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Bayesian inference to characterize Josephson oscillations in a double-well trap
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We use quantum trajectories to simulate Josephson oscillations of atomic condensates between the two sides
of a double-well potential. In the simulations the atoms in both wells are monitored using off-resonant light
scattering, and the ultimate outcome of our thought experiment is a sequence of photon counts probing the
numbers of the atoms in each potential well. We show how to reconstruct the Josephson oscillations from
the observed photon counts using Bayesian inference, and study the oscillations quantitatively by averaging
the inferred time-dependent oscillation amplitude over a large number of realizations. Scaling behaviors that
characterize the oscillations are uncovered and related to physics principles such as measurement back-action. It
turns out that the scalings hold true for quite small atom numbers, so that in this sense four atoms in a potential
well may already make a Bose-Einstein condensate.
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I. INTRODUCTION

Spontaneous symmetry breaking is one of the main organiz-
ing principles in condensed-matter physics. Particularly rele-
vant for the present purposes is the notion that a Bose-Einstein
condensate (BEC) of atoms is not only characterized by a
macroscopic occupation number of a single-particle quantum
state, but also has an order parameter akin to a macroscopic
wave function associated to it. The order parameter has a global
phase that supposedly originates from spontaneous breaking
of the “gauge” or U(1) symmetry. The Gross-Pitaevskii
equation for a BEC deals with such a macroscopic wave
function [1].

A global phase per se has no consequences. However, when
two condensates with their own phases are allowed to interfere,
the interference pattern should depend on the phase difference.
This makes at least the phase difference observable. Traditional
textbook descriptions [2] of the Josephson effect [3] work this
angle: The current carried by tunneling Cooper pairs should
depend on the difference of the phases of the order parameter
across the tunneling junction.

This idea was transferred early on [4] to a double-well
potential that holds two atomic BECs, one on each side, and
also permits tunneling between the potential wells. Even if
the wells are symmetric and the condensates initially seem
identical, as a result of the symmetry-broken phases the atoms
should start oscillating back and forth between the potential
wells. The amplitude of the oscillations, the fraction of the
atoms that get transferred, should depend on the initial phase
difference, and should vary at random from experiment to
experiment if the condensates are prepared independently with
no relation between their phases.

However, theoretical studies of the interference fringes that
may or may not ensue when two condensates are overlaid
have revealed that no spontaneous symmetry breaking or
condensate phase is needed for interference [5–8]. More recent
developments of the theme are described in Refs. [9,10].
Formulated in terms of Ref. [5], even if the condensates are
initially in number states with nothing to fix the spatial phase
for the interference pattern, the correlations unveiled by the
measurements of the positions of the individual atoms produce
it anyway: While the position of the first detected atom may

be completely random, the correlations built in the state of
the system make some positions for the second detected atom
more likely than others, and so on. The result is an interference
pattern as if the condensates did have phases, albeit phases that
vary at random from one run of the interference experiment to
the next.

The interference between two condensates was demon-
strated experimentally long ago [11], and the interference of
an array of condensates has also been studied experimentally
[12–14]. The array experiments [12–14] support the picture
that the phases of independently prepared condensates are
independent random variables that change from one run of
the experiment to the next. Curiously, though, there appears to
be no explicit experimental demonstration in the literature to
the effect that for two independently prepared condensates the
phases should vary at random.

Since spontaneously broken symmetry is not needed for
spatial interference of condensates, the idea is near that the
same applies also in the time domain, to the Josephson
effect. This was demonstrated theoretically in Ref. [15]. The
authors study a double-well potential with atoms inside. In
this model the numbers of atoms on both sides of the double
well are monitored by scattering of off-resonant light, and
the measurement back-action of the monitoring was properly
taken into account. Individual experimental runs were modeled
using quantum trajectory simulations [16–18]. In each run the
expectation values of the atom numbers on the two sides of
the double-well potential were shown to oscillate in time in
a manner consistent with Josephson oscillations, even if the
atoms started in number states on both sides.

The double-well model can be nonlinear in that atom-atom
interactions may, for instance, give rise to trapping of the atoms
on either side of the trap [19]. Along the lines of Ref. [15]
and following leads from a number of earlier analyses of
the transition from quantum to classical dynamics [20–23],
it may be demonstrated that even such nonlinear dynamics
can be derived ab initio from linear quantum mechanics using
quantum trajectory simulations [24], and that proper modeling
of the measurement back-action allows one to discuss the
double-well system using nonlinear classical mechanics down
to such small atom numbers that, one would think, full
quantum mechanics should already be used [25].
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There have been clean experimental observations of the
dynamics of atoms in two-well systems [26–28]. However,
ironically, again we know of no example in which Josephson
oscillations in a symmetric trap starting from independent
condensates with the same number of atoms on both sides
would have been verified experimentally.

Nonetheless, the simulations of the Josephson effect we
have mentioned up to now [15,24,25], linear or nonlinear,
suffer from a common weakness: The computed quantity is a
quantum trajectory, a time-dependent stochastic state vector,
and the oscillations of the atoms appear in the expectation
values of the atom numbers obtained for such a state vector as a
function of time. These expectation values have no operational
significance, as in the experiments modeled with the quantum
trajectories atom numbers are not directly measured. What is
observed instead is photon counts coming from two detectors,
each of which looks at the light scattered from the atoms in
one of the wells.

A large counting rate of light scattered from one well and a
simultaneous small counting rate for the other would obviously
tell us that the majority of the atoms are in the former well,
but this is a rather qualitative observation. In this paper we
demonstrate a way to model quantitatively the oscillations of
the atoms on the basis of the only data directly available, the
photon counts. We employ Bayesian inference [29–31].

We first set up a toy model in which the atoms oscillate
sinusoidally back and forth in the double well with some
constant amplitude and phase, and the rate of photon counts
on each detector is proportional to the square of the number
of atoms in each well—square because in our detection model
the electric fields of light scattered from the atoms add up, not
the intensities. We then devise a Bayesian inference scheme
that deduces the amplitude and phase of the oscillations from
the photon counts as they keep on accumulating.

Unfortunately, an attempt to apply the same scheme to the
photon counts obtained from quantum trajectory simulations
of the Josephson oscillations reveals that the inference is what
we like to call “stiff”: The apparent amplitude and phase of the
Josephson oscillations are not constants, and Bayesian infer-
ence that assumes constant values gets increasingly reluctant to
follow the changing parameters as more counts accumulate. An
inspection of how the inference works reveals the reason, and
we may devise a remedy. Basically, the inference continuously
narrows the joint probability distribution for the amplitude and
phase, while our added algorithm artificially broadens it.

Given a working inference scheme, we may then study
the properties of Josephson oscillations. For instance, while
the oscillations themselves average out to zero over many
experimental realizations, the amplitudes do not, and we may
collect statistics about the behavior of, say, the amplitude as
a function of time. The main achievement here is that we are
able to characterize the Josephson oscillations quantitatively.

The simulations vary in atom number and detection
strength, the latter being a measure of the overall rate of
photon scattering. The first main observation is that the data
fold basically on the same curves when discussed in terms
of judiciously chosen dimensionless parameters, such as the
number of detected photons per atom. Second, one might think
that the Josephson oscillations are a property of the system that
emerges in the limit of a large number of atoms, but this turns

out not to be the case: The scalings work all the way down
to the level of just a few atoms in the double-well potential.
This is yet another example [25,32] where a basically classical
model remains valid to unexpectedly low atom numbers.

In the following we expand this narrative with technical
details. A discussion of the outcomes concludes the paper.

II. JOSEPHSON OSCILLATIONS

A. Spontaneously broken phase symmetry

We study a symmetric two-well system under the two-mode
approximation, or equally well, the two-site version of the
Bose-Hubbard model. The Hamiltonian is

H

�
= −J (a†b + b†a) + U (a†a†aa + b†b†bb), (1)

where a and b are the boson operators for the atoms at the
two sites, J characterizes the tunneling between the wells, and
U is a measure of the on-site atom-atom interactions. From
now on, though, we only consider noninteracting atoms and
set U = 0. Generically speaking, we assume that there is a
large number of atoms on both sides of the trap, and think of
the bosons as making a condensate in each side of the trap.

In the usual way one may find a semiclassical version of
the two-well problem by taking the Heisenberg equations of
motion of the boson operators and declaring that, instead
of the boson operators a and b, we have c-number quantities
α and β. We then have

ȧ = iJ b, ḃ = iJ a; α̇ = iJβ, β̇ = iJα. (2)

From here on we denote the total atom number by N . For
simplicity of the discussion we always take it to be an
even integer. The atom number operator N = a†a + b†b is
conserved in quantum theory, and so is its counterpart in the
semiclassical approach, N = α∗α + β∗β.

Suppose the semiclassical description starts at t = 0 with
exactly half of the atoms in each trap, and that the condensates
have the phases φa,b. This means that initially we have

α =
√

N

2
eiφa , β =

√
N

2
eiφb . (3)

It is easy to work out the expression for what we here and
below call population imbalance,

z(t) = |β|2 − |α|2
N

= sin � sin 2J t. (4)

The atoms thus oscillate back and forth between the traps at
the angular frequency 2J , and the amplitude of the oscillations
depends on the initial phase difference � = φb − φa .

One way of formulating the quantum problem is in terms of
the expectation values of the atom numbers. Assume that in the
initial state at t = 0 the expectation values of atom numbers
and the cross-expectation value read

〈a†a〉 = 〈b†b〉 = N

2
, 〈a†b〉 = N

2
ei�. (5)

This would be the case if the system started with the
bosons in the a and b modes in coherent states with the
corresponding coherent-state parameters

√
N
2 eiφa and

√
N
2 eiφb

with � = φb − φa . Now, the atom number in a coherent state
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is indeterminate, but the same expectation value of 〈a†b〉 also
results more plausibly from a so-called phase state in which
the total atom number in the double-well trap is fixed [9,10].
Either way, the population imbalance expressed in terms of
quantum-mechanical expectation values becomes

z(t) = 〈b†b〉 − 〈a†a〉
N

= sin � sin 2J t. (6)

The standard assumption in boson systems in fact is that
the “gauge” or phase symmetry is spontaneously broken in
a BEC, so each of the condensates on the two sides of the
double well should have some definite phase. We then expect
something like 〈a†b〉 = N

2 ei� to hold true, and oscillations
should result. This was the essence of the original argument
for the oscillations of the condensates between the two sides
of the trap as in Ref. [4]. However, one would rather think
that independent initial preparation of the condensates would
produce gases with definite (even if unknown) atom numbers,
i.e., number states. Then the cross-expectation value must
be 〈b†a〉 = 0, and no oscillations should ensue. The issue of
Josephson oscillations forcefully arises when we assume that
the two bosonic modes start out in the number states with N/2
atoms on each side, and ask if there will be oscillations.

We have reason to believe that Josephson oscillations would
take place in spite of the seeming inconsistency in the quantum-
mechanical prediction. The crux is that a quantum-mechanical
expectation value stands for the average over a large number of
experiments. If the atom numbers in the traps could be followed
as a function of time in an individual run of an experiment,
there is nothing to preclude Josephson oscillations. The
agreement with the quantum-mechanical expectation values
can be restored because the seeming initial phase difference �

varies at random from one run of the experiment to the next,
and over many experiments the oscillations would average out.
This is the angle we pursue here.

B. Measurements produce oscillations

As was shown in Ref. [15], there should be Josephson
oscillations. The argument has two legs. First, suppose far-
off resonant light is shone on the condensates, and the light
scattered from each well is collected separately. Assuming
mode matching between the condensates and the detection
light, the fields from each atom add. A measuring device whose
response is proportional to the intensity of light therefore sees
a signal that is proportional to the square of the number of
atoms. The back-action of the detection in such a measurement
is reasonably modeled by a Lindblad form [33,34] Liouville
superoperator L that maps the density operator of the two-well
system as

Lρ =
∑
i=a,b

[LiρL
†
i − 1

2 (ρL
†
i Li + L

†
i Liρ)], (7)

with La = √
� a†a and Lb = √

� b†b. Here � is a parameter
that governs the strength of the measurement, and of the back-
action as well. It may be adjusted by adjusting the tuning and
the intensity of the detection light. The full equation of motion
of the density operator of the atoms in the two potential wells

reads

ρ̇ = −i[H/�,ρ] + Lρ. (8)

The management of the numerical solution of Eq. (8) and
sorting-out of the results is achieved most easily if the
analysis employs properly chosen dimensionless quantities.
One natural unit is the period of the expected Josephson
oscillations. The (angular) frequency of the oscillations should
be 2J , so the oscillation period is π/J . In our final results
we therefore express the running time t in terms of the
dimensionless quantity

τ = J t

π
(9)

that counts the periods of the expected Josephson oscillations.
On the other hand, a representative number of atoms on both
sides of the trap is N/2 and a characteristic rate of the emission
of photons from each trap is �(N/2)2. Instead of the rate �

we therefore use the typical number of photons emitted from
each well during a period of the Josephson oscillations,

γ = π�N2

4J
, (10)

to quantify the strength of the detection. The variables τ and
γ will indeed neatly remove much of the dependence on the
parameters N and J from the problem. We continue to display
N , �, and t in our development, but the results are usually
expressed in terms of γ and τ .

As was also done in Ref. [15], as the second leg of the
argument we solve the master equation (8) by means of
quantum trajectory simulations [16–18]. The idea is to find a
swarm of stochastically evolving state vectors |ψ(t)〉, quantum
trajectories, so that when one calculates the expectation value
of any system observable at any particular time for each
quantum trajectory and averages the result over the quantum
trajectories in the swarm, the result approximates the result that
would be obtained by directly solving the master equation (8)
of the density operator and calculating the expectation value
from the density operator.

Here we employ a numerically efficient version [17,34] of
the simulations that runs as follows. We start every trajectory
from a number state with half of the atoms in each potential
well. Two types of time evolution will occur. First, the state
vector evolves under the non-Hermitian effective Hamiltonian

HE = H − 1
2 ��[(a†a)2 + (b†b)2]. (11)

This evolution shrinks the norm of the state vector, which leads
to the second type of evolution. Namely, given a normalized
initial state, we first pick a uniformly distributed random
number ξ ∈ (0,1). We then integrate the time-dependent
Schrödinger equation for the state vector |ψ(t)〉 under the
effective Hamiltonian (11) up to a time such that the norm
has reached the value ξ . At this time a “quantum jump” takes
place. With the respective probabilities

Pa = 〈ψ |(a†a)2|ψ〉
〈ψ |(a†a)2|ψ〉 + 〈ψ |(b†b)2|ψ〉 , Pb = . . . (12)

the algorithm picks the state to be |ψ〉a = a†a|ψ〉 or |ψ〉b =
b†b|ψ〉. The state is then normalized, a new random number
ξ is picked, and the algorithm starts over. In practice we have
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FIG. 1. (Color online) Population imbalance z as a function of
dimensionless time τ for a single quantum trajectory. The parameters
are particle number N = 128 and dimensionless detection strength
γ = 10.

performed some surgery on Numerical Recipes [35] adaptive-
stepsize differential equation solvers so that the driver routine
finds the solution to the equation 〈ψ(t)|ψ(t)〉 = ξ internally,
and simply restarts the integration at that time.

At this point we have a swarm of quantum trajectories. Now,
since we have a time-dependent (albeit unnormalized) state
vector |ψ(t)〉 for each trajectory, there is nothing to prevent us
from formally computing the population imbalance z(t) as in
Eq. (6) for it. The operational significance of this z(t) is hazy
since a comparison with prediction and experiment would then
call for repeated experiments with the same quantum trajectory
|ψ(t)〉 prepared over and over again. However, the trajectory
is just a formal construct to solve the master equation, and the
proper averaging should involve averaging over the members
of the swarm of quantum trajectories derived from different
random numbers ξ in each simulation, not averaging over the
same single trajectory.

Nevertheless, the simplified average produces Josephson
oscillations in z(t) that (for suitable measurements strengths)
are at least in qualitative accord with the symmetry breaking
arguments [15]. For an example, see Fig. 1 that presents the
population imbalance as a function of the dimensionless time
τ for the detection strength γ = 10. Here the atom number
is N = 128. After an initial startup, the imbalance evidently
suggests back-and-forth oscillations of the atoms between the
two potential wells.

The final argument that puts the quantum trajectory sim-
ulations on a firm basis follows from the (highly idealized)
assumption that every scattered photon is also detected on
a photodetector. We take it from the discussions in, say,
Refs. [31,34] that the statistics of the quantum jumps in one run
of the simulation is exactly the same as the statistics of photon
detection events in one run of the corresponding experiment.
A quantum trajectory simulation should therefore be a faithful
simulation of an experiment: each quantum jump corresponds
to detection of a photon. Besides, in the scheme we have thus
described, the detected photons are the actual and exclusive
outcome of a single experiment, not the somewhat fictitious
imbalance z(t). The question that we must pose is then about
the relation between the oscillations of the atoms and the

photon counts on the detectors: How to infer continuous
oscillations of the atoms from the discrete photon counts?

III. BAYESIAN INFERENCE OF OSCILLATIONS

A. Analyzing steady oscillations

To get a handle on the photon counts, we begin with a
simple model saying that the atoms oscillate sinusoidally back
and forth between the traps so that the population imbalance
behaves as

z(t) = A sin(2J t + φ), (13)

where A and φ are the constant amplitude and phase of the
oscillations. Moreover, we assume a detection strength such
that the instantaneous rate of photon counts on each detector
is � times the square of the number of atoms in each potential
well. The probability of a photon count on each detector over
a short time interval 
t is therefore

Pa,b = 
t N2�

4
[1 ∓ z(t)]2. (14)

The meaning of the parameter � here is precisely the same
as in the quantum trajectory simulations. We take the time
step 
t to be so small that the probability for more than one
detected photon during 
t is very small, and divide time into
intervals of width 
t that we label by, say, their final times:
tn = n
t , n = 1,2, . . .; t0 = 0 is reserved for the initial time.

1. Bayesian inference

Suppose we generate a random sequence of detection
events according to the probabilities (14) at times tn. For an
asymptotically small time step 
t the most likely outcome
actually is that there is no photon detection, which occurs with
the probability

P0 = 1 − Pa − Pb, (15)

but occasionally we do have either an a or a b count. Let us
collective denote these three outcomes as c, and the outcome
at time tn as cn.

Knowing the parameters N , �, and J it is possible to
backtrack the parameters of the oscillations A and φ from
the synthesized photon counts or the absence thereof, cn,
using Bayesian inference; see, e.g., [29,30]. The basic idea is
simple and well known. Regard the parameters A ∈ [0,1] and
φ ∈ [0,2π ), collectively p ∈ [0,1] × [0,2π ), also as random
variables. Equations (14) and (15) may then be viewed as
specifying the conditional probability for the experimental
outcome c given the parameter value p, Pn(c|p). Here
the probability law depends on the time step through the
time dependence in Eq. (14). The famous Bayesian formula
expresses the probability for the parameter value p conditioned
on the experimental outcome c, Pn(p|c) as

Pn(p|c) = Pn(c|p)Pn(p)

Pn(c)
, (16)

where Pn(p) and Pn(c) are the unconditional probabilities for
the parameters and experimental outcomes at the time step n.

Assume now that at time tn we have an estimate for the
probabilities of the parameters p, Pn(p). If an experiment
during the next time step produces the outcome cn+1, the
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updated probability distribution for the parameters at time tn+1

is the one conditioned on this outcome cn+1. We therefore have

Pn+1(p) = Pn+1(p|cn+1) = Pn+1(cn+1|p)Pn(p)

Pn+1(cn+1)

= Kn+1Pn+1(cn+1|p)Pn(p), (17)

where Kn+1 is independent of p and may simply be chosen
after the fact so that the Pn+1(p) for all p add up to 1. We
assume that initially we have no knowledge of the values
of the parameters A and φ and set an even distribution for
them over the intervals A ∈ [0,1] and φ ∈ [0,2π ) as the initial
distribution P0(p).

2. Numerical details

In practical implementations the generation of photon
counts and the inference are separate issues, and one may well
use different time steps for each. From now on we assume
that the generation and the analysis of the photon counts are
decoupled in this manner. As far as the inference is concerned
the only question is whether there is a count in the detection
interval 
t , and if so, is it an a or a b count. Now, since we
know that the characteristic rate of the counts in each channel
is N2�/4, the expected number of counts in each time step
and in each channel is approximately N2�
t/4. This means
that for each channel we go on the average about

s = 4

N2� 
t
= π

γJ
t
(18)

time steps between the jumps. This is another convenient
dimensionless variable that seems to correctly capture a scaling
in the problem.

In our examples we always use s � 20; the code determines
the actual value from other considerations such as the time step
we wish to use to plot the results. In this way the time step
for inference appears to work well in practice. Nevertheless,
whatever value of the time step, it may happen that there is
more than one count during any particular time step of the
inference anyway. In such a case our code keeps on halving
the inference time step recursively until only at most one count
is found in each reduced time step. For instance, suppose that
there are initially two counts in an interval and after the halving
both counts are still in one of the half-intervals. Then the
half-interval without counts is kept as is and the half-interval
with two counts is halved again. Naturally, one cannot store
continuous-valued probability distributions, which must be
discretized for numerical purposes. Below we always use
nA = 101 equidistant values of A, as in 0,0.01, . . . ,1.00, and
nφ = 100 values of φ, as in 0, 0.01 × 2π, . . . ,0.99 × 2π . The
statistical fluctuations of A and φ in the runs of Bayesian
inference giving the final results of this paper are at least a few
times larger than the discretization steps.

The joint probability distribution of A and φ tends to get
more tightly confining with an increasing number of time steps,
and numerical underflow has proven to be a distinct possibility
outside of the high-probability region of A and φ. That is why
we actually store the logarithm of the probability distribution
of the parameters A and φ, not the distribution itself.

The final issue is how one should read out the results of
the inference. Three alternatives were used in this work for the

oscillation amplitude. First, we may simply calculate the mean
value of the amplitude AE (E as in “expectation value”) from
the joint probability distribution Pn(p) of A and φ. Second,
we may compute the marginal distribution of the variable A

and report the most probably value AM for it. Third, we may
use the average of the two, AA = 1

2 (AE + AM ). Obviously,
the narrower the probability distribution gets, the smaller is
the difference between these alternatives. In the analysis of
simulations of actual Josephson oscillations as described in
Sec. III B 1 below we have noticed that the expectation value
AE tends to avoid the extreme amplitudes 0 and 1 and the
most probable value AM tends to get stuck at them. From now
on we therefore always report inference results in terms of
the average of the two, AA, which partly cures both ills, and
denote it simply by A. The standard deviation in the inference
σA is, when needed, obtained from the probability distribution
Pn(p).

For the phase φ we use a process that takes into account
the fact that phases separated by an integer multiple of 2π are
equivalent to estimate the mean and standard deviation of the
phase from the probability distribution Pn(p),

φE = arg 〈eiφ〉, σφ =
√

− ln |〈eiφ〉|2 . (19)

There are no extreme values for the phase, no associated
problems, and no remedies. We report φE , and denote it
by φ.

3. Example on Bayesian inference

The process of inference is illustrated in Fig. 2. We set A =
0.7 and φ = 0, and generate a sequence of counts according
to Eqs. (14) and (15) for the detection strength γ = 5 using
a very small time step. The upper graph shows the original

-1.0

-0.5

0.5

1.0

τ

FIG. 2. (Color online) Upper: Sinusoidal oscillations over five
periods (solid blue line), counting events synthesized according to
Eq. (14) represented with bars from 0 to 1 for detector b and from 0
to −1 for detector a (solid green lines), and the predicted oscillations
using the values of the parameters of the oscillations A and φ inferred
as the counting events accumulate (dot-dashed red line). The actual
values of the parameters were A = 0.7 and φ = 0, and the detection
strength was γ = 5. Lower: The probability distribution P of the
parameters A and φ from Bayesian inference at times τ = 1 (left)
and τ = 10 (right). The distributions are unnormalized and scaled
to the same maximum value. There are a few unusually thick green
vertical bars because of two counts that are not resolved in the figure.
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oscillations (solid blue line) and the counting events for the two
detectors (vertical green bars). Also shown are the “predicted”
oscillations obtained from Eq. (13) using the values of A and
φ that are continuously updated as the inference proceeds
(dot-dashed red line). At the bottom we have the unnormalized
probability distributions for the parameters A and φ from
Bayesian inference after τ = 1 and τ = 10 periods of the
sinusoidal oscillations. Evidently the inference has found a
reasonably good estimate for the parameters already after one
period of the oscillations, after a total of about ten recorded
counts, and the inference gets increasingly accurate as the
counts keep on accumulating.

B. Analyzing simulated photon counts

The previous Sec. III A showed how the Bayesian inference
works with an artificial test signal corresponding to steady
oscillation of the atoms between the traps. We next apply the
inference to analyze the photon counts (quantum jumps) from
quantum trajectory simulations. The hypothesis is that the
atoms actually oscillate back and forth and the photon counts
obey the description of Eqs. (13)–(15). The goal is to find the
amplitude and phase of the oscillations from the photon count
data.

The problem one may immediately anticipate in view of
Fig. 1 is that the simulated photon counts do not correspond
to oscillations of the atoms with a constant amplitude, and
possibly not a constant phase either. In fact, we have found
that, as time goes on, the straightforward Bayesian inference
becomes stiff; the inferred amplitude follows the changes of the
oscillations in the computed population imbalance z(t) with a
pronounced lag; see Fig. 3 below. The reason is easy to see.
Suppose for the sake of the argument that the phase remains a
known constant and we only need to consider changes in the
amplitude A. Then, along a stretch when the amplitude stays
approximately constant, the amplitude distribution Pn(A) gets
increasingly sharply peaked. When the amplitude changes,
the Bayesian algorithm multiplies such a sharply peaked
distribution of A with probabilities Pn+1(cn+1|A) that vary
slowly as a function of the variable A, and it takes many
Bayesian steps to move the probability distribution of A around
to accommodate the new value of the amplitude.

1. Amending Bayesian inference

We have come up with a physically motivated ad hoc
remedy for the stiffness: Since the narrowing of the probability
distribution causes the problem, let us add some diffusion
to the dynamics of the probability distribution to broaden it
artificially. The multiplications by Pn+1(cn+1|p) may then have
a larger effect on the probability distribution of the parameters
than they would have without the broadening.

The specifics for the amplitude distribution run as follows.
Let the nA points at which the amplitude distribution is
stored at the intervals 
A = 1/(nA − 1) be An = n
A, n =
0, . . . ,nA − 1, and the corresponding values of the probabili-
ties of An for each fixed phase φ be pn. The broadening after
each time step is governed by a parameter 0 < gA < 1

2 in such

(a)

(b)

FIG. 3. (Color online) (a) Oscillations of the computed popula-
tion imbalance z as a function of time τ in a particular quantum
trajectory (gray area), the amplitude A inferred without the broaden-
ing algorithm (dashed blue line), and with the broadening algorithm
described in the text (solid red line). (b) Similarly for the inferred
phase. The solid grey line φ(τ ) in the phase panel (b) is obtained from
a sliding fit of the oscillations of z(τ ) to the form A sin(2πτ + φ) over
the range of τ of width 2π centered at the argument τ . The parameters
are N = 128, γ = 4.

a way that we have

p0 → p̄0 = (
1 − 1

2gA

)
p0 + 1

2gAp1;

pn → p̄n = 1
2gApn−1 + (1 − gA)pn + 1

2gApn+1,

n = 1, . . . ,nA − 2 ;

pnA−1 → p̄nA−1 = 1
2gApnA−2 + (

1 − 1
2gA

)
pnA−1. (20)

After the broadening step is done, we use the new values p̄n

as the probability distribution {pn}.
This broadening preserves the total probability

∑
n pn.

Moreover, suppose we start with a probability distribution
such that pn = δn,n0 for some n0 close to the center of the
grid of the A values. After one broadening step we have the
values pn0−1 = pn0+1 = 1

2gA, pn0 = 1 − gA. The expectation
value of the index n after one step therefore is 〈n〉 = n0,
and the variance is (
n)2 = gA. Next imagine repeating the
broadening step for some total number of times ng without
any other intervening operations. As long as the spreading
distribution {pn} does not extend to the ends of the grid at n = 0
and n = nA − 1, the average remains 〈n〉 = n0, the variances
add up to (
n)2 = nggA and, as one would expect from the
central limit theorem, the distribution {pn} in fact approaches
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a Gaussian distribution in n. The broadening indeed acts like
diffusion, adding nggA to the variance of the A distribution in
ng steps.

Let us continue for the time being with the hypothetical
example about the broadening being the sole reason for the
evolution of the probability distribution. One sees that if
the broadening distribution collides with the edges of the
grid for the amplitudes A, the expectation value of A is no
longer preserved and is expected to be biased away from
the extremely values 0 and 1. Likewise, the collision of
the spreading probability distribution with the edges should
artificially increase the probability of the extreme values.
These are the obvious explanations for our observations that
with added broadening of the probability distribution the mean
value of A seems to be biased away from 0 and 1 and the
most probable value of A is unduly biased toward 0 or 1.
As we already noted in Sec. IIIA2, this is our motivation for
reporting the average of the mean and most probable value of
the amplitude as the result of the inference.

We carry out an analogous broadening of the phase
distribution for each Bayesian step after having performed
the broadening of the amplitude distribution. The broadening
algorithm for the phase with the indices n = 0, . . . ,nφ − 1
reads

pn → p̄n = 1
2gφpn−1 + (1 − gφ)pn + 1

2gφpn+1. (21)

Since the phase wraps around, here we simply interpret pnφ
=

p0, p−1 = pnφ−1.

2. Numerical details

To obtain a parameter-invariant measure of the spreading,
suppose that we take an average of s steps between successive
counts in one of the channels. Then the typical added standard
deviation of the A distribution between successive counts is

�A = 
A
n = 1

na − 1
√

sgA. (22)

This means that, for a desired value �A, we want to put in the
broadening parameter

ga = (na − 1)2�2
A

s
. (23)

A similar reasoning applies to the phase. To have the standard
deviation from s steps to be the fraction �φ of the total range
2π of the phase, we have in exact analogy with Eq. (23)

gφ = n2
φ�2

φ

s
. (24)

For our standard choice of parameters we have nφ = nA − 1 =
100. After some experimenting we have found that �A = 0.02,
�φ = √

2 �A constitute a reasonable compromise between
unnecessary spreading of the amplitude and phase distributions
and stiffness in the inferred parameters. In order not to hamper
initial convergence we have also installed limiter values of the
relative standard deviations SA and Sφ such that the broadening
sets in softly only after the standard deviations of amplitude
and phase, σA and σφ , fall below these values:

gA → 0, σA � SA,

gA →
(

1 − σA

SA

)
gA, σA < SA,

(25)

and similarly for the phase. The parameters SA and Sφ appear
not to be very critical, and presently we simply set

SA = Sφ = 2√
nφ

. (26)

In very round numbers, the resulting relative standard de-
viations (standard deviation/range of parameter) of both
amplitude and phase in the probability distribution Pn(p)
during the Bayesian inference tend to be in the few percent
range.

3. Example on modified inference

We illustrate the concepts discussed in the present Sec. III B
in Fig. 3. In Fig. 3(a) we first plot the oscillations in the
computed population imbalance z for one particular quantum
trajectory. Here we picked a simulation run that is unusually
challenging for Bayesian inference. The time runs up to τ =
256 and the plot covers 256 expected Josephson oscillations,
so the oscillations of z(τ ) are not resolved and appear as gray
blur. The dashed blue line is the amplitude A from unmodified
Bayesian inference, and demonstrates the stiffness of this
method. The solid red line is the amplitude A obtained from
Bayesian inference with added broadening of the parameter
distribution as described in this section, Sec. III B, and in this
example it tracks the tops of the oscillations of z(τ ) quite
well. Finally, Fig. 3(b) shows the phase φ as a function of
time τ for this particular quantum trajectory, both from raw
inference (dashed blue line) and with the added broadening of
the inference algorithm (solid red line). The phase φ deduced
from the oscillations of z(τ ) is also shown as the solid gray line.
It fluctuates notably less than the phase found from Bayesian
inference with the added broadening algorithm.

IV. RESULTS

We now have the tools to characterize the Josephson
oscillations. As illustrated by Figs. 1 and 3, the result for each
run of an experiment or quantum trajectory simulation is not
only random, literally, but may vary enormously in character.
We need to average over trajectories to gain an overall picture
of the Josephson oscillations. Averaging the imbalances z(t)
over a large number of runs would produce effectively zero,
not to mention that z(t) is not directly observable anyway.
However, we may infer the oscillation amplitude A for each
run as a function of time, and profitably average these over a
large number of runs. In our examples below, with averaging,
the average 〈A〉 is always over 1024 trajectories. This still
leaves easily discernible statistical fluctuations in the averages.

One example is shown in Fig. 4. Here we plot the averaged
〈A〉 for two different atom numbers, N = 256 (solid red line)
and N = 64 (dashed blue line). The horizontal axis is the
scaled time τ , and the observation strength is γ = 1.

Two features are found. First, with increasing running time
τ the average 〈A〉 rises quickly to approximately the same
common value regardless of the atom number. Although this
is not visible on the time scale plotted in Fig. 4, here the initial
rising part of 〈A〉(τ ) is materially the same for both atom
numbers. Second, with increasing time, the averages continue
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FIG. 4. (Color online) Oscillation amplitude averaged over 1024
quantum trajectories 〈A〉 as a function of the number of nominal
periods of Josephson oscillations τ . Two different atom numbers are
used, N = 256 (solid red line) and N = 64 (dashed blue line). Here
the parameter characterizing the detection strength, comparable to
the expected number of detection events per one period of Josephson
oscillations, equals γ = 1.

to rise slowly, the more slowly the larger is the number of the
atoms.

Let us now return to the most naive picture of the Josephson
oscillations, as in Eqs. (4) or (6). The amplitude of the
oscillations depends on the initial phase difference � as
| sin �|. If the phase difference � is a uniformly distributed
random variable, the average amplitude is

〈| sin �|〉 = 1

π

∫ π

0
d� sin � = 2

π
	 0.637. (27)

This is conspicuously close to the value where the average
amplitude 〈A〉 plateaus after the initial rise. We have not drawn
the value 2/π in Fig. 4 as a horizontal line simply because it
would all but obscure the solid red line for N = 256. The
elementary classical picture of Josephson oscillations gives a
nontrivial quantitative prediction, which is confirmed in our
simulations.

Next consider the initial rise of 〈A〉(τ ) in detail. In Fig. 5
we plot the short-time rise of the average amplitude for the
atom number N = 128 for two different detection strengths

FIG. 5. (Color online) Short-time rise of the average amplitude
〈A〉 for the atom number N = 128 for two different detection
strengths γ = 1/

√
2 (solid red line) and γ = √

2 (dashed blue line)
as a function of the expected number of detection events in each
channel γ τ .

FIG. 6. (Color online) 〈A〉 as a function �t for N = 32, γ = 2
(dotted red line), N = 64, γ = 2 (dashed blue line), and N =
64, γ = 8 (solid black line). The horizontal axis is labeled with
the same dimensionless quantities as were use in other figures;
4γ τ/N2 = �t .

γ = 1/
√

2 (solid red line) and
√

2 (dashed blue line) not as a
function of the scaled time τ , but as a function of the expected
number of detection events in each channel γ τ . The two curves
are virtually on top of one another, and the final value of
〈A〉 	 2/π is reached for γ τ ∼ 1. There is a dead time in the
beginning before the inference kicks in, but on the average it
only takes on the order of one photon detection in each channel
before the Bayesian inference will start reporting meaningful
values for the amplitude of the Josephson oscillations.

Incidentally, one may wonder why at τ = 0 we have
〈A〉(τ ) = 1/4. The reason is that for the initial uniform
distribution over [0,1], the average of A is AE = 1/2, and
the way our algorithm for the most probable value of A works,
it declares the value AM = 0; hence A = 1

2 (AE + AM ) = 1/4.
The number 1/4 is not particularly significant, but the time it
takes 〈A〉(τ ) to evolve away from 1/4 to a new approximately
stationary value is.

This leaves the continuing slow rise of 〈A〉(τ ) seen in
the dashed blue line for N = 64 in Fig. 4. To this end
we plot 〈A〉 not as a function of the number of periods
in Josephson oscillations τ , but as a function of another
dimensionless variable �t ; in terms of our dimensionless
variables, �t = 4γ τ/N2. We present three graphs of this kind
in Fig. 6 for the parameters N = 32, γ = 2 (dotted red line),
N = 64, γ = 2 (dashed blue line), and N = 64, γ = 8 (solid
black line). Evidently we have once more caught a correct
scaling in the problem.

The qualitative picture we develop is that Josephson
oscillations set in as expected from the naive semiclassical
symmetry breaking argument in Sec. II A. However, we do not
see them directly but only through discrete photon counts, and
so it takes about one photon count in each channel to begin
detecting the oscillations. Moreover, we hypothesize that the
further gradual increase in the amplitude is due to measurement
back-action. That is, monitoring of the oscillations with light
perturbs them and causes a gradually increasing deviation from
the semiclassical picture.

At present we have no reliable quantitative argument
to explain the particular �t scaling of the measurement
perturbations; say, why not �t times some nonzero power of
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FIG. 7. (Color online) Average amplitude 〈A〉 as a function of the
number of oscillation periods τ for the relatively small atom numbers
N = 2 (dotted red line), N = 4 (dashed blue line), N = 8 (dash-
dotted green line), and N = 16 (solid black line). The observation
strength is γ = 4.

atom number N? In fact, naively one would say that the number
of photon counts in a time t , and therefore the measurement
back-action, would be proportional to N2�t . Obviously the
back-action per atom is what counts and one would expect the
scaling N�t , but that is not what we seem to observe. Mostly
in the way of speculation, we note that even if the measurement
is nominally about the squares of the atom numbers, it
really probes atom numbers: The signal is proportional to
�t(N2

b − N2
a ) = �t(Na + Nb)(Nb − Na) where Na + Nb is a

constant of the motion. It is conceivable that the back-action
from the measurement of the difference of atom numbers is
something akin to a phase 	 1, so that the back action in time
t would be ∝ �tN and the back-action per atom would indeed
be ∝ �t .

Given that Josephson oscillations are associated with a BEC
with nominally a large number of atoms in one quantum state,
one naturally wonders how large does large have to be. We
have studied this question in Fig. 7 for the atom numbers
N = 2, N = 4, N = 8, and N = 16 by plotting 〈A〉(τ ), the
observation strength being γ = 4. N = 2 (dotted red line)
behaves quite differently from the rest of the curves and N = 4
(dashed blue line) settles at a lower value than the remaining
curves for N = 8 (dash-dotted green line) and N = 16 (solid
black line). The surprising answer here is that N = 8, on the
average four atoms in each potential well, is large enough that
plots like this have the same qualitative character we find also
for much larger atom numbers.

This point is further reinforced in Fig. 8, where we show
the population imbalance z(τ ), the inferred amplitude A(τ )
(solid red line), and the inferred phase φ(τ )/2π (dashed green
line) for N = 8 and γ = 4 for one quantum trajectory. The
data are genuinely random so any conclusions are really
not warranted, but even for this small atom number the
qualitative behavior of both plots is similar to the ones
that are found at much larger atom numbers; see Fig. 3
for N = 128. Bayesian inference evidently is a Procrustean
bed that tends to find oscillations. In fact, we argue even
more broadly that a quantum-mechanical procedure intended
to measure oscillations will produce oscillations. However,
Bayesian inference will not report large-amplitude oscillations
with a reasonably steady phase unless the counting rates

FIG. 8. (Color online) Oscillations of the population imbalance
z, and the corresponding inferred amplitude A (solid red line) and
phase φ/2π (dashed green line) as a function of time τ in one quantum
trajectory for a small atom number N = 8. Here γ = 4. The sudden
jump in the phase at about τ = 9 is an artifact in that the phases −π

and π are actually the same.

indicate pronounced oscillations of the atoms between the
traps. There is merit to the oscillations even for an atom number
as small as N = 8.

V. CONCLUDING REMARKS

The basic technical assignment has been how to extract
Josephson oscillations of the atoms between the sides of
a double-well potential that purportedly follow from spon-
taneous breaking of the U(1) gauge symmetry, given that
the only observation data are photon counts due to light
scattered from the two potential wells. We demonstrate how
the parameters of the oscillations, amplitude and phase, may
be obtained by Bayesian inference from the photon counts.
The naive Bayesian inference turns out to be stiff on the
face of the time-dependent oscillation amplitudes and phases,
which we remedy by means of an algorithm that continuously
broadens the inferred probability distribution of the oscillation
parameters as the observations of photon counts go on.

In physics, Bayesian methods are typically used to infer
parameters of a specific model from experimental data [29,30].
Here we are faced with the problem that there is no a priori
model for the variations of the amplitude and phase of the
oscillations. In response, we have devised what is in a sense a
model-independent version of Bayesian inference. One could
argue that our results depend on both the photon counts
and the precise way in which Bayesian inference is carried
out, including the broadening algorithm and its parameters.
However, one could say the same of any standard application
of Bayesian inference: The results depend on the choice of
the model. Bayesian inference in principle comes with a way
to compare quantitatively the likelihood of different models
[29,30]. If, and how, this would work with our version remains
to be seen.

Spontaneously broken symmetry is ordinarily thought to
apply in the thermodynamic limit—in our terms, in the limit of
an infinite number of atoms. The prediction would be steady
oscillations with constant amplitude and phase. One way of
formulating our physics question, very much analogously to

023613-9



JUHA JAVANAINEN AND RENUKA RAJAPAKSE PHYSICAL REVIEW A 92, 023613 (2015)

Ref. [5], is to ask what happens when the number of atoms is
not infinite. We find a scaling law in the results that speaks of
the number of photon counts needed to detect the oscillations,
and another scaling law that presumably depends on quantum-
mechanical back-action of the measurements affecting the
oscillations. These constitute a quantitative characterization
of the Josephson oscillations for a finite number of atoms.

As was demonstrated already early on [5–8,15], spon-
taneous breaking of gauge symmetry is not needed for
observations of interference phenomena in condensates. Our
viewpoint is that there is no spontaneously broken symmetry
at all (either with condensates, or in other standard statistical-
mechanics examples such models of a ferromagnet). Instead,
the Josephson oscillations are created by the observation of
the ...oscillations..., which makes correlations between the
expected photon counts manifest. The mechanism, technically,
is the quantum-mechanical back-action that modifies the state
as a result of the already existing observations and ultimately
leads to an illusion of spontaneous symmetry breaking.

In this regard the situation is different from the Bayesian
inference procedures discussed in similar systems in the liter-
ature [36,37], where the goal is to find an objectively existing
value of a parameter of the system, such as the tunneling
amplitude J . In our view, the back-and-forth oscillations of
the atoms do not reflect an existent property of the system at
all, but are literally generated by the process of monitoring the
oscillations.

It may be possible to infer the full evolving quantum state of
the double-well system from the measurement record [38]. In
the model of these authors the record consists of a continuous
photocurrent not discrete photon counts as in our discussion,
but as a matter of principle this difference is immaterial. By
simply taking the times of photon counts from one simulation
(call it experiment), we can force a parallel simulation (call it
analysis) to reproduce the complete evolution of the quantum
state in the original simulation. However, this observation does
not render our classical Bayesian analysis superfluous. For one
thing, in practice there would inevitably be lost photon counts

due to detector inefficiency. In simple numerical experiments
we have found that our Bayesian method is not much affected
by the loss of, say, half of the photons if the reduced detection
efficiency is taken into account in the analysis. In contrast,
what happens to a quantum analysis that slaves a simulation
to an experiment (real or simulated) when not all scattered
photons are detected is a question for future study.

The experiments we are simulating using quantum trajecto-
ries are obviously idealized to the extreme. For the time being
we aim at points of principle, not designs of experiments.
Nonetheless, we believe that our Bayesian inference scheme
with the broadening procedure could find a place in the descrip-
tion of all sorts of observational data that come in individual
photon counts or other discrete events, especially if every event
has to be made to count. Such would be the situation, for
instance, if the signal is inherently weak, or if the side effects
of the events such as photon recoil are highly harmful.

As to the analysis of the Josephson oscillations, the main
benefit of our Bayesian scheme is that it produces a time-
dependent amplitude that can be averaged over a number of re-
alizations. Since the oscillations are random, statistical averag-
ing is the only way to describe them quantitatively. We have av-
eraged, and have related the findings to physics principles that
are after the fact quite obvious. The main surprise is that, even
if the Josephson oscillations are traditionally associated with
the notion of a BEC and consequently to a “large” number of
atoms, the oscillations as seen through the lens of our Bayesian
inference are similar starting from atom numbers as small as
8. In other words, four atoms in a potential well can already
make a BEC. Experiments to probe classical-like behavior in
this small and seemingly quantum-mechanical systems would
evidently be very difficult, but might teach interesting lessons
about the interface of quantum and classical physics.
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