spinor BECs [2–4]. In contrast to a
scalar BEC, which is characterized by a single interaction
parameter, the spin-1 [5] and spin-2 [6,7] BECs have, respec-
tively, two and three interaction parameters. Depending on
the relative strength of the interaction parameters, a spin-1
BEC in the absence of a external magnetic field can be
either in a ferromagnetic or an antiferromagnetic phase [5].
In the presence of magnetic field the ground-state phase
diagram of spin-1 condensate has been investigated both for
uniform [8–10] and trapped systems [10,11]. Similarly, in the
absence of external magnetic field, spin-2 BECs can be in
one of the possible three ground-state phases: ferromagnetic,
antiferromagnetic, and cyclic [6,7]. The spin-1 and spin-2
BECs are described by three- and five-component complex
order parameters, respectively, thus leading to coupled mean-
field Gross-Pitaevskii (GP) equations involving three- and
five-component wave functions, which, unlike in a scalar BEC,
could be complex in general. A numerical solution of these
equations could be cumbersome for both spin-1 [12,13] and
spin-2 [14,15] BECs. In this paper, we propose simple and use-
ful analytic models for the densities of ground states of quasi-
one-dimensional (quasi-1D), circularly symmetric quasi-two-
dimensional (quasi-2D) [16] and spherically-symmetric three-
dimensional (3D) spin-1 and spin-2 spinor BECs. Here, we
consider nearly overlapping, spatially symmetric ground states
only. Phase-separated spatially asymmetric profiles [13] do not
appear as ground states and will not be considered.

The two interaction parameters for a spin-1 BEC are
c0 ∝ (a0 + 2a2)/3 and c1 ∝ (a2 − a0)/3 [5], whereas the
three interaction parameters for a spin-2 BEC are c0 ∝
(4a2 + 3a4)/7, c1 ∝ (a4 − a2)/7, and c2 ∝ (7a0 − 10a2 +
3a4)/7 [6,7], where a0,a2, and a4 are s-wave scattering lengths
in total spin ftot = 0,2, and 4 channels, respectively. For
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a ferromagnetic BEC, e.g., for c1 < 0 for a spin-1 BEC,
and for c1 < 0 and c2 > 20c1 for a spin-2 BEC, we find
that to a very good approximation the densities for different
spin components mf of the ground-state wave function with
magnetization m are multiples of each other. This allows one
to replace the coupled GP equation for the ground-state wave
function by a single partial differential equation, which we call
the decoupled-mode (DM) equation. On the other hand, for an
antiferromagnetic BEC, e.g., for c1 > 0 for a spin-1 BEC, and
for c2 < 0 and c2 < 20c1 for a spin-2 BEC, we find that the
densities, for some of the spin components, of the ground-state
wave function with magnetization m are identically zero, thus
reducing the original coupled GP equation to a system of two
coupled equations for any nonzero magnetization. Similarly,
for a cyclic BEC, e.g., for c1 > 0 and c2 > 0 for a spin-2
BEC, the five-component GP equation reduces to a system of
two or three coupled equations. These reduced GP equations
and the DM equation for the ground state of a spinor BEC in
different parameter domains, valid in all spatial dimensions,
are solved in the Thomas-Fermi approximation (TFA) (or
local-density approximation) to yield simple analytic models
for the ground-state densities of spin-1 and spin-2 spinor BECs.

The TFA is applicable when the interaction energy in the
GP equation is much larger than the kinetic energy term, so that
the latter could be neglected, thus leading to simple analytic
formulas for the condensate densities [17]. In a repulsive
scalar BEC, applicability of TFA requires that the size of the
condensate R is much larger than the oscillator length l0, i.e.,
R/l0 � 1 [18,19]. The spatial extent of the BEC in units of l0 is

lD = R

l0
∼

(
Na

l0

)1/(D+2)

, (1)

where D = 1,2,3 is the dimensionality of the space [18,19].
The criterion is satisfied if the dimensionless parameter
Na/l0 � 1. The ratio Na/l0 is a measure of the strength of
repulsive interaction. For a spinor BEC, the applicability of
TFA for the mf component requires that its spatial extent is
much larger than l0.

There have been few studies to include the neglected
kinetic energy contribution in the TFA [18,20]. Earlier, the
TFA was used to study the ground-state properties of binary
condensates [21] and spin dynamics in quasi-1D spin-1
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condensate [22]. Spin-orbit-coupled pseudospin-1/2 BECs
under rotation have also been theoretically investigated using
the TFA [23].

We use the experimentally realizable trapping potential and
interaction parameters to illustrate the present analytic models
for ground-state densities in different parameter domains.
In the case of a spin-1 BEC, the background scattering
lengths of 87Rb and 23Na fall in the ferromagnetic [24,25] and
antiferromagnetic [26] domains, respectively, and we use these
to study the ground-state properties. In the case of a spin-2
BEC, we employ 23Na and 83Rb BECs for the illustration.
The background scattering lengths of spin-2 23Na and 83Rb
correspond to the antiferromagnetic and ferromagnetic
phases, respectively [6]. By tuning one of the scattering
lengths of 23Na, one can move from an antiferromagnetic
to either a ferromagnetic or cyclic phase. Experimentally,
such a change of single scattering length can be achieved by
exploiting magnetic [27] and optical [28] Feshbach resonance
techniques. The results of the analytic models are also
validated by a numerical solution of the original mean-field
GP equations for quasi-1D and quasi-2D traps.

In Sec. II, we present the full mean-field GP equations for
spin-1 and spin-2 BECs and derive the reduced mean-field GP
equations for the ground-state wave function in the different
parameter domains. By assuming that the component wave
functions of a ferromagnetic BEC are proportional to each
other, which is indeed the case as suggested by numerical simu-
lations, we derive the DM equation. By minimizing the c1- and
c2-dependent energy terms for the ground-state wave function,
we obtain the reduced GP equations in all parameter domains.
In Secs. III and IV we obtain the analytic models for spin-1 and
spin-2 ground-state BECs, respectively, by employing the TFA
to the reduced GP and the DM equations. A comparison of the
analytic densities with the numerical densities obtained from
the full GP equations leads to a very satisfactory agreement.
In Sec. V, we present a summary and concluding remarks.
Some of the technical details about the derivation of the DM
equation and the reduced GP equations in different parameter
domains are presented in Appendixes A and B.

II. REDUCED MEAN-FIELD EQUATIONS

A. Spin-1 BEC

The coupled GP equations for different spin components
mf = ±1,0, for a spin-1 BEC of N atoms of mass M , each
can be written in dimensionless form as [2]

μ±1φ±1(x) =Hφ±1(x) + c0ρφ±1(x) ± c1Fzφ±1(x)

+ (c1/
√

2)F∓φ0(x), (2)

μ0φ0(x) =Hφ0(x) + c0ρφ0(x) + (c1/
√

2)

× [F−φ−1(x) + F+φ+1(x)], (3)

where

F± ≡Fx ± Fy =
√

2[φ∗
±1(x)φ0(x) + φ∗

0 (x)φ∓1(x)], (4)

Fz =ρ+1(x) − ρ−1(x), H = [− 1
2∇2 + V (x)

]
, (5)

and the component density ρj = |φj (x)|2 with j = ±1,0,
the total density ρ = ∑

j ρj , and μ±1,μ0 are the respective
chemical potentials and ∗ denotes a complex conjugate. In 3D,
the interaction parameters, Laplacian, and trapping potential
are defined as

c0 =4πN (a0 + 2a2)

3l0
, c1 = 4πN (a2 − a0)

3l0
, (6)

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, V (x) = x2 + β2y2 + γ 2z2

2
, (7)

with x ≡ {x,y,z}. Here l0 = √
�/(Mωx), β = ωy/ωx , γ =

ωz/ωx , where ωx,ωy,ωz are the confining trap frequencies
in x,y,z directions, respectively. When the trapping frequency
along one axis, say ωz, is much larger than the geometric mean
of the other two, i.e., ωz � √

ωxωy , then one can approximate
Eqs. (2) and (3) by quasi-two-dimensional (2D) equations
which can be obtained by substituting [16]

c0 =2N
√

2π (a0 + 2a2)

3lz
, c1 = 2N

√
2π (a2 − a0)

3lz
, (8)

∇2 = ∂2

∂x2
+ ∂2

∂y2
, V (x) = x2 + β2y2

2
,x ≡ {x,y}, (9)

in Eqs. (2) and (3), where lz = √
�/(Mωz). Similarly, if the

trapping frequencies along two axes, say y and z, are much
larger than the third frequency ωx , Eqs. (2) and (3) can be
approximated by quasi-1D equations, which can be obtained
by substituting

c0 = 2N (a0 + 2a2)l0
3l2

yz

, c1 = 2N (a2 − a0)l0
3l2

yz

, (10)

∇2 = ∂2

∂x2
, V (x) = x2

2
, x ≡ x, (11)

where lyz = √
�/(Mωyz) and ωyz = √

ωyωz. Here length
is measured in units of l0, density in units of l−D

0 , and
chemical potential in units of �ωx , where D = 1,2,3 is the
dimensionality of space. The total density is normalized to
unity

∫
dxρ(x) = 1. The volume element dx = 2dX in 1D,

2πXdX in 2D with circular symmetry, and 4πX2dX in 3D
with spherical symmetry, where X = |x| is the length of the
vector x. In this paper we consider isotropic 3D and isotropic
quasi-2D traps, i.e., β = γ = 1 for 3D traps and β = 1 
 γ

for quasi-2D traps.
Numerical calculation for the ground-state densities of a

ferromagnetic BEC (c1 < 0) has revealed that the component
densities are essentially multiples of each other. This opens
the possibility of writing a single DM equation for the wave
function φDM for the ferromagnetic BEC and obtain the
component wave functions as multiples of this wave function
according to

φj (x) = αjφDM(x), j = ±1,0, (12)

where αj ’s, in general, are complex numbers. The condi-
tions (12) when substituted in Eqs. (2) and (3) lead to
three different equations for the same wave function φDM.
A consistency requirement on these three equations leads to
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the single DM equation for the wave function φDM:

μφDM(x) = [− 1
2∇2 + V (x) + Cφ2

DM(x)
]
φDM(x), (13)

with C ≡ CI = c0 + c1 and normalization
∫

ρDM(x)dx = 1,

provided that

|α±1| = 1 ± m

2
, |α0| =

√
1 − m2

√
2

, (14)

m ≡
∫

dx[ρ+1 − ρ−1] = |α+1|2 − |α−1|2, (15)

where m is the magnetization.
An equation similar to Eq. (13) with C = c0 ∼ (a0 +

2a2)/3, known as the single-mode approximation (SMA) [29],
was obtained before as an approximation to Eqs. (2) and (3).
The component densities were then obtained using Eq. (14). In
the DM model we have a different C ≡ CI = (c0 + c1) ∼ a2,
which is independent of a0. Equation (13) was previously
obtained by Yi et al. [30] as an improvement over the SMA.
The breakdown of the single-mode approximation for trapped
spin-1 condensates in the presence of magnetic field has also
been theoretically investigated [10].

Provided that ansatz (12) holds, distribution (14) can be
obtained independently from a consideration of c1-dependent
energy minimization for a ferromagnetic BEC, as shown in
Appendix A. The DM equation is very useful for finding
the ground state of a ferromagnetic BEC where all density
components are nonzero, and this procedure can also be readily
generalized to higher-spin cases, as shown in Sec. II B for a
spin-2 ferromagnetic BEC.

For the ground state of an antiferromagnetic BEC (c1 >

0) with nonzero magnetization, energy minimization requires
that φ0(x) = 0, viz. Appendix A. Then the normalization and
magnetization conditions yield∫

ρ±1dx = 1 ± m

2
, ρ0 = 0. (16)

For m = 0, besides the aforementioned state, there is another
degenerate state where all the atoms are in mf = 0 component,
i.e., ρ±1 = 0 and

∫
ρ0dx = 1. Unlike in a ferromagnetic BEC,

ansatz (12) does not hold for an antiferromagnetic BEC for a
nonzero magnetization m where different components occupy
different spatial extensions. On the other hand, for m = 0,
SMA becomes exact in this phase [30], as the c1-dependent
term vanishes.

We will derive the analytic model for a ferromagnetic
BEC using the TFA to the DM equation (13), whereas for
an antiferromagnetic BEC we rely on the TFA to the GP
equation (2) with φ0(x) = 0 for the same.

B. Spin-2 BEC

The dimensionless coupled GP equations for different
spin components mf = ±2, ± 1,0, for a spin-2 BEC can be
written as [2]

μ±2φ±2(x) =Hφ±2(x) + c0ρφ±2(x) + (c2/
√

5)
φ∗
∓2(x)

+ c1
[
F∓φ±1(x) ± 2Fzφ±2(x)

]
, (17)

μ±1φ±1(x) =Hφ±1(x) + c0ρφ±1(x) − (c2/
√

5)
φ∗
∓1(x)

+ c1[
√

3/2F∓φ0(x) + F±φ±2(x) ± Fzφ±1(x)],
(18)

μ0φ0(x) =Hφ0(x) + c0ρφ0(x) + (c2/
√

5)
φ∗
0 (x)

+ c1

√
3/2[F−φ−1(x) + F+φ+1(x)], (19)

where

F+ = F ∗
− = 2(φ∗

+2φ+1 + φ∗
−1φ−2) +

√
6(φ∗

+1φ0 + φ∗
0φ−1),

(20)

Fz = 2(|φ+2|2 − |φ−2|2) + |φ+1|2 − |φ−1|2, (21)


 = 2φ+2φ−2 − 2φ+1φ−1 + φ2
0√

5
. (22)

Here the interaction parameters c0 = 4πN (4a2 + 3a4)/(7l0),
c1=4πN (a4 − a2)/(7l0),c2 = 4πN (7a0 − 10a2 + 3a4)/(7l0),
μ±2,μ±1, and μ0 are the respective chemical potentials. All
repeated variables have the same meaning as in the spin-1
case. The total density ρ is again normalized to unity. As in the
spin-1 case, GP equations in quasi-2D traps can be obtained
by using Eq. (9) and substituting c0 = 2N

√
2π (4a2 +

3a4)/(7lz),c1 = 2N
√

2π (a4 − a2)/(7lz),c2 = 2N
√

2π (7a0 −
10a2 + 3a4)/(7lz) in Eqs. (17)–(19). Similarly, GP
equations in quasi-1D traps can be obtained by using
Eq. (11) and substituting c0 = 2N (4a2 + 3a4)l0/(7l2

yz),c1 =
2N (a4 − a2)l0/(7l2

yz),c2 = 2N (7a0 − 10a2 + 3a4)l0/(7l2
yz) in

Eqs. (17)–(19).
In the DM, for a ferromagnetic BEC (c1 < 0,c2 > 20c1)

with all nonzero component densities, if we substitute the
ansatz

φj = αjφDM, j = ±2, ± 1,0, (23)

in Eqs. (17), (18), and (19), we obtain five independent
equations for φDM. A consistency requirement among these
five equations for the c1-dependent terms leads to the DM
equation (13) with C ≡ CII = (c0 + 4c1), provided that

|α±2| = (2 ± m)2

16
, (24)

|α±1| =
√

4 − m2(2 ± m)

8
, (25)

|α0| = 1

8

√
3

2
(4 − m2), (26)

with magnetization and normalization conditions

m ≡
∫

dx[2(ρ+2 − ρ−2) + (ρ+1 − ρ−1)], (27)

= 2(|α+2|2 − |α−2|2) + (|α+1|2 − |α−1|2), (28)

1 = |α+2|2 + |α−2|2 + |α+1|2 + |α−1|2 + |α0|2. (29)

In the DM model for a spin-2 BEC C ≡ CII ∼ a4 is indepen-
dent of the scattering lengths a0 and a2, with a4 playing the role
of scattering length in an equivalent scalar BEC. With the co-
efficients α±2,α±1,α0 given by Eqs. (24)–(26), the coefficient

 of Eq. (22) is identically equal to 0. The condition 
 = 0
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for the ground state makes the GP equations (17)–(19) simpler
and independent of c2. Consequently, the DM equation (13)
becomes an exact equation for the ground-state wave function
provided Eq. (23) holds, e.g., the component wave functions
are multiples of each other. Our numerical calculations show
that the condition (23) holds for all magnetization to a very
high degree of accuracy.

The coefficients α±2,α±1,α0 can also be obtained from
a minimization of energy along with condition (23) for
a ferromagnetic ground state with c1 < 0 and c2 > 20c1.
An explicit account of the derivation of the coefficients
α±2,α±1,α0, from an energy minimization for a ferromagnetic
spin-2 BEC is given in Appendix B.

For an antiferromagnetic BEC (c2 < 0,c2 < 20c1) for
any nonzero magnetization m numerical studies show that
φ±1(x) = φ0(x) = 0 for the ground state. This can also be ob-
tained from energetic consideration as shown in Appendix B.
The magnetization and normalization conditions (27) and (29)
then yield ∫

ρ±2dx = 2 ± m

4
. (30)

Energy consideration establishes that a cyclic BEC (c1 >

0,c2 > 0) has two degenerate ground states for all nonzero
magnetization m with (i)φ+1(x) = φ0(x) = φ−2(x) = 0, or
with (ii)φ±1(x) = 0, viz. Appendix B. Consequently, the
magnetization and normalization conditions (27) and (29) lead
for these two states:

(i)
∫

dxρ+2 = 1 + m

3
,

∫
dxρ−1 = 2 − m

3
, (31)

(ii)
∫

dxρ±2 =
(

2 ± m

4

)2

,

∫
dxρ0 = 4 − m2

8
. (32)

For both antiferromagnetic and cyclic BECs we will
derive the analytic models directly from the TFA to the GP
equations (17)–(19) and not from the DM, whereas for a
ferromagnetic BEC we will rely on the TFA to the DM
equation (13) with C = (c0 + 4c1).

III. ANALYTIC MODEL FOR SPIN-1 BEC

A. Ferromagnetic BEC

We derive the analytic model for the ground-state density
of a spin-1 BEC using the TFA to the DM equation (13) with
component densities given by Eq. (14). In the TFA the kinetic
energy term in Eq. (13) is neglected, which is reasonable for
a moderate to large positive nonlinear terms, and the BEC
density is calculated by equating the “Hamiltonian” to the
chemical potential by

μ = [X2/2 + CρDM], C ≡ CI = c0 + c1, (33)

thus leading to the TFA density

ρDM(X) = (
l2
D − X2)/(2CI ), X�lD =

√
2μ. (34)

Imposing the condition of normalization
∫

ρDM(X)dx =
1, we obtain, in 1D, 2D, and 3D, respectively, lD =
(3CI /2)1/3,(4CI /π )1/4, and (15CI /4π )1/5, provided CI > 0.
The component densities are calculated using Eqs. (12)
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x

ρ
j
x

c0 885.7
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m 0.5

ρ 1

ρ 1
ρ0

num .
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0.02

0.04

x

ρ
j
x

anal.

ρ 1
ρ0
ρ 1

FIG. 1. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-1D ferromagnetic 87Rb BEC. The number
of atoms, scattering lengths, and oscillator lengths are, respectively,
N = 10 000, a0 = 101.8aB , a2 = 100.4aB [24], l0 = 2.41 μm, lyz =
0.54 μm, where aB is the Bohr radius.

and (14). The analytic densities for a quasi-1D spin-1 fer-
romagnetic 87Rb BEC are shown in Fig. 1 along with the
numerical solution of the full coupled GP equations (2)–(3).
The same for a quasi-2D spin-1 ferromagnetic 87Rb BEC is
shown in Fig. 2. All numerical calculations are performed
using the split-step Crank-Nicolson scheme [31], with space
and time steps 0.025 and 0.000 05, respectively.

In the DM model CI ∼ a2 plays the same role as the
scattering length a in a scalar BEC in Eq. (1). Hence in this
case the condition of validity of the TFA will be Na2/l0 � 1.

B. Antiferromagnetic BEC

In this case, the analytic model is derived by applying
TFA directly to the GP equation (2) with φ0(x) = 0. For a
nonzero magnetization (0 < m < 1), the mf = +1 compo-
nent accommodates more atoms and its spatial extension lD(+1)

is larger than the same of the mf = −1 component with spatial
extension lD(−1). Hence for lD(+1) > x > lD(−1), φ−1(x) = 0
and the coupled GP equation (2) for φ±1(x) reduces to a
single equation for φ+1(x). In the TFA, the kinetic energy
terms in the GP equation (2) are neglected and the densities

5 10000
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0.004

0.005

X

ρ
j
X

anal.

ρ 1
ρ0
ρ 1

5 10000
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0.003

0.004

0.005

X

ρ
j
X

c0 4964.4
c1 22.9
m 0.5

ρ 1
ρ0
ρ 1

num .

FIG. 2. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-2D ferromagnetic 87Rb BEC. The number
of atoms, scattering lengths, and oscillator lengths are, respectively,
N = 100 000, a0 = 101.8aB , a2 = 100.4aB [24], l0 = 2.41 μm, lz =
0.54 μm, where aB is the Bohr radius.
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are calculated by equating the Hamiltonian to the respective
chemical potentials:

μ±1 = [X2/2 + c0ρ] + c1(ρ±1 − ρ∓1), X�lD(−1), (35)

μ+1 = [X2/2 + CI ρ+1], lD(+1)�X�lD(−1), (36)

subject to normalization (16). In the domain lD(+1)�X�lD(−1),
Eq. (36) has the solution

ρ+1(X) = l2
D(+1) − X2

2CI

, lD(+1) � X � lD(−1), (37)

μ+1 = l2
D(+1)/2. (38)

In the overlap region X�lD(−1), coupled equations (35) have
the solution

ρ±1(X) = c0(μ±1 − μ∓1) + c1(μ+1 + μ−1 − X2)

4c0c1
. (39)

The condition ρ−1(lD(−1)) = 0 leads to

μ−1 = (c0 − c1) l2
D(+1) + 2c1l

2
D(−1)

2CI

. (40)

Substituting Eqs. (38) and (40) in Eq. (39), we obtain

ρ+1(X) =2c0l
2
D(+1) + (c1 − c0)l2

D(−1) − CIX
2

4c0CI

, X � lD(−1)

(41)

ρ−1(X) =
(
l2
D(−1) − X2

)
4c0

, X � lD(−1). (42)

The normalization condition (16) for ρ±1(X) leads to

lD(−1) = lD[c0(1 − m)/CI ]1/(2+D), (43)

lD(+1) = lD[(c0 + c1m)/CI ]1/(2+D). (44)

The densities (37), (41), and (42) with extensions given by
Eqs. (43) and (44) constitute the analytic model in this case.

These analytic densities for a spin-1 quasi-1D antiferromag-
netic 23Na BEC are shown in Fig. 3 along with the numerical
solution of the full coupled GP equations (2) and (3). The

FIG. 3. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-1D antiferromagnetic 23Na BEC. The
number of atoms, scattering lengths, and oscillator lengths are,
respectively, N = 10 000; a0 = 47.36aB , a2 = 52.98aB [3]; l0 =
4.69 μm, lyz = 1.05 μm.

FIG. 4. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-1 quasi-2D antiferromagnetic 23Na BEC. The
number of atoms, scattering lengths, and oscillator lengths are,
respectively, N = 100 000; a0 = 47.36aB , a2 = 52.98aB [3]; l0 =
4.69 μm, lz = 1.05 μm.

same for a spin-1 quasi-2D antiferromagnetic 23Na BEC are
shown in Fig. 4. Comparing Eq. (1) with Eqs. (43) and (44),
the conditions for the validity of TFA in this case are

N (a0 + 2a2)(1 − m)

3l0
� 1, (45)

N [a0 + 2a2 + (a2 − a0)m]

3l0
� 1, (46)

for the mf = −1 and mf = +1 component, respectively. The
terms on the left side of Eqs. (45) and (46) are the measure
of the repulsive interactions in mf = −1 and mf = +1
components, respectively.

For magnetization m = 0 there is another degenerate
ground state where all atoms are in the mf = 0 component [2].
In that case the spin-1 GP equation reduces to the DM
equation (33) with CI = c0 and ρ0(X) = ρDM (X) of Eq. (34).
From Eqs. (45) and (46), the simple criterion for the validity of
TFA in this case is N (a0 + 2a2)/(3l0) � 1, which is consistent
with the fact that for m = 0, the c1 term does not contribute to
the energy of the system.

The TF analysis shows that the spatial extents of the
components are different for an antiferromagnetic BEC for
any nonzero magnetization, viz. Eqs. (43) and (44), which is
also manifested by different chemical potentials, viz. Eqs. (38)
and (40), whereas these are the same for a ferromagnetic
BEC. Thus, in the domain lD(−1)�X < lD(+1) only component
mf = +1 survives for the antiferromagnetic BEC, effectively
separating this component from mixed phase in the X < lD(−1)

domain. The different spatial extents of the components
for an antiferromagnetic BEC also imply that SMA is not
valid in general, except for m = 0, when lD(±1) of Eqs. (43)
and (44) become equal. The ground states shown in Figs. 3
and 4 preserve the symmetry of the trapping potential.
These symmetric profiles minimize c1-dependent interaction
energy [30],

EA = c1

2

∫
[(ρ+1 − ρ−1)2 + 2ρ0(ρ+1 + ρ−1)

− 4
√

ρ+1ρ−1ρ0]dx. (47)
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The asymmetric states, where the two phase-separated com-
ponents lie side by side [13], do not minimize EA in
addition to having more potential-energy contribution. Hence,
they do not emerge as the ground states in trapped spinor
condensates. The asymmetric states can emerge as the ground
state in the presence of Zeeman energy [2,11] or spin-orbit
coupling [13,15], which we do not include in the Hamiltonian.

IV. ANALYTIC MODEL FOR SPIN-2 BEC

A. Ferromagnetic BEC

In this case, the component densities are given by the
DM equation (23) along with distributions (24)–(26), and
the analytic model is derived from the TFA to the DM
equation (13). Following the procedure of Sec. III A for
a spin-1 ferromagnetic BEC, the TFA densities are again
given by Eq. (34), but now with C ≡ CII = c0 + 4c1. The
component densities are then obtained using Eqs. (24)–(26).
These analytic densities for quasi-1D spin-2 ferromagnetic
23Na and 83Rb BECs are shown in Figs. 5(a) and 5(b),
respectively, together with the numerical densities from the
full coupled GP equations (17)–(19).
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FIG. 5. (Color online) Analytic (anal.) and numerical (num.)
densities of quasi-1D spin-2 ferromagnetic (a) 23Na and (b) 83Rb
BECs, respectively. For 23Na, the number of atoms, scattering lengths,
and oscillator lengths are, respectively, N = 10 000, a0 = 34.9aB ,
a2 = 45.8aB , a4 = 6.45aB [6], l0 = 4.69 μm, lyz = 1.05 μm, and
here aB is the Bohr radius. The experimental value of a4(=64.5aB )
has been modified to access the ferromagnetic phase of 23Na (using
a Feshbach resonance) from the natural antiferromagnetic phase. For
83Rb, the corresponding parameters are N = 10 000, a0 = 83.0aB ,
a2 = 82.0aB , a4 = 81.0aB [6], l0 = 2.47 μm, lyz = 0.55 μm.

In the DM model CII ∼ a4 plays the same role as the
scattering length a in a scalar BEC in Eq. (1). Hence in this
case the condition of validity of the TFA will be Na4/l0 � 1.

B. Antiferromagnetic BEC

The analytic model here is obtained from the TFA to
the GP equation (17) involving only φ±2(x) subject to
φ0(x) = φ±1(x) = 0 with normalization condition (30). After
neglecting the kinetic energy terms in the GP equation (17),
the corresponding TFA densities are given by

μ±2 = X2/2 + c0ρ ± 4c1(ρ+2 − ρ−2) + 2c2ρ∓2

5
. (48)

For a nonzero magnetization 0 < m � 2, the mf = +2 com-
ponent extends to a larger domain (X < lD(+2)) than the mf =
−2 component with a smaller extension (X < lD(−2),lD(+2) >

lD(−2)). Following the procedure presented in Sec. III B for a
spin-1 antiferromagnetic BEC, one can calculate lD(+2) in 1D,
2D, and 3D, respectively, as

l1(+2) = [3A]1/3

201/3
, l2(+2) = [2A]1/4

(5π )1/4
, l3(+2) = [3A]1/5

(8π )1/5
,

(49)

where A = (10c0 + 2c2 + 20c1m − c2m). Similarly, lD(−2) in
1D, 2D, and 3D, respectively, are

l1(−2) = [3B]1/3

201/3
, l2(−2) = [2B]1/4

(5π )1/4
, l3(−2) = [3B]1/5

(8π )1/5
,

(50)

where B = (5c0 + c2)(2 − m). The analytic TFA densities of
the spin components mf = ±2 are given by

ρ+2(X) = 20c1
(
l2
D(−2) − X2

) + 2c2
(
l2
D(+2) − l2

D(−2)

)
4CII (5c0 + c2)

,

+ 5c0
(
2l2

D(+2) − l2
D(−2) − X2

)
4CII (5c0 + c2)

, X � lD(−2),

(51)

ρ+2(X) = l2
D(+2) − X2

2CII

, lD(+2) � X � lD(−2), (52)

ρ−2(X) = 5
(
l2
D(−2) − X2

)
4(5c0 + c2)

, X � lD(−2), (53)

with the extensions l±2 given by Eqs. (49) and (50). The
analytic and numerical densities for a quasi-1D spin-2 anti-
ferromagnetic 23Na BEC are compared in Fig. 6. Again, in
this case, phase-separated asymmetric profiles do not emerge
as ground states due to more energy contribution from a
c2-dependent energy term in addition to more potential energy
as compared to symmetric profiles.

Comparing Eq. (1) with Eqs. (49) and (50), the conditions
for the validity of TFA in this case are

N [c0a + 2c1am + c2a(2 − m)/10]

7l0
� 1, (54)

N [(c0a + c2a/5)(1 − m/2)]

7l0
� 1, (55)
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FIG. 6. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-2 quasi-1D antiferromagnetic 23Na BEC. The
number of atoms, scattering lengths, and oscillator lengths are, re-
spectively, N = 10 000; a0 = 34.9aB , a2 = 45.8aB , a4 = 64.5aB [6];
l0 = 4.69 μm, lyz = 1.05 μm.

for mf = +2 and mf = −2 components, respectively, where
c0a = 4a2 + 3a4, c1a = a4 − a2, and c2a = 7a0 − 10a2 + 3a4.

For m = 0 there is another degenerate ground state with
the all the atoms in the mf = 0 component [3]. In this
case the GP equation reduces to the DM equation (33)
with CII = (c0 + c2/5) and ρ0(X) = ρDM (X) of (34). A
superposition of this solution and the solution corresponding
to Eq. (48) with m = 0 will also be a degenerate solution.
The simpler criterion for the validity of TFA in this case
is N [(7a0 + 10a2 + 18a4)/5]/(7l0) � 1, which is consistent
with Eqs. (54) and (55) with m = 0.

C. Cyclic BEC

In this case, there are two degenerate ground states for
all magnetization m with nonzero component densities given
by Eqs. (31) and (32), respectively. The analytic models will
be obtained in these two cases from the TFA to the GP
equations (17)–(19).

The former distribution (31) involves only two nonzero
components in the GP equation. After neglecting the kinetic
energy terms in the GP equations (17)–(19), the TFA densities
for the nonzero spin components mf = +2 and mf = −1 are
described by

μ+2 = X2/2 + c0ρ + 2c1(2ρ+2 − ρ−1), (56)

μ−1 = X2/2 + c0ρ − c1(2ρ+2 − ρ−1). (57)

For a nonzero magnetization (2 > m > 0) the mf = +2 com-
ponent has a larger spatial extension (lD(+2)) than the mf = −1
component with a smaller spatial extension (±lD(−1),lD(+2) >

lD(−1)). Following the procedure discussed for a spin-1 anti-
ferromagnetic BEC in Sec. III B, one obtains

lD(+2) = lD[(c0 + 2c1m)/CI ]1/(2+D), (58)

lD(−1) = lD[c0(2 − m)/2CI ]1/(2+D). (59)

The normalized densities are given by

ρ−1(X) =
(
l2
D(−1) − X2

)
3c0

, X � lD(−1), (60)
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FIG. 7. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-2 quasi-1D cyclic 23Na BEC. The number of
atoms, scattering lengths, and oscillator lengths are, respectively, N =
10 000, a0 = 34.9aB , a2 = 22.9aB , a4 = 64.5aB [6], l0 = 4.69 μm,
lyz = 1.05 μm. The experimental value of a2(=45.8aB ) has been
modified to access the cyclic phase of 23Na (using a Feshbach
resonance) from its natural antiferromagnetic phase. The ground
state density profile in cyclic phase does not depend upon interaction
parameter c2.

ρ+2(X) = 3c0l
2
D(+2) − 2(c0 − 2c1)l2

D(−1) − CIIX
2

6c0CII

,

X � lD(−1) (61)

= l2
D(+2) − X2

2CII

, lD(−1) � X � lD(+2). (62)

Equations (60)–(62) together with extensions given by
Eqs. (58) and (59) are the analytic densities in this case. The
analytic and numerical densities for a quasi-1D spin-2 cyclic
23Na BEC are shown in Fig. 7. For m = 0, SMA becomes
exact for the cyclic phase of spin-2 condensate, as the c1- and
c2-dependent terms in Eqs. (56) and (57) vanish.

Comparing Eq. (1) and Eqs. (58) and (59), the conditions
for the validity of TFA in this case are

N [4a2 + 3a4 + 2(a4 − a2)m]

7l0
� 1, (63)

N [4a2 + 3a4(1 − m/2)]

7l0
� 1, (64)

for mf = +2 and mf = −1 components, respectively. For
m = 0 the simple criterion for the validity of TFA is N (4a2 +
3a4)/(7l0) � 1, which is consistent with fact that only spin-
independent nonlinearity (c0 dependent term) contributes to
the energy of the system.

Similarly, for the latter distribution (32), after neglecting
the kinetic energy terms in the GP equations (17)–(19), the
TFA densities are given by

μ±2 =X2/2 + c0ρ ± 4c1(ρ+2 − ρ−2), (65)

μ0 =X2/2 + c0ρ. (66)

This set of equations for ρ±2 and ρ0 is overcomplete and does
not determine the densities. However, if we assume, consistent
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with Eq. (32), that

ρ0 = 2(2 + m)ρ−2

2 − m
, (67)

then we can solve Eq. (65) for ρ±2 and obtain ρ0 from
Eq. (67). For 2 > m > 0 the spatial extent (lD(+2)) of density
ρ+2 is larger than the spatial extent (lD(−2)) of density ρ−2.
Equation (65) can then be be solved to obtain

ρ+2(X) = 4c1(m − 2)(X2 − δ) + c0κ(6 + m)

64c0c1
, X � lD(−2)

(68)

= 2μ+2 − X2

2CII

, lD(+2) � X � lD(−2), (69)

ρ−2(X) = (m − 2)[c0κ + 4c1{X2 − δ}]
64c0c1

, X � lD(−2), (70)

where δ = μ+2 + μ−2,κ = μ+2 − μ−2, with the chemical
potentials μ+2 and μ−2 given by

μ+2 = l2
D(+2)

2
, μ−2 = (c0 − 4c1)l2

D(+2) + 8c1l
2
D(−2)

2CII

, (71)

where lD(+2) and lD(−2) are the same as lD(+2) and lD(−1)

of Eqs. (58) and (59), respectively. After substituting the
expressions for chemical potentials μ±2 given by Eq. (71)
in Eqs. (67)–(70), we obtain the final densities ρ±2 and ρ0 as

ρ+2(X) = c0
[
8l2

D(+2) − l2
D(−2)(6 + m) + (−2 + m)X2

]
16c0CII

+ 4c1(2 − m)
(
l2
D(−2) − X2

)
16c0CII

, X � lD(−2), (72)

ρ+2(X) = l2
D(+2) − X2

2CII

, lD(+2) � X � lD(−2), (73)

ρ0(X) = 2(2 + m)ρ−2

2 − m
, X � lD(−2), (74)

ρ−2(X) = (2 − m)
(
l2
D(−2) − X2

)
16c0

, X � lD(−2) (75)
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FIG. 8. (Color online) Analytic (anal.) and numerical (num.)
densities of a spin-2 quasi-1D 23Na cyclic BEC. All parameters are
the same as in Fig. 7. Again, the ground state density in this case is
not a function of c2.

ρ0(X) = ρ−2 = 0, lD(+2) � X � lD(−2). (76)

The analytic and numerical densities in this case for a
spin-2 quasi-1D 23Na cyclic BEC are shown in Fig. 8. The
criteria for the validity of TFA in this case are again given by
Eqs. (63) and (64) for mf = +2 and mf = −2 components,
respectively. Thus, for a spin-2 23Na cyclic BEC, there are two
distinct degenerate ground states, as shown in Figs. 7 and 8.
The Hamiltonian of the spinor BEC is time-reversal invariant,
yet the degenerate states shown in Figs. 7 and 8 break time-
reversal symmetry. Time-reversal symmetry-breaking states in
spinor BECs were previously studied [15]. In cyclic phase, too,
the additional potential energy cost rules out the possibility of
asymmetric phase-separated profiles as ground states.

V. CONCLUDING REMARKS

The mean-field GP equation for a spin-1 and spin-2 spinor
BEC involves a three- and five-component complex wave
function. Some simplification emerges for the ground-state
wave function of a spinor BEC. For an antiferromagnetic or
cyclic BEC with a nonzero magnetization, some of the spin-
component wave functions become zero, thus reducing the
original GP equation with three or five components to a system
of coupled equations with only two or three components,
which we call a reduced GP equation. For a ferromagnetic
BEC with a nonzero magnetization, the densities of different
spin components for the ground-state wave function are found
to be multiples of each other. This allows one to solve the
density according to a single GP equation, which we call the
decoupled-mode (DM) equation, and calculate the densities
of different spin components as multiples of a single DM
density. These reduced GP and DM equations are valid in all
spatial dimensions. Here we suggest simple analytic models
for the ground-state densities of a spinor BEC obtained
by applying Thomas-Fermi approximation to the DM and
reduced GP equations. These analytic results for densities are
found to be in good agreement with those obtained from the
numerical solution of the full GP equation for ferromagnetic,
antiferromagnetic, and cyclic spin-1 and spin-2 spinor BECs.
Although we considered in this paper nearly overlapping con-
figurations of the spinor components, the presence of Zeeman
energy and spin-orbit coupling in the Hamiltonian can lead to
asymmetric phase-separated configurations [13,15] as ground
states. An investigation leading to the analytic densities of the
phase-separated solutions would be an interesting future work.
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APPENDIX A

1. Ferromagnetic spin-1 BEC

For the ground state of a spin-1 ferromagnetic BEC (c1 <

0), the coefficients αj can be obtained from a minimization of

023616-8



ANALYTIC MODELS FOR THE DENSITY OF A GROUND- . . . PHYSICAL REVIEW A 92, 023616 (2015)

the energy,

E =N

2

∫ ⎡
⎣ 1∑

j=−1

|∇φj |2 + 2V (x)ρ + c0ρ
2 + c1|F|2

⎤
⎦dx.

(A1)

Assuming that component wave functions are given by the
DM ansatz (12), to minimize energy E we need to maximize
the positive integral

∫ |F|2dx:

∫
|F|2dx = [2|(α∗

+1α0 + α∗
0α−1)|2 + m2]I, (A2)

I =
∫

φ4
DM(x)dx. (A3)

Now, writing αj = |αj |eiθj , we get∫
|F|2dx = [2||α+1||α0| + |α0||α−1|ei(θ+1+θ−1−2θ0)|2 + m2]I.

(A4)

To maximize integral (A4), we take exp(θ+1 + θ−1 − 2θ0) = 1
and obtain∫

|F|2dx = [2(|α+1||α0| + |α0||α−1|)2 + m2]I. (A5)

For a fixed magnetization m and DM function φDM, the
maximization of

∫ |F|2dx corresponds to finding the stationary
points of the following “Lagrange” function:

L1(|αj |,λ1,λ2)

= 2(|α+1||α0| + |α0||α−1|)2 + λ1

⎛
⎝1 −

∑
j

|αj |2
⎞
⎠

+ λ2(m − |α+1|2 + |α−1|2). (A6)

Here λ1 and λ2 are Lagrangian multipliers to fix the nor-
malization and magnetization to 1 and m, respectively. The
stationary points of L1 are determined by the following
Lagrange equations:

∂L1

∂|αj | = 0,
∂L1

∂λ1
= 0,

∂L1

∂λ2
= 0, (A7)

with solution (14) together with λ1 = 2,λ2 = −2m.

2. Antiferromagnetic spin-1 BEC

In case of an antiferromagnetic BEC (c1 > 0),
∫ |F|2dx =∫

(F+F− + F 2
z )dx is minimized by making φ0(x) = 0 for any

m �= 0 and the densities satisfy Eq. (16). If we further assume
the DM ansatz (12), the coefficients αj can be obtained from
a minimization of (80). For this, we take exp(θ+1 + θ−1 −
2θ0) = −1 and obtain∫

|F|2dx = [2(|α+1||α0| − |α0||α−1|)2 + m2]I. (A8)

Following the procedure discussed for a ferromagnetic BEC,
one can minimize

∫ |F|2dx under the twin constraints of fixed
norm and magnetization and, in agreement with Eq. (16),

obtain

|α±1| =
√

1 ± m

2
, α0 = 0. (A9)

APPENDIX B

1. Ferromagnetic spin-2 BEC

For a spin-2 ferromagnetic BEC (c1 < 0,c2 > 20c1), the
energy is given by

E=N

2

∫ ⎡
⎣ 2∑

j=−2

|∇φj |2+2V (x)ρ+c0ρ
2+c1|F|2+c2|
|2

⎤
⎦dx.

For a ferromagnetic BEC, the energy minimization corre-
sponds to a maximization of the c1-dependent term

∫ |F|2dx.
We find that this automatically minimizes the c2-dependent
term

∫ |
|2dx to zero. Assuming the DM ansatz (23) we seek
the coefficients αj which maximize

∫ |F|2dx. Following the
procedure for ferromagnetic spin-1 BEC, we can write∫

|F|2dx

= [|2{|α+2||α+1| + |α−2||α−1|ei(θ−2−θ−1−θ1+θ2)}
+

√
6ei(θ0−2θ1+θ2){|α+1||α0| + |α0||α−1|ei(θ−1−2θ0+θ1)}|2

+ m2]I. (B1)

To maximize (B1) we take all exponential factors in this
equation to be +1 and obtain∫

|F|2dx = [{2(|α+2||α+1| + |α−2||α−1|)

+
√

6(|α+1||α0| + |α0||α−1|)}2 + m2]I. (B2)

For a fixed m (2 > m > 0) andI, the maximization of
∫ |F|2dx

corresponds to finding the stationary points of the following
Lagrange function:

L2(|αj |,λ1,λ2)

= 2(|α+2||α+1| + |α−2||α−1|) +
√

6|α0|

× (|α+1| + |α−1|) + λ1

⎛
⎝1 −

∑
j

|αj |2
⎞
⎠ + λ2

× (m − 2|α+2|2 − |α+1|2 + |α−1|2 + 2|α−2|2).

Here λ1 and λ2 have the same meaning as in Eq. (A6).
The stationary point which maximizes

∫ |F|2dx thus yields
Eqs. (24)–(26) together with

λ1 = 4√
(4 − m2)

, λ2 = − m√
(4 − m2)

. (B3)

Using Eqs. (24)–(26), we find that these αj ’s also minimize∫ |
|2dx to 0, which guarantees that the state so obtained is
the ground state.

2. Antiferromagnetic spin-2 BEC

Similarly, in the antiferromagnetic subdomain (c2 < 0
and c2 < 20c1), the energy minimization corresponds to a
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maximization of the c2-dependent term
∫ |
|2dx. Assuming a

DM ansatz (16) and αj = |αj | exp(iθj ) we have∫
|
|2dx = |2|α+2||α−2| − 2|α+1||α−1|ei(θ1+θ−1−θ2−θ−2)

+ |α0|2ei(2θ0−θ2−θ−2)|2I. (B4)

To maximize integral (B4) we take the first exponential to
be −1 and the second exponential to be +1. For a fixed m

(2 > m > 0) andI, the maximization of
∫ |
|2dx corresponds

to finding the stationary points of the following Lagrange
function:

Lθ (|αj |,λ1,λ2) = (2|α+2||α−2| + 2|α+1||α−1| + |α0|2)

+ λ1

⎛
⎝1 −

∑
j

|αj |2
⎞
⎠ + λ2(m − 2|α+2|2

− |α+1|2 + |α−1|2 + 2|α−2|2). (B5)

The stationary point, which maximizes
∫ |
|2dx, yields

|α±2| =
√

2 ± m

2
, α±1 = α0 = 0, (B6)

λ1 = 2√
(4 − m2)

, λ2 = −m

2
√

(4 − m2)
. (B7)

Using Eqs. (B6) and (B7), we find that
∫ |F|2dx has the

minimum value m2I, which guarantees that the state so
obtained is the ground state.

3. Cyclic spin-2 BEC

For a spin-2 cyclic BEC c1 > 0 and c2 > 0, energy
minimization involves minimization of both

∫ |F|2dx and∫ |
|2dx to their respective minimum values m2I and 0,
respectively. From Eqs. (B1) and (B4), one can see that for
0 < m < 2, consistent with Eqs. (31) and (32), there are only
two possibilities for the ground states:

(i)|α±2| = 2 ± m

4
,

|α0| =
√

4 − m2

√
8

, α±1 = 0,

provided that exp(2θ0 − θ+2 − θ−2) = −1, and

(i)|α+2| =
√

1 + m√
3

,

|α−1| =
√

2 − m√
3

,

α±1 = α0 = 0.
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