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Density-functional theory for the crystalline phases of a two-dimensional dipolar Fermi gas
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Density-functional theory is utilized to investigate the zero-temperature transition from a Fermi liquid to
an inhomogeneous stripe, or Wigner crystal phase, predicted to occur in a one-component, spin-polarized,
two-dimensional dipolar Fermi gas. Correlations are treated semiexactly within the local-density approximation
using an empirical fit to quantum Monte Carlo data. We find that the inclusion of the nonlocal contribution to
the Hartree-Fock energy is crucial for the onset of an instability to an inhomogeneous density distribution. Our
density-functional theory supports a transition to both a one-dimensional stripe phase and a triangular Wigner
crystal. However, we find that there is an instability first to the stripe phase, followed by a transition to the Wigner
crystal at higher coupling.
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I. INTRODUCTION

In this paper, we consider a strictly two-dimensional (2D),
spin-polarized, Fermi gas interacting via an isotropic, repulsive
dipolar interaction (i.e., all of the moments are aligned parallel
to the z axis), viz.

Vdd(r − r′) = Cdd

4π |r − r′|3 , (1)

where Cdd = μ0d
2, d is the magnetic dipole moment of

an atom (which we take to be charge neutral, e.g., 161Dy
with d ∼ 10μB ), and r and r′ are coordinates in the 2D
x-y plane. It will prove useful later to define the following
additional quantities: r0 = MCdd/(4π�

2), kF = √
4πρ, and

the dimensionless coupling constant, λ0 = kFr0. Here, M is
the mass of an atom, ρ is the 2D density, and |kF| = kF is the
2D Fermi wave vector.

The above system has received considerable theoretical
attention over the last few years (see, e.g., Refs. [1–12]), owing
to the possibility of experimentally observing the quantum
phase transition from the normal Fermi liquid (FL) to an
ordered state, e.g., a one-dimensional stripe phase (1DSP)
or triangular Wigner crystal (WC). The basic idea is that
because of the “long range” r−3 repulsive potential in two
dimensions, for a sufficiently large value of the dipole moment
(equivalently, density), it will be energetically favorable for the
system to spontaneously break translational invariance to an
inhomogeneous phase. In fact, to date, there is an unresolved
controversy in the literature when it comes to answering
the question of which inhomogeneous phase the 2D dipolar
Fermi gas (dFG) spontaneously possesses above some critical
coupling.

Early calculations within the random-phase approximation
suggested a transition to a 1DSP at kFr0 ≈ 0.61 [3,4], while
improvements including the so-called STLS scheme yield
kFr0 ≈ 6 [5]. More sophisticated investigations employing the
conserving Hartree-Fock (HF) approximation point to a 1DSP
transition occurring at kFr0 ≈ 1.4 [6–9]. Finally, utilizing
variational and quantum Monte Carlo (QMC) techniques, a
transition to a triangular WC phase at kFr0 = 29 ± 4 [10] and
kFr0 = 25 ± 3 [11,12], respectively, is predicted to precede
the formation of a 1DSP. Given the differing predictions of the
nature of the ordered phase, and the critical density at which

the system undergoes the transition, we feel that there is ample
motivation to present yet another theoretical approach to the
problem; in the present work, our method of choice is the
density-functional theory (DFT) [13].

Density-functional theory has already been successfully
applied to study the Wigner crystalline phase in the degenerate
2D [14–16], and 3D electron gas [17,18], and has recently
been implemented to study the equilibrium and collective
excitations of a harmonically trapped, 2D dFG [19–21], as
well as the study of (classical) crystallization of magnetic
dipolar monolayers in two dimensions [22]. It is therefore
quite reasonable to believe that an application of DFT to study
the quantum phase transition discussed above will likewise be
fruitful. Surprisingly, to our knowledge, no such investigation
specifically dealing with a degenerate 2D dFG has been
performed in the literature. We propose to fill this gap by
presenting a DFT which will allow us to weigh in on the nature
of the transition, the critical interaction strength at which the
transition occurs, as well as providing a useful test of the
various density functionals recently developed in the context
of the 2D dFG [12,19–21].

The rest of our paper is organized as follows. In the next
section, we develop a DFT for the study of the T = 0 2D dFG.
Section III presents our results for the onset, and nature of the
liquid-to-ordered phase. Finally, in Sec. IV, we present our
conclusions and closing remarks.

II. DENSITY FUNCTIONAL THEORY OF THE 2D
DIPOLAR FERMI GAS

At the heart of DFT is the construction of the total energy
of the system, which is a unique functional of the one-body
density, ρ(r), viz.

E[ρ] = K[ρ] + Eint[ρ] + Eext[ρ]. (2)

In Eq. (2), K[ρ] is the noninteracting kinetic-energy (KE)
functional of the system, Eint[ρ] incorporates all of the
quantum many-body interactions, and

Eext[ρ] =
∫

d2rρ(r)vext(r) (3)

is the energy functional associated with the external potential
vext(r) imposed on the system. A variational minimization of
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Eq. (2) with respect to the density ρ(r) leads to a description
of the zero-temperature (T = 0) ground-state properties of the
many-body system. For an arbitrary inhomogeneous Fermi
gas, the first two functionals in Eq. (2) are not generally known.
However, for a uniform, i.e., vext(r) = 0, spin-polarized 2D
Fermi gas at T = 0, the noninteracting KE is known exactly,
viz.

K[ρ0] = π
�

2

M

∫
d2rρ2

0 , (4)

where ρ0 is the uniform density. If the system is weakly
inhomogeneous, it is reasonable to assume that Eq. (4) is still
approximately valid, but with ρ0 → ρ(r); this is the so-called
local-density approximation (LDA), in which Eq. (4) is known
as the Thomas-Fermi (TF) KE functional.

Using the definitions introduced in Sec. I, Eq. (4) reads

K[λ] = 1

16π

�
2

Mr4
0

∫
d2rλ4. (5)

For a uniform system, λ → λ0 = √
4πρ0r0, while for the

inhomogeneous system, λ → λ(r) = √
4πρ(r)r0.

The T = 0 interaction energy functional Eint[ρ] for a
uniform, spin-polarized 2D dFG is also known semiex-
actly [12,19,20]. In particular, one can decompose Eint[ρ]
into

Eint[ρ] = E
(1)
dd [ρ] + Ecorr[ρ], (6)

where the first term in Eq. (6) is the HF energy, and the last
term takes into account the quantum many-body correlations.
The HF energy reads

E
(1)
dd [λ] = 8

45π2

�
2

Mr4
0

∫
d2rλ5, (7)

while the correlation energy is obtained using an empirical fit
to QMC data presented in Ref. [12], namely

Ecorr[λ] = − 1

32π

�
2

Mr4
0

∫
d2rλ6

× ln

(
1 + 1

a
√

λ + bλ + cλ3/2

)
, (8)

where a = 1.1958, b = 1.1017, and c = −0.0100. Equa-
tion (8) may be viewed as being semiexact up to λ0 = 70.

Putting everything together, a DFT for an inhomogeneous
2D dFG may be constructed through a standard application of
the LDA, λ → λ(r), to the functionals of the uniform system,
viz.

E[λ(r)] = 1

16π

�
2

Mr4
0

∫
d2rλ(r)4 + 8

45π2

�
2

Mr4
0

∫
d2rλ(r)5

− 1

32π

�
2

Mr4
0

∫
d2rλ(r)6

× ln

(
1 + 1

a
√

λ(r) + bλ(r) + cλ(r)3/2

)
. (9)

Note that for a uniform system, Eq. (9) is expected to be very
accurate [12].

III. RESULTS

Not surprisingly, Eq. (9) has been suggested as a promising
candidate for investigating the quantum phase transition from
the FL to an inhomogeneous ordered phase [12]. To this end,
we define the following quantity [15]:

�ε = εinhomo − εuniform = E[λ(r)] − E[λ0]∫
d2rρ0

, (10)

which represents the difference in energy (per particle)
between the inhomogeneous and uniform phases. We will
adopt the notation that ε always corresponds to an energy per
particle, scaled by �

2/Mr2
0 . To proceed, we evaluate Eq. (10)

by considering two different representations for the weakly
inhomogeneous density distribution. In our first case, we take
the exceedingly simple form,

ρ(r) = ρ0[1 + α cos(q · r)], (11)

λ(r) = λ0[1 + α cos(q · r)]1/2, (12)

which is suitable for studying, e.g., a 1D modulated density
profile. We also consider a density modulation that mimics a
2D triangular lattice, viz.

ρ(r) = ρ(x,y) = ρ0

[√
1 − 3

2
α2 + α cos(qx)

+ 2α cos

(
q

2
x

)
cos

(√
3

2
qy

)]2

, (13)

λ(r) = λ(x,y) = λ0

[√
1 − 3

2
α2 + α cos(qx)

+ 2α cos

(
q

2
x

)
cos

(√
3

2
qy

)]
. (14)

In the above, α � 1 characterizes the amplitude of the density
modulation around the uniform density ρ0, with α = 0 corre-
sponding to the liquid state. Note that ρ0 = ∫

d2rρ(r)/
∫

d2r

in both Eqs. (11) and (13).
Owing to the fact that α � 1, we may take a perturbative

approach, and only consider Eq. (10) up to O(α2). Using
Eq. (12) in the functionals defined in Sec. II, we obtain

�ε

α2
= 1

8
λ2

0 + 2

3π
λ3

0 − 1

8
λ4

0

[
3

2
ln[f0] + 11

16
λ0A + 1

16
λ2

0B

]

≡ 1

α2

(
�εTF + �ε

(1)
dd + �εcorr

)
, (15)

where

f (λ) =
(

1 + 1

a
√

λ + bλ + cλ3/2

)
, (16)

f0 ≡ f (λ0), f ′
0 ≡ df

dλ

∣∣∣∣
λ=λ0

, f ′′
0 ≡ d2f

dλ2

∣∣∣∣
λ=λ0

, (17)

A = f ′
0

f0
, (18)

B = f ′′
0 f0 − f ′2

0

f 2
0

. (19)
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FIG. 1. A plot of the three terms in Eq. (15). The dashed, dotted,
and solid curves correspond to the TF, HF, and correlation terms,
respectively. Inset: The sum of the three terms in Eq. (15). The axes
in the inset are as in the main figure.

Similarly, inserting Eq. (14) into the functionals above, we get

�ε

α2
= 3

2
λ2

0 + 8

π
λ3

0 − 1

4
λ4

0

[
9 ln[f0] + 33

8
λ0A + 3

8
λ2

0B

]

≡ 1

α2
(�εTF + �ε

(1)
dd + �εcorr). (20)

We remind the reader that all energies ε are per particle,
and scaled by �

2/Mr2
0 so that e.g., �ε is dimensionless. The

terms on the right-hand side of Eqs. (15) and (20) arise from
Eqs. (5), (7), and (8), respectively. It is important to note that
�ε is independent of q in both modulated density scenarios,
but this is a general result for any small amplitude, periodic
modulation to the liquid state. Consequently, it must be the
case that neither Eqs. (15) nor (20) allow for a transition
(i.e., �ε crossing through zero) to an inhomogeneous state,
as that would imply that the FL is unstable to an arbitrary
density fluctuation. We can confirm this assertion numerically
by examining Eq. (15) [similar results follow from Eq. (20)].

In Fig. 1, we present a plot of three terms occurring in
Eq. (15). The dashed, dotted, and solid curves correspond to the
TF, HF, and correlation terms, respectively. The inset to Fig. 1
displays the sum of the three terms, which clearly reveals that
�ε � 0. This result implies that, at the level of the DFT defined
by Eq. (9), the FL phase is always stable toward a transition to
an inhomogeneous density distribution. In order to understand
why the present DFT fails to predict a phase transition beyond
a critical coupling, we need to revisit our construction of the
total energy functional for an inhomogeneous system.

As an immediate step toward improving the quality of our
DFT, we may augment Eq. (5), with an ad hoc von Weizsäcker–
like (vW-like) gradient correction [23,24], which explicitly
takes into account the increase in the KE associated with a

nonuniform spatial density, viz.

KvW[ρ] = λvW
�

2

8M

∫
d2r

|∇ρ(r)|2
ρ(r)

, (21)

or in terms of λ and r0,

KvW[λ] = λvW

8π

�
2

Mr2
0

∫
d2r|∇λ(r)|2. (22)

The value of the vW coefficient in two dimensions typically
lies within the range 0 < λvW � 0.05 [20]. In our numerical
calculations, we will take λvW = 0.0184, as this is the value it
interpolates to in the thermodynamic limit [20].

The vW contribution, Eq. (22), introduces an additional
term to Eqs. (15) and (20). Specifically, Eq. (12) leads to

�εvW

α2
= λvW

(r0q)2

16
, (23)

whereas Eq. (14) gives

�εvW

α2
= λvW

3(r0q)2

4
. (24)

The dependence on q in the vW correction is characteristic
of going beyond the LDA, i.e., q 
= 0. While the inclusion
of the vW functional to the TF KE is known to provide
smooth equilibrium density distributions [20], and a good
description of the collective modes of the 2D dFG [21], its
resulting positive contribution to Eqs. (15) and (20) does not
alter the results gleaned from Fig. 1. In other words, a gradient
correction to the TF KE functional offers no remedy for the
absence of a phase transition.

Next, we examine more carefully the HF contribution to
Eint[ρ] in the case where the 2D dFG is inhomogeneous. As
mentioned above, it is generally accepted in most situations
that the HF energy, Eq. (7), for the uniform system, may be
used within the LDA for developing a DFT for investigating
inhomogeneous systems. However, in the present case, Eq. (7)
alone is clearly insufficient. Indeed, when dealing with an
inhomogeneous 2D dFG, the HF energy also has an inherently
nonlocal contribution, which up to now we have ignored.

The nonlocal piece to the HF energy is given by [19,20]

E
(2)
dd [ρ] = −Cdd

4

∫
d2rρ(r)

∫
d2r ′

∫
d2k

(2π )2
ke−ik·(r−r′)ρ(r′)

= −1

4
Cdd

∫
d2k

(2π )2
k|ρ̄(k)|2, (25)

where ρ̄(k) is the Fourier transform of ρ(r). Note that Eq. (25)
vanishes in the uniform limit, while its negative sign serves to
crucially lower the total energy of the system when the density
is nonuniform.

Inserting Eq. (11) into Eq. (25) gives

�ε
(2)
dd

α2
= −1

8
(r0q)λ2

0, (26)

while using Eq. (13) in (25) yields

�ε
(2)
dd

α2
= −3

2
(r0q)λ2

0. (27)

The q dependence in Eqs. (26) and (27) is again indicative
of the nonlocality of the theory. Including contributions from
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the vW and nonlocal HF energies leads to a modified energy
difference. For the density modulation specified by Eq. (11),
we obtain

�ε̃

α2
= 1

8
λ2

0 + λvW
q̃2

16
+

[
2

3π
− 1

8

q̃

λ0

]
λ3

0

− 1

8
λ4

0

[
3

2
ln[f0] + 11

16
λ0A + 1

16
λ2

0B

]
, (28)

where we have defined q̃ = qr0. Similarly, the triangular
symmetric density modulation of Eq. (13) gives

�ε̃

α2
= 3

2
λ2

0 + λvW
3q̃2

4
+

[
8

π
− 3

2

q̃

λ0

]
λ3

0

− 1

4
λ4

0

[
9 ln[f0] + 33

8
λ0A + 3

8
λ2

0B

]
. (29)

We will now use Eqs. (28) and (29) to study the transition to a
1DSP and triangular WC.

A. 1D stripe phase and triangular Wigner crystal

We begin by investigating the possible transition to a
1DSP. Specifically, we consider Eq. (28) under a density-wave
modulation, Eq. (11), with wave vector q̃ = 2kF r0ŷ, since it
is expected to have the lowest energy cost for the formation
of the stripe phase [6–9,25]. The solid curve in Fig. 2 depicts
the energy difference between the 1D stripe and the uniform
phase as λ0 is varied. We note that �ε̃ crosses zero, indicating
that the stripe phase has lower energy than the uniform phase
for λ0 = kF r0 � 1.4. The fact that �ε̃ changes sign also
nicely emphasizes the importance of including the nonlocal
HF energy E

(2)
dd to account for an instability in the liquid

phase. Our result for the onset of the transition compares
well with other theoretical approaches [6–9] which all yield
a value of λ0 ≈ 1.4, in agreement with our DFT prediction.
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FIG. 2. The modified energy difference, Eq. (28), for the 1D
stripe phase (solid curve) and triangular WC (dot-dashed curve).
The transition to a 1D stripe phase occurs at λ0 ≈ 1.38 while for the
triangular WC, λ0 ≈ 1.84.

One may be tempted to believe that the aforementioned
agreement is somewhat fortuitous; after all, the vW coefficient
λvW is still an adjustable parameter. However, even if we
set λvW = 0, we obtain kFr0 ≈ 1.3, which is still in good
agreement with earlier results. Moreover, in the extreme limit
of λvW = 1 (which is well outside of the realm of realistic
values, 0 < λvW � 0.05, discussed in Ref. [20]), the transition
is only shifted to kFr0 ≈ 3.4. Regardless, adjusting λvW within
the range 0 < λvW � 0.05, has no significant impact on the
location of the transition.

Following Ref. [15], one may also attempt to use Eq. (11)
to investigate the transition to a triangular WC phase. In this
case, the wave vector q̃ is related to the density by demanding
only one atom per primitive cell in a triangular lattice. We
readily find that

q̃ = qr0 =
(

8π

31/2

)1/2
λ0

2
. (30)

Using Eq. (30) in Eq. (28) leads to the dot-dashed curve
in Fig. 2, which changes sign at kFr0 ≈ 1.84. We therefore
conclude that the 1DSP is always the energetically favored
ordered phase, at least within the confines of the density
modulation ansatz, Eq. (11).

B. Triangular and square Wigner crystal

The results for the WC phase obtained above can be
improved upon by using Eq. (29), which we recall was derived
by employing the more realistic triangular symmetric density
modulation, Eq. (13). We will use Eq. (30) for the wave
vector [25] in Eq. (29) with λ0 being varied. The solid curve
in Fig. 3 indicates that there is a transition to a triangular WC
at kFr0 ≈ 1.52, which lies slightly below the value using the
density modulation, Eq. (11). However, Eq. (13) is a much
better representation for the WC phase, so we believe that the
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FIG. 3. The modified energy difference, Eq. (29), for the triangu-
lar WC (solid curve). The transition to a WC occurs at λ0 ≈ 1.52. The
dashed curve is taken from Fig. 2 (solid curve in Fig. 2). The dotted
curve is the modified energy difference for a square WC, Eq. (32).
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value kFr0 ≈ 1.52 is more trustworthy in the context of our
weakly modulated density profiles. The dashed curve in Fig. 3
is taken from Fig. 2 (where it is represented by the solid curve),
and is included to allow us to compare the relative energies of
the two ordered phases. We observe that the 1DSP transition
occurs before the WC, but as we increase the coupling strength
λ0, the WC phase becomes the energetically favorable ground
state. We note that there is only a very small window in which
the 1DSP is the preferred ordered state, suggesting that an
experimental verification of our results may be difficult. It
is also important to mention that our location for the WC
transition, kFr0 ≈ 1.52, is significantly lower than predicted in
Ref. [10] and Refs. [11,12], which give values of λ0 = 29 ± 4
and λ0 = 25 ± 3, respectively. Nevertheless, similar to what
was found in Ref. [11], the difference in energy between
the 1DSP and WC is quite small in the vicinity of the WC
transition.

It is a useful check of our DFT to briefly investigate the
case of a square lattice. In particular, we expect the square WC
to have a higher energy cost compared to either the 1DSP or
the triangular WC. In order to illustrate that our approach does
indeed correctly capture this notion, we show in Fig. 3 (dotted
curve) the results of a calculation for the square WC, viz.

ρ(x,y) = ρ0(
√

1 − α2 + α[cos(qx) + cos(qy)])2, (31)

and the associated modified energy difference,

�ε̃

α2
= λ2

0 + λvW
q̃2

2
+

[
16

3π
− q̃

λ0

]
λ3

0

− 1

8
λ4

0

[
12 ln[f0] + 11

2
λ0A + 1

2
λ2

0B

]
, (32)

with q̃ = qr0 = √
2λ0. It is clear that our DFT does indeed

correctly capture the well-known fact that the square lattice is
higher in energy than either the 1DSP or the triangular lattice
configuration. It is evident from Fig. 3 that the square lattice
will never be the favored ordered state given the possibilities
of forming either a 1DSP or a triangular WC phase.

It is difficult to pin down exactly why our critical coupling
strength for the WC transition is in such disagreement with
the QMC and variational approaches. Keeping in mind that
our density modulations are both smooth, and very weak,
we are not resolving the “high granularity” of the particle
density of the system in the WC phase. As a result, we
are only able to indicate that a transition to an ordered WC
phase is energetically favorable, so the lack of quantitative
agreement with the discrete QMC calculations is perhaps
not so surprising. On the other hand, the 1DSP is better
suited to our smooth density modulation scheme, which may
explain the good agreement with previous calculations. In the
following subsection, we will investigate if choosing a density
distribution highly localized at each lattice site significantly
changes our WC transition.

C. “Granular” Gaussian density

In order to establish if a different density profile for the
triangular crystalline phase has a significant affect on the
transition, we use a Gaussian density ansatz, and perform
a nonperturbative analysis (i.e., there is no small parameter

associated with a weak density modulation) for the energy
difference between the liquid and crystal phases. Specifically,
we consider the Bravais lattice vectors of the triangular lattice,

a1 = a(1,0), a2 = a

(
1

2
,

√
3

2

)
, (33)

and the associated reciprocal-lattice vectors,

k1 = 2π

a

(
1,− 1√

3

)
, k2 = 2π

a

(
0,

2√
3

)
. (34)

Here, the lattice constant, a, is linked to the density by requiring
one atom per unit cell, viz.

a =
√

2√
3ρ0

. (35)

In terms of λ0 and r0, we have

a =
√

8π√
3

r0

λ0
. (36)

The unit cell itself is defined by the region

y =
√

3x, y =
√

3x −
√

3a, y = 0, y =
√

3

2
a. (37)

Next, we define our “granular” density distribution with
triangular symmetry, viz.

ρ(r) = α

π

∑
m,n

e−α|r−Rmn|2 , (38)

where Rmn = ma1 + na2. The quantity α is a localization
parameter, and m and n are positive or negative integers,
including zero. Note that we have chosen a simple form, where
each Gaussian is isotropic, which is well justified close to the
positions of the Bravais lattice vectors [22]. Equation (38) may
also be written as a summation of the reciprocal-lattice vectors,
viz.

ρ(r) = ρ0

∑
m,n

e−k2
mn/4αeikmn·r, (39)

where kmn = mk1 + nk2.
We now define the following dimensionless quantities: α̃ =

α/ρ0, ã = a
√

ρ0, x̃ = x
√

ρ0, and ỹ = y
√

ρ0. Equation (38)
then reads

ρ(r̃) = α̃ρ0

π

∑
m,n

e−α̃|(x̃,ỹ)−
√

2/
√

3[m(1,0)+n(1/2,
√

3/2)]|2 , (40)

which can be written as

4πr2
0 ρ(r̃) = 4πr2

0 ρ0
α̃

π

∑
m,n

e−α̃|(x̃,ỹ)−
√

2/
√

3[m(1,0)+n(1/2,
√

3/2)]|2 ,

(41)

or finally,

λ(r̃; α̃) = λ0

[
α̃

π

∑
m,n

e−α̃|(x̃,ỹ)−
√

2/
√

3[m(1,0)+n(1/2,
√

3/2)]|2
]1/2

.

(42)

023614-5



B. P. VAN ZYL, W. KIRKBY, AND W. FERGUSON PHYSICAL REVIEW A 92, 023614 (2015)

The region defining the unit cell, now in terms of dimensionless
quantities, reads

ỹ =
√

3x̃, ỹ =
√

3x̃ −
√

2
√

3, ỹ =0, ỹ =
√√

3

2
. (43)

The total energy for the inhomogeneous system is then given
by Eq. (9), supplemented with Eq. (25). It is useful to note that
Eq. (25) can be solved analytically by using Eq. (39). The final
result of such a calculation leads to the nonlocal piece of the
HF energy,

ε
(2)
dd = −

(
π

8
√

3

)1/2

× λ3
0

∑
m,n

√
m2 − mn + n2e−(4π2/

√
3α̃)(m2−mn+n2). (44)

We numerically investigate the total energy per particle,

ε̃(α̃) = E[λ(r̃; α̃)]∫
d2rρ0

, (45)

of the ordered phase as follows. For a fixed λ0, we calculate
the total energy, with α̃ as a variational parameter. We look
for a minimum in ε̃(α̃) for some α̃, and use that as the energy
for the inhomogeneous phase. If the minimum is at α̃ = 0, the
system is in the liquid state.

The findings from this numerical investigation are sum-
marized in Fig. 4, where we have taken λvW = 0.0184 [26].
The solid and dashed curves are the total energy per particle
of the uniform and inhomogeneous phases, respectively. We
note that at λ0 = kFr0 ≈ 1.68, there is a bifurcation, indicating

1.5 1.6 1.7 1.8 1.9 2
1.2

1.4

1.6

1.8

2

2.2

ã

ε̃
un

it
s

of
2

M
r2 0

λ0 (dimensionless)

FIG. 4. The energy per particle for the uniform phase (solid curve)
and the triangular WC (dashed curve). The transition to a WC occurs
at λ0 ≈ 1.68, indicated by the vertical arrow in the figure. Inset: A
contour plot of the density distribution for λ0 = 1.8 and α̃ = 8.3
(corresponding to the minimum in the total energy). White: maximal
density. Black: vanishing density. The dimensionless lattice constant

is ã =
√

2√
3
.

that a transition to the WC takes place (i.e., the energy of
the triangular lattice is lower than the liquid phase). We can
compare this transition location to λ0 ≈ 1.84 and λ0 ≈ 1.52
found in Secs. III A and III B, respectively. We do not believe
that there is any significance to the fact that λ0 = 1.68 lies
exactly in the middle of the previous transition locations. We
conclude that the precise form of the density profile does affect
the location of the transition, although it does not alter the fact
that our DFT predicts the formation of a 1DSP before the
formation of a WC. It is also evident that in spite of using a
localized density distribution at each lattice site (see inset to
Fig. 4), our location for the transition to a WC is still in drastic
disagreement with Refs. [10–12].

To gain some additional insight into this discrepancy, it
is instructive to consider the limiting case of “point” dipoles
arranged on a triangular lattice [i.e., this would correspond to
the large α limit in Eq. (39)]. We can then calculate the total
potential energy per dipole, and compare it to what is obtained
in DFT in the same limit. For the triangular lattice, the total
potential energy per ideal dipole is (units of �

2/Mr2
0 )

Udd = 1

2

(√
3

8π

)3/2

λ3
0

∑
m,n

′ 1

(m2 + mn + n2)3/2

≈ 5.52

(√
3

8π

)3/2

λ3
0, (46)

where the primed summation denotes omission of the m =
n = 0 term. We note that Udd > 0, as expected for repulsive
dipolar interactions. However, in our DFT, the HF energy,
E

(1)
dd + E

(2)
dd , dominates in the high density, localized limit, and

leads to an unphysical divergence of the interaction energy to
negative values. For this reason, we cannot go beyond λ0 = 2
for the inhomogeneous system in Fig. 4, since a minimum
in ε̃(α̃) is no longer found for any α̃; the implication being
that the system is unstable to the formation of a WC for any
α̃ 
= 0. The diverging negative energy likely arises from the
fact that the LDA to the HF energy, E(1)

dd > 0, is being severely
underestimated in the localized limit. On the other hand, E(2)

dd <

0 has no approximations in its form, and is not subject to the
LDA. We therefore suggest that the large discrepancy between
the QMC and DFT predictions for the location of the WC
transition may be in part attributed to the breakdown of the
LDA for the HF energy functional in the highly localized
limit. In fact, there is a delicate balance between the positive
and negative energy contributions to the total energy, and a
relatively small change to one of the functionals can cause a
large shift for the critical λ0 of the WC transition.

IV. CONCLUSIONS AND CLOSING REMARKS

We have presented a DFT for a 2D dFG, and applied it to
examine the instability of the normal FL to an ordered phase.
In Secs. III A and III B, a perturbative approach was used,
and it was found that a 1DSP forms at kFr0 ≈ 1.38, followed
by a transition to a triangular WC at kFr0 ≈ 1.52. While our
prediction for the onset of the 1DSP is in agreement with other
theoretical calculations, our value for the onset of the WC is an
order of magnitude smaller than estimates based on variational
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and QMC calculations. In Sec. III C, a highly localized density
distribution at each site of the triangular lattice was used to
investigate if the transition to a WC could be brought into
better agreement with the QMC results. Unfortunately, even
with this more realistic density profile, the order of magnitude
discrepancy for the location of the WC between our DFT
and QMC calculations cannot be resolved. We suggest that
further tests of the efficacy of the LDA used for the HF
energy functional need to be performed to determine if it is
the root cause of the large discrepancy. Regardless, we are
confident that our DFT result, indicating that a 1DSP precedes
the formation of a triangular WC, is qualitatively correct given
that the perturbative calculations in Secs. III A and III B do
not probe the highly localized limit, where the LDA may be in
peril.

One of the other significant aspects of this work was
showing that the nonlocal part of the HF energy is absolutely
crucial for the onset of the density instability. This is an
important point, given that in some energy functional based
approaches (see, e.g., Refs. [4,27]), the nonlocal HF energy
is completely ignored; that is, the total energy functional of
the uniform system (which manifestly ignores the nonlocal
HF term) is used for investigating inhomogeneous systems.

As a result, instabilities only arise from the anisotropic dipolar
interaction, which can become attractive when the moments
are canted at an appropriate angle relative to the z axis. Along
these lines, it would be of great interest to extend the present
DFT to be able to deal with a fully anisotropic 2D dipolar
interaction, and construct the phase diagram of the instabilities
in both the repulsive and attractive regimes. In addition,
including an external potential is, in principle, straightforward
in DFT, thereby opening up the possibility of studying the
influence of magneto-optical traps on the density instabilities
studied in this paper. Finally, we plan on extending the present
work to include an examination of the affect of temperature
on the formation of the stripe and Wigner crystal phases.
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