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We consider an experimentally realizable model of noninteracting but randomly coupled atoms in a two-
dimensional optical lattice. By choosing appropriate real or complex-valued random fields and species-dependent
energy offsets, this system can be used to analyze effects of disorder in four different symmetry classes: the chiral
BDI and AIII and the nonchiral A and AI. These chiral classes are known to support a metallic phase at zero
energy, which here, due to the inevitable finite size of the system, should also persist in a neighborhood of nonzero
energies. As we discuss, this is of particular interest for experiments involving quenches. Away from the center
of the spectrum, we find that excitations appear as domain walls in the cases with time-reversal symmetry or
as vortices in the cases where time-reversal symmetry is absent. Therefore, a quench in a system with uniform
density would lead to the formation of either vortices or domain walls depending on the symmetry class. For
the nonchiral models in classes A and AI, a population imbalance between the two atomic species naturally
occurs. In these cases, one of the two species is seen to favor a more uniform density. We also study the onset
of localization as the disorder strength is increased for the different classes, and by deriving an effective model
for the nonchiral cases we show how their eigenstates remain extended for larger values of the coupling with the
disorder when compared to the nonchiral ones.
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I. INTRODUCTION

Symmetries play a fundamental role in physics, ranging
from predicting planetary motion to understanding interaction
among elementary particles. Indeed, properties of quantum-
mechanical systems in equilibrium are often universal and can
be characterized according to symmetries [1,2]. Recently, a
more in-depth understanding of the aspects of various lattice
models has been advanced thanks to the development of
topological insulators [3]. Not surprisingly, the characteristics
of such lattice models rely on the underlying symmetries,
i.e., time-reversal, particle-hole, and chirality symmetries.
Structuring the models accordingly yields a “periodic table”
with ten different symmetry classes [4].

Together with the dimensionality, these symmetry classes
tell much about the properties of a system. Thus, a question
that naturally arises is, Can we identify physical systems that
allow for control of symmetry classes? Then, by turning a
knob the experimentalist could, in principle, qualitatively alter
the system’s properties. In this respect, systems of cold atoms
loaded into optical lattices are extremely attractive [5]. These
are well isolated from their environments and clean from
impurities, and preparation and detection are relatively easy.
The lattice geometry and dimensionality can be monitored
with great flexibility, and by using multiple atomic electronic
states one can realize multispecies models [5]. Furthermore,
cold atomic systems also allow for a systematic study of effects
deriving from disorder by handling the type and strength of
the disorder with additional laser fields [6].

Back in 1958, Anderson predicted that disorder can fully
inhibit transport due to disorder-induced coherent scattering
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resulting in destructive quantum interferences [7]. This ab-
sence of conductance, following the appearance of spatially
localized eigenstates in the system, is the phenomenon of
Anderson localization or strong localization. In one dimen-
sion, arbitrarily weak disorder localizes every eigenstate in
the entire spectrum, while in three dimensions there may
exist a “mobility edge” separating localized from extended
(or metallic) states [8]. Thus, in three dimensions it is
possible to realize a metal-Anderson insulator transition by
tuning the disorder strength. In two dimensions, the situation
becomes more intriguing because the presence or absence
of insulating and/or metallic phases strongly relies on the
symmetry classes [9]. The eigenstates of chiral systems in
two dimensions, for example, may become delocalized at the
center of the spectrum [10]. But even if this phenomenon is
accepted today, the existence of delocalized states in such
systems was long debated [11].

In this work we study a cold-atom model which is of easy
experimental implementation. We consider two noninteracting
atomic species coupled by random fields and confined in
an optical lattice. Physically, the coupling amounts to a
laser-induced Raman coupling between two internal atomic
Zeeman levels. By adjusting the properties of the coupling
lasers, i.e., the phase and frequency, the system may fall
in four different symmetry classes, where two support a
metal-Anderson insulator transition at zero energy. Properties
of the eigenstates are explored numerically, and it is found
that, depending on the symmetries, the excited states can
host domain walls or vortices. The vortices appear in the
cases with a complex-valued Raman coupling, i.e., broken
time-reversal symmetry. For the system with chiral symmetry,
the model can be mapped onto a random flux model [10,11] in
which every lattice plaquette is subject to a (random) synthetic
magnetic field. When the chiral symmetry is broken, the two
species are reorganized such that one of them carries the
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system’s kinetic energy, being characterized, therefore, by a
smooth density, while the other one shows a vivid structure
that follows the random Raman coupling corresponding to
lowering the potential energy. This behavior is explained in
terms of an effective model valid in the limit of a large
population imbalance between the two species. We also discuss
the model in light of the Mermin-Wagner theorem [12] which
impose restrictions on the establishment of long-range order,
depending on the symmetries and the dimensions of the
system. This is in connection to the phenomenon known as
random-field-induced order (RFIO) [13], in which a particular
choice of disorder can be used to lower the symmetries of the
clean system and, consequently, to invalidate the premises
under which the Mermin-Wagner theorem can be applied,
thereby stabilizing long-range order. Despite clear similarities
with models studied in the past that have been shown to
exhibit RFIO [14], we do not find evidence of RFIO in the
noninteracting case studied here.

This paper is structured as follows. In the next section we in-
troduce the model system and the corresponding Hamiltonian
in a general form. The symmetries and the different classes are
presented in Sec. II C. After summarizing known results on the
universal properties of the symmetry classes discussed here,
in Sec. III we present the numerical results: We characterize
the eigenstates in Sec. III A and then the RFIO in Sec. III C.
In Sec. IV we give a summary of the results and briefly touch
upon the question of how to extend the system to other classes.

II. SYSTEM

The controllability of cold atomic systems together with the
possibility to determine at will the disorder properties has made
these systems a perfect test bed to study effects like Anderson
localization [6]. In early experiments, one-dimensional (1D)
tubes of cold (bosonic) atoms were explored, and either speckle
potentials [15] or incommensurate optical lattices [16] were
used to realize disorder (or quasidisorder). In these pioneering
cold-atom experiments it was possible to extract both the
hindered matter wave spreading and the localization length.
The influence of interaction was later probed, and a crossover
from localized to delocalized states could be observed [17].
At a mean-field level, the nonlinearity stemming from the
atom-atom interaction effectively couples localized states,
leading to a delocalization [18]. In three dimensions, Mott
argued for the presence of a mobility edge separating localized
states at the tails of the spectrum, from extended ones at
the center [19]. This has recently been verified using both
fermionic [20] and bosonic atoms [21]. In the Bose-Hubbard
(BH) model, a suppression of superfluidity has been seen in
three dimensions [22]. Further investigations [23] suggested
this as a signature of the Bose glass phase predicted years ago
for this model [24].

In two dimensions, more relevant for this work, the glass
phase of the disordered BH model has been explored, along
with interaction-driven transitions from a localized phase
to a superfluid phase and finally a reentrance into a Mott
insulating phase [25]. The (repulsive) interaction counteracts
the disorder-induced localization, and for strong enough
interaction the atoms form a disordered Mott-insulator state.
For noninteracting gases, the diffusion in a disordered two-
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FIG. 1. Schematic plot of the atom-laser � coupling configura-
tion. States |a〉 and |c〉 are dipole coupled by a laser with (spatially
dependent) amplitude �1, and a second laser couples states |b〉 and
|c〉 with an amplitude �2. The atom-laser detuning |�| � |�1|, |�2|,
such that the excited state |c〉 becomes only virtually populated.
Thus, it is adiabatically eliminated, resulting in an effective coupling
between states |a〉 and |b〉 with an amplitude � = �∗

1�2/�. Here, 2δ

is the detuning for the emerging two-photon process.

dimensional (2D) optical lattice was measured in Ref. [26].
By applying the speckle potential with an incident angle the
disordered potential shows a different correlation length in
the two directions, which leads to anisotropic spreading. In
terms of the symmetry classes, this experimental system falls
within class AI (see below), in which all the states are known
to be localized, and furthermore, this class does not support
topological states. Following this rapid progress, we continue
by suggesting an experimentally simple model which goes
beyond present experiments and show new characteristics.

A. Model Hamiltonian

We consider noninteracting three-level atoms, with internal
states labeled a, b, and c, confined to a 2D square optical
lattice. The internal electronic states |a〉, |b〉, and |c〉 are Raman
coupled with two external lasers, as explained in Fig. 1. By
introducing the atomic field operators �̂α(x) (α = a, b, c),
which obey the regular bosonic commutations

[�̂α(x),�̂†
β(x′)] = δαβδ(x − x′), [�̂α(x),�̂β(x′)] = 0, (1)

the Hamiltonian is given, in the rotating-wave approxima-
tion [27], by

Ĥ =
∫

dx

{ ∑
α=a,b,c

�̂†
α(x)Ĥ �̂α(x) + ��̂†

c (x)�̂c(x)

+ δ�̂†
a(x)�̂a(x) − δ�̂

†
b(x)�̂b(x)

+ [�1(x)�̂†
c (x)�̂a(x) + H.c.]

+ [�2(x)�̂†
c (x)�̂b(x) + H.c.]

}
. (2)

Here, Ĥ = − �
2

2m
( ∂2

∂x2 + ∂2

∂y2 ) + V0[cos2(kx) + cos2(ky)] is the
2D lattice Hamiltonian, with m being the atomic mass, k being
the wave vector (the same in both directions), and V0 being the
potential amplitude (also equal for both directions). �, δ, and
�i(x) (i = 1, 2) are atom-light detunings and drive amplitudes
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as explained in Fig. 1, and in particular, the two amplitudes
�i(x) are, in general, complex (which can be controlled by the
phases of the lasers).

B. Properties

We assume the dispersive coupling regime |�| � |�1(x)|,
|�2(x)|, |δ|, meaning that if the internal states of the atoms are
initialized in the lower states |a〉 and |b〉, the excited state |c〉
is only weakly populated and can be integrated out. In this
regime, the field

�̂c(x) = −�1(x)�̂a(x) + �2(x)�̂b(x)

�
(3)

is assumed to follow the other two fields adiabatically [28].
Within this assumption, we derive an effective model for the
remaining fields [29],

Ĥeff =
∫

dx

{ ∑
α=a,b

�̂†
α(x)Ĥ �̂α(x)+μα(x)�̂†

α(x)�̂α(x)

+ [�(x)�̂†
b (x)�̂a(x) + H.c.]

}
. (4)

The “chemical potentials” μα(x) (α = a, b) account for the
two-photon detuning 2δ and the Stark shifts arising from
the two lasers �1(x) and �2(x). Hereafter we omit the
spatial dependence of the chemical potentials as doing so will
not change the conclusions, i.e., μα(x) → μα . The effective
coupling between the two internal atomic levels is given by
�(x) = �∗

1(x)�2(x)
�

. Disorder in the present model derives from
the spatial dependence of �(x), which fluctuates in both phase
and amplitude from site to site.

We proceed along the standard line [5] and expand the field
operators in the single-band site-localized Wannier functions
wαi(x); �̂α(x) = ∑

i α̂iwαi(x), with i being the site index,
and α̂i annihilates an α (= a, b) species atom at site i =
(ix,iy), respectively. By further imposing the tight-binding
approximation, the Hamiltonian becomes

Ĥeff = −t
∑
〈ij〉

(â†
i âj + b̂†i b̂j) +

∑
i

(μan̂ai + μbn̂bi)

+
∑

i

hi(e
iϕi â†

i b̂i + H.c.). (5)

Here, the first sum includes only nearest-neighbor terms,
and we have neglected Raman-induced couplings be-
tween atoms in neighboring sites. The atom num-
ber operators n̂ai = â

†
i âi and n̂bi = b̂

†
i b̂i, and the on-

site couplings are hi = | ∫ dx w∗
ai(x)wbi(x)�(x)| and ϕi =

angle[
∫

dx w∗
ai(x)wbi(x)�(x)]. These are random numbers

taken from Gaussian distributions with widths ζ and ξ . Letting
ζ = ξ = 0, we recover the clean system, and for ξ = ∞,
which will be assumed throughout (unless we consider the real
case, ξ = 0), the phases ϕi are uniformly distributed over 2π .
The phase diagram of the clean model has been studied in the
past when atom-atom interaction was included [30], but the
disordered coupled case is, to the best of our knowledge, so
far unexplored even for zero interaction.

TABLE I. Classification of Eq. (5) for different choices of hi and
μ (see text for details).

hi μ Class

Real valued zero BDI (chiral orthogonal)
Complex valued zero AIII (chiral unitary)
Real valued nonzero AI (Wigner-Dyson orthogonal)
Complex valued nonzero A (Wigner-Dyson unitary)

The Hamiltonian (5) will be the starting point for the
analysis in Sec. III. Before presenting the results, however, the
various symmetry classes realizable with Ĥeff are discussed.

C. Symmetries

To date, the internal structure of the atoms plays no
particular role in experiments of disorder with systems of cold
atoms. Thus, the applied fields are far off resonant from any
atomic transitions, and only the resulting Stark shifts generate
the disordered potential. It is clear that the coupled system
becomes much richer in the sense that a set of different models
can be easily monitored by tuning the laser parameters. In
particular, in such generalized situations the effective models
carry an intrinsic pseudospin degree of freedom. The idea of
this section is to present the various possible cases that can
be achieved and to relate them to the corresponding symmetry
classes. A summary is given in Table I.

1. Real-valued disorder and vanishing chemical potential:
Class BDI

The simplest disordered situations appear when the two
chemical potentials are equal, i.e., we set μa = μb = 0, and
the disorder is purely real, ϕi = 0 (hi can still change from
site to site). By introducing the notation Âi = [âi, b̂i]

t
the

Hamiltonian can be written as

ĤBDI = −t
∑
〈ij〉

Â†
i Âj +

∑
i

hiÂ
†
i σ̂xÂi, (6)

where σ̂x = [0 1
1 0] is the x-Pauli matrix. Now, defining

ĉi = 1
2 (âi + b̂i), d̂i = 1

2 (âi − b̂i), (7)

and Ĉi = [ĉi, d̂i]
t
, Eq. (6) becomes

ĤBDI = −t
∑
〈ij〉

Ĉ†
i Ĉj +

∑
i

hiĈ
†
i σ̂zĈi. (8)

In this transformed basis, this model is equivalent to the orig-
inal Anderson Hamiltonian [7] in two dimensions, although
here with two copies that experience the random potential
with the same magnitude but opposite signs. This system has
chiral symmetry [31], and therefore, the spectrum is symmetric
around zero energy. Specifically, in the representation of the
Âi operators introduced above and noticing that the dimension
is 2L2, where L is, as before, the size of the lattice in one
direction, we have for even L that the operator [32]

Û = diag(+1, −1, +1, . . . , −1| −1, +1, −1, . . . , +1)

(9)
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anticommutes with the Hamiltonian. Moreover, since the
Hamiltonian is real, it is also time-reversal symmetric. Thus,
the model belongs to class BDI of chiral orthogonal systems
[2,4].

2. Complex-valued disorder and vanishing chemical potential:
Class AIII

Generalizing the previous case to complex couplings,
ϕi 	= 0, the model is written as

ĤAIII = −t
∑
〈ij〉

Â†
i Âj +

∑
i

hiÂ
†
i (cos ϕiσ̂x + sin ϕiσ̂y)Âi.

(10)

Contrary to the case with real disorder, here, we cannot decou-
ple the two species with a spatially independent transformation
like Eq. (7). Mixing in the σ̂y component does not break
the chiral symmetry, as can be seen from the fact that σ̂z

anticommutes with σ̂x and σ̂y , and the operator of Eq. (9)
has the form Û = D̂ ⊗ σ̂z with an L2 × L2 matrix D̂ =
diag(+1, −1, +1, . . . , −1). The Hamiltonian is, however,
complex, and time-reversal symmetry is therefore broken. The
symmetry class is class AIII of chiral unitary systems [2,4].

An interesting observation is that by transforming the model
with the unitary Ûϕ = ∏

i exp [−iϕi(n̂ai − n̂bi)/2], the random
phase appears on the tunneling terms:

Ĥ ′
AIII = ÛϕĤAIIIÛ

−1
ϕ = −

∑
〈ij〉

Â†
i t̂ijÂj +

∑
i

hiÂ
†
i σ̂xÂi, (11)

with

t̂ij = t

[
ei(ϕi−ϕj) 0

0 e−i(ϕi−ϕj)

]
. (12)

This is a version of the random-flux model [10,11] describing
a random flux through any plaquette in the lattice. Thus,
the spatially dependent phase ϕ(x) of the Raman coupling
effectively generates a synthetic magnetic field for the neutral
atoms [33].

3. Real-valued disorder and nonzero chemical potential: Class AI

Adding a chemical potential to the real-valued disorder case
breaks the chiral symmetry, but the time-reversal one remains
intact. The resulting Hamiltonian

ĤAI = −t
∑
〈ij〉

Â†
i Âj +

∑
i

Â†
i (hiσ̂x + μσ̂z)Âi, (13)

where we have introduced the effective chemical poten-
tial μ = (μa − μb)/2 [we have subtracted a trivial term
(μa + μb)/2

∑
i Â

†
i Âi from the Hamiltonian]. With only time-

reversal symmetry present, the model belongs to class AI of
Wigner-Dyson orthogonal systems [2,4].

4. Complex-valued disorder and nonzero chemical potential:
Class A

By breaking both the chiral and the time-reversal symme-
tries, i.e., by including a chemical potential and considering
a complex Raman coupling, respectively, the model belongs
to class A of Wigner-Dyson unitary systems [2,4]. The

Hamiltonian is then written

ĤA =−t
∑
〈ij〉

Â†
i Âj +

∑
i

hiÂ
†
i(cos ϕiσ̂x + sin ϕiσ̂y + μσ̂z)Âi.

(14)

The underlying four symmetry classes of our general model
Hamiltonian (5) are listed in Table I.

III. RESULTS AND DISCUSSIONS

A. Universal properties

Having identified the symmetry classes, it is now possible
to directly determine some properties of the different models
that can be realized from (5). Class AI is trivial in the sense
that all states are localized and there is no room for nontrivial
topological states, such as delocalized edge states [9]. In
symmetry class A, the states are also all localized, but the
model can be potentially topological [9]. The two other classes,
the chiral ones, are more interesting in terms of the localization
properties.

Chiral structures arise when a lattice system can be equiv-
alently decomposed into two sublattices. The present model
is clearly of this type, as the two species can be thought of as
the constituents of a bilayer lattice, with a random tunneling
hi between the layers. In the usual classification scheme, there
are three chiral classes: AIII, BDI, and CII. As mentioned
above, in AIII time-reversal symmetry is broken, while in BDI
it is preserved, and the time-reversal symmetry operator in this
class squares to +1. Class CII is also time-reversal symmetric,
but here, the square of the time-reversal symmetry operator is
−1; that is, it is chiral symplectic [2]. The symplectic classes
typically contain a spin degree of freedom, and will not be
of importance here. One can imagine, however, that by using
four species (four different electronic Zeeman levels) this class
could also be realized with our model.

Although it has been shown that weak localization is absent
in all orders in perturbation theory in chiral systems [34], recent
studies support the possibility of a metal-insulator transition
at the center of the spectrum (for energies E ∼ 0) [35] as a
function of the disorder strength. We thus expect a diverging
localization length λ for not too strong values of the disorder
as the energy approaches zero in the chiral cases. In particular,
for Gaussian disorder, a renormalization-group analysis gives
the localization length [9]

λ(E) ∝ eg−1|ln (E/�)|1/2
, (15)

where g−1 is proportional to the conductance and � is the
bandwidth (of the clean system). It follows that for any finite
energy E the system is localized, although the localization
length can get very long (in comparison to the system size
here denoted as L). According to expression (15), the system
can be metallic in a strict sense only for E ≡ 0, which implies
that for finite systems the total number of sites has to be odd.
Nevertheless, when the localization length λ � L, more states
at the center of the spectrum will always appear metallic in
this case. In the infinite system, the analysis via the effective
nonlinear σ model [9] from which Eq. (15) is derived hints
that, indeed, the E = 0 state should always be delocalized
(metallic). However, Eq. (15) can also be obtained from a
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modified action, including higher-order terms, which shows
that the E = 0 state can be localized even for the chiral
classes. This allows, therefore, for a metal-insulator transition.
This transition is of the Kosterlitz-Thouless type and has a
topological origin in terms of creation of vortex excitations
which are responsible for the insulating phase [35].

Chirality is, however, broken as soon as μ 	= 0, and the
properties of the system are determined by class A or AI.
This explains, at least qualitatively, why the states have to be
localized for the nonchiral cases considered in this work.

B. Numerical results

As we have seen, we have at our disposal a system
Hamiltonian (5) where the parameters can be tuned such
that four different symmetry classes can be explored. The
great flexibility of the model compared to earlier studies of
localization in cold-atom settings is the multispecies structure.
Thus, in the limit of large chemical potential μ = |μa − μb|/2
(when one species is almost completely unpopulated) we
recover the standard scenario of the Anderson model which
has served as a theoretical model of most disordered cold-atom
experiments [6,15,16,21]. We should mention that even in
the absence of interactions, as is the model studied here, the
conclusions drawn from the numerical results should be taken
with care; the system is unavoidably finite, and as soon as the
localization length becomes comparable to the system size,
boundary effects play an important role. For this reason, the
metal-insulator transition, conjectured to happen for E = 0,
has not been verified numerically, for example.

1. Localization properties

A measure of localization is the inverse partition ratio [9]

I (E) =
∑

i,j

|ψE(i,j)|4, (16)

where ψE(i,j) is an eigenstate with energy E. This is
considered in the real-space basis; I = N−1 for a maximally
delocalized state, with N being the dimension of the Hilbert
space, and I = 1 for a maximally localized state. We conclude
therefore that if I ∼ N−1, the localization length exceeds the
system size L (which in our case is the number of sites in one
of the directions), and we expect I to drop as we approach
the negative tail of the spectrum. As taken here, I is the
second power of the particle density, i.e.,

∑
i,j ρ

q

E(i,j), with
ρE(i,j) = |ψE(i,j)|2 and q = 2. Other powers of q might also
be relevant in connection with multifractal properties of the
wave function, which have been thoroughly discussed in terms
of the Anderson metal-insulator transition [9,36]. In general,
for given q one finds a scaling Lτ (q), where τ (q) is a q- and
dimension-dependent exponent, but such considerations have
been left out of the present study.

Figure 2 shows I for the ground state of the four different
symmetry classes as a function of the disorder strength ζ .
By comparing the models preserving or not preserving time-
reversal symmetry and chiral with nonchiral ones, that is, BDI
with AI and AIII with A, we notice that in the nonchiral classes
A and AI, localization sets in later than in the chiral classes
BDI and AIII in terms of the disorder strength. This result can

0 1 2 3 4
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I
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AIII
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FIG. 2. (Color online) The inverse partition ratio I (16) for the
ground state of the Hamiltonian (5) averaged over 100 disorder
realizations in a 30 × 30 lattice. This size of the lattice is chosen
from its relevance for experiments, and throughout this work we
use periodic boundary conditions. The parameters are t = 1, μ =
(μa − μb)/2 = 2, and ξ = ∞, and the dotted lines display I for the
species b atoms (clearly, in the chiral classes I are identical for species
a and b). As is seen, localization sets in at weaker disorder strengths
for the chiral models in the ground state and also for the low-lying
excitations (not shown). As explained in the text, this result can be
understood from an effective model for the nonchiral classes, which
contains an inherent long-range (exponential) hopping.

be understood by considering Hamiltonian (5) in the regime
of |μ| � |t |, |hi| such that the two species can be effectively
decoupled. In doing so and integrating out over one of the
species, the effective Hamiltonian describing the other one
contains a tunneling term that is long range. More precisely,
the equations of motion for the atomic operators, given (5),
obey

∂t âi = −ihib̂i − iμaâi + it
∑

j

âj,

∂t b̂i = −ihiâi − iμbb̂i + it
∑

j

b̂j. (17)

Here, the sum
∑

j is over the nearest neighbors to site i. Let us
assume that μa has the largest amplitude of all the parameters,
and in this situations we set ∂t âi = 0. In vector notation, the
steady-state solution for species a can be written â = M−1hb̂,
with h being a diagonal matrix with diagonal elements hi
and M being a tight-binding matrix with −t as the tunneling
strength and μa on the diagonal. Inserting the steady-state
solution of âi into the second equation in (17), it directly
follows that the species a atoms induce an effective long-
range hopping of the species b ones. If |μa| < |t |, the effective
hopping has infinite range, while for |μa| > |t | it falls off as
(t/μa)−|i−j|. Notice, however, that this procedure is consistent
only with the second case (|μa| > |t |) since it relies on the
adiabatic assumption ∂t âi ≡ 0. An alternative derivation using
the path-integral formalism of the above result can be found
in Ref. [37]. The effective long-range hopping counteracts
localization, and since the hopping is exponential in this model
provided that |μa| > |t |, we still expect localization to set in
but for stronger disorder [38].
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FIG. 3. (Color online) The inverse partition ratio I (E) (16) as a
function of the energy. Like in Fig. 2, I for the species b atoms
are marked by dotted lines. As argued in Sec. III A, the localization
length grows as the energy |E| is decreased. The flattening of I is a
result of the localization length λ, which becomes comparable to or
longer than the system size L (L = 30 for the lattice used here). The
parameters are the same as those of Fig. 2, with the disorder strength
h = 10; that is, the low-energy states are well localized.

We have just shown that for nonchiral classes it is possible
to think of the second species as generating an effective long-
range hopping. But what about the chiral classes? For class
BDI, direct inspection of Eq. (8) shows that there exists a
simple (disorder-independent) localized basis where the model
is, indeed, of short-range character in terms of hopping. For
class AIII this is not as clear, however, since there is neither
spatially independent transformation decoupling the species
in this case nor a scale separation allowing for the derivation
of an effective model.

Let us now turn to localization of the excited states. As we
discussed in the previous section, field-theory methods have
shown that the localization length λ may diverge at E = 0 in
the chiral classes. For small but nonzero |E|, λ is always finite,
such that the states are localized, although possibly with a
long localization length. A numerical check of Eq. (15) would
require a system size L far beyond what is computationally
achieved for our system. Indeed, as we see, even for energies
not too close to E = 0 the localization length λ ∼ L. When
this happens, I ∼ N−1. The energy dependence of I for the
four classes is displayed in Fig. 3. The ground and first excited
states are clearly localized, but localization is quickly lost
as the energy increases. The delocalized states appear more
pronounced in the A and AIII models in which time-reversal
symmetry is broken. In these cases, the localization length
becomes comparable to the system size already for the 100th
excited state (the total number of states is 1800). Closer to
E = 0, I increases again, in contrast to what is analytically
predicted in (15). We should point out, however, that Eq. (15)
is obtained from an effective field theory that is valid only
in the vicinity of E = 0 and for infinite systems. As for the
ground state (see Fig. 2), localization is more pronounced in
the models with chiral symmetry. It is tempting to argue that
this is again a result deriving from the effective long-range
hopping in these models. While this might be true, it should
be noted that the population imbalance between the species

is decreased for higher energies (still in the lower half of the
spectrum), and for states at the center of the spectrum the two
species are approximately equally populated.

2. Properties of excited states

Many fewer analytical results are available to describe the
system away from the center of the spectrum. In systems of
cold atoms, with high control of state preparation and of system
parameters, it is possible to study out-of-equilibrium dynamics
following a quantum quench (see, for example, [39]). By
preparing an initial, nonstationary state with a given energy
ε > E0, where E0 is the system ground-state energy, and by
properly adjusting the quench, the “energy window” scanned
by the initial state could be made narrow [40], and thereby
properties of the excited states could be probed.

The last term with the Raman coupling in Eq. (5) favors
an on-site phase locking between the two species that is
determined by the field phase ϕi. Thus, if we are interested
in the ground state and label it as

|ψ0〉 =
[
cai
cbi

]
, (18)

where cαi (α = a, b) is a vector indexed by the site subscript
i, then it follows that the energy of the coupling term is
minimized whenever φi ≡ angle[c∗

aicbi] = −ϕi + (2n + 1)π
for any integer n. In the classes with time-reversal symmetry,
BDI and AI, ϕi is zero or π , and the relative phase φi is an
integer multiple of π at every site. Thus, the coefficients cai
and cbi will be real but may change sign (which also follows
from the fact that the Hamiltonian is real and symmetric).
Furthermore, in the chiral class BDI, φi is independent of the
site index i, and according to Eq. (8), the eigenstates are found
in either the c or the d subspaces. In the other two classes,
AIII and A, the phase ϕi can be anything, and consequently,
so can the relative phase φi. Of course, the above picture is
much simplified; whenever the phase φi varies, there is an
additional cost of kinetic energy (this will be further discussed
in the next section). Nevertheless, by combining the knowledge
of the kinetic and coupling terms it is possible to determine
qualitative properties of the excitations in the different models.

In the classes with time-reversal symmetry, the Hamiltonian
is real, and the eigenstates can always be chosen to be real.
In other words, we can restrict the relative phase φi to only
integer multiples of π . The kinetic term is minimized if φi = 0
or φi = π for all i’s. In class BDI this means that φi has
to be constant throughout the lattice, as a consequence of
the decoupling of the species. This does not mean, however,
that the phases of the individual species, i.e., of cai and cbi,
do not change between zero and π . Whenever this occurs, it
creates a domain wall in the wave function of the species in
question. This implies an additional kinetic-energy cost which
is proportional to the length of the domain wall. Thus, we
expect the domain wall to become longer for more excited
states. This holds true only for not too highly excited states, as
we explain below.

For classes AIII and A, the Hamiltonian is Hermitian, and
therefore, its eigenstates are, in general, complex valued. Due
to the kinetic-energy cost, we expect the phase of the wave
functions to vary smoothly between nearby sites. However,
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FIG. 4. (Color online) The individual phase for species a (i.e.,
the phase of the coefficients cai) for the 20th excited state for classes
(a) BDI and (b) AIII and for a single disorder realization. In BDI
the Hamiltonian is real, and the only allowed excitations are domain
walls, while in AIII the eigenstates are complex and vortices are
typically formed (see circles demonstrating the winding of a vortex
and an antivortex). The parameters are t = 1, μ = 0, ζ = 0.4, and
ξ = ∞ in a 40 × 40 lattice.

since the phase is defined modulo 2π , the single-valuedness
of the wave function is still preserved for the 2π phase jumps
or in the presence of vortices (except at the vortex core were
the phase is ill defined and the density vanishes). The phase
may thus contain branch cuts with a singularity at the ends of
the cut, which reflects the vanishing density and the presence
of vortices. In analogy with the cases with domain walls, we
expect a larger number of vortices to appear higher up in
the spectrum. In addition, since we consider finite lattices
with periodic boundary conditions, any branch cut has two
ends (unless it closes itself), and as a result a vortex is
always accompanied by an antivortex. However, if the state
is localized, the vortex and the antivortex might not both be
within the region of nonzero particle density. The implication
for experiments is the possibility of having only one of the
vortices detected.

These conclusions are confirmed in Fig. 4, which shows
one example of a single species’ phase for classes BDI and
AIII. The first case displays a domain-wall structure, while the
appearance of vortices characterizes the second case. Under
periodic boundary conditions, the domain walls are forced
to close. We have indeed seen that the number of vortices
and the length of the domain wall depend on the excitation
energy as expected (we focus on energies E < 0). We did
not find, however, any particular relation that describes the
increase in the number of vortices or domain walls as one goes
up in the spectrum. Notice, in addition, that this increase in
the number of vortices and in the length of the domain walls
will only continue until roughly the center of the spectrum.
As mentioned above, this follows from the fact that in the
chiral classes an eigenstate ψE with energy E has a companion
state ψ−E = ÛψE with energy −E, where Û is the operator
given in Eq. (9). This operator shifts the sign of the state
on every second site. Therefore, if, say, the phase of ψ−E is
smooth and positive (or negative), the phase of ψE will have
a checkerboard structure. In class AIII we have also checked
that all the vortices are characterized by a winding number
of 1 and that no vortices with higher angular momentum are
formed.

In experiments, we expect the vortices or domain walls to
appear after a quench in the system. The vortices should be
visible via time-of-flight and absorption detection techniques
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FIG. 5. (Color online) (a) and (b) The densities and (c) and (d) the
phases for the ground-state wave function in the nonchiral class A. As
explained in the main text, the dominant species experiences a weaker
effective disorder, and its density thereby has a smooth envelope, and
its phase become constant, while the other species feels a strong
effective disorder and its wave function then adjusts accordingly. The
parameters are the same as for Fig. 4, except μ = 0.4.

like in standard experiments [41]. In order to single out vortices
in only one of the atomic species, one can also envision state-
dependent detection. Likewise, the domain walls could be
probed with the same methods; in a time-of-flight detection, a
domain wall will, for example, be manifested as a zero-density
cut in the momentum distribution.

For the above discussion of excited states we considered the
chiral classes for which species a and b are equally populated.
For the nonchiral classes, A and AI, this equal balance is lost,
and for the low-lying energy states the species with the smallest
chemical potential (we have defined the chemical potential as
a positive energy cost) will dominate. As can be understood
from the equations of motion (17), this imbalance has a direct
consequence on the structure of the states. If, say, μa > μb � 0
and as long as the energy is not too big, mainly species b will
be populated; ||âi|| < ||b̂i||. Since the amount of disorder felt by
one species is related to the population of the states of the other
species, it follows that the atom of the b type will experience a
weak disorder, while the atoms populating the species a states
experience a strong disorder (in comparison to the tunneling
part). In Eq. (17) this is seen from the fact that the first terms
on the right-hand side are large in the first equation and small
in the second equation. As a consequence, the wave function
for species b will minimize the kinetic energy, and its density
will be smooth. The wave function for species a, on the other
hand, will minimize the disordered part, and the density and
phase will show large fluctuations. This is displayed in Fig. 5,
where we plot the ground-state densities and phases of both
species. Higher up in the spectrum, the species with the higher
chemical potential get more populated, and excitations then
appear to partly excite the “internal” structure characterized by
the two species. Finally, the situation is reversed in the highest
excited states, and the population predominantly occupies the
species a states. In addition, in the same way as for the chiral
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classes, the excitations in the classes where chiral symmetry is
broken will also appear in the form of vortices and/or domain
walls.

C. Random-field-induced order vs localization

The phenomenon known as the random-field-induced order
refers to the ability of certain systems to order only in the
presence of a random field of a certain kind. This is the
case when a clean system with a continuous symmetry in
two dimensions, for example, is forbidden to order due to the
restrictions of the Mermin-Wagner theorem [12], and then,
after inclusion of a random field with discrete symmetry,
the system does not fulfill the assumptions under which the
theorem is valid, such that order is, in principle, not precluded.
This has been proven to happen in the classical XY model [13]
and has also been suggested as the mechanism of order in
graphene quantum Hall ferromagnets [42].

In the RFIO, order appears in a particular way: In the
ferromagnetic XY model in two dimensions, for example,
the inclusion of a random field in the x component of the
spin will induce a ferromagnetic state with long-range order,
but in the direction perpendicular to that of the field. In
this case, the expectation value is finite for magnetization in
the y component. This can be understood from an intuitive
argument, that the system minimizes the energetic cost of the
random field by orienting all the spins in a direction in which
the field exerts minimal influence, therefore the perpendicular
choice [42]. But despite the activity during the last years in the
study of RFIO, the mechanisms allowing for such phenomena
are still not fully understood. A step in this direction, however,
has been taken in [13], where the occurrence of RFIO in the 2D
XY model has been suggested in connection with the Anderson
localization of spin waves.

This phenomenon has also been shown to happen in
interacting systems of two-species Bose-Einstein condensates
that are randomly coupled by a real-valued Raman field [14].
Here, RFIO appears as a π/2 phase locking between the two
species, and an experimental setup for observation has been
proposed. Motivated by this, we have investigated Eq. (5) in
the context of the RFIO. The advantage of the noninteracting
system over the interacting one is the possibility of a direct
check of localization properties in all the excited states.
Therefore, in analogy to the system studied in [14], we
expected RFIO to appear as a phase locking between the
two species in the system of class BDI, and following this
reasoning, localization of the excitations should exhibit a
different behavior from what was observed in the system of
class AIII, where the random Raman coupling only magnifies
effects of the continuous symmetry.

As we discussed in Sec. III B 2, all the states of the chiral
class BDI have a homogeneous phase locking, whereas this
does not happens in class AIII. This phase locking, however,
does not seem to be a manifestation of the RFIO. First, because
Eq. (8) is always real, there is no reason for the appearance
of a π/2 relative phase. Second, because the relative phase is
always locked (at random) at zero or π , a π/2 relative phase
would be only the result of averaging and therefore would not
be relevant for experiments with single disorder realizations.
In addition, since all low-lying states are localized in both

class BDI and class AIII, the existence of phase coherence
in BDI does not seem to have any relation to the localization
of the excitations. This means that even if the homogeneous
phase could be a manifestation of the RFIO, which appears in
a particular and still unidentified way for the system discussed
here [see Eq. (5) in [14]], it would nevertheless be unrelated
to the localization of the low-lying excited states in this case.

The close relation between the present lattice model and
the continuum model of Ref. [14] and the fact that we do not
find the expected signatures of RFIO suggest that interaction
may play a crucial role for the appearance of RFIO. This
would have direct consequences on the hypothesis that a better
understanding of localization of the excitations could also
explain the origin of RFIO. In fact, the mechanisms behind
localization in single-particle or interacting many-particle
systems are very different. Anderson localization can be
understood from interfering loops in configuration space, and
in particular, the loops may be very long. In an interacting
system, the destructive interference processes occur instead in
a hypercubic lattice, and the loops are typically extremely
short [43]. Our results illustrate once again [13] that the
mechanisms allowing for the phenomenon of RFIO constitute
a very interesting open question.

IV. CONCLUSION

In this work we studied a model consisting of two species
in a square optical lattice. The two species represent internal
atomic Zeeman levels that are Raman coupled with an
amplitude hi which randomly varies between the sites. The
disorder resulting from the Raman coupling tends to localize
the eigenstates of the system. However, the properties of the
states depend strongly on the symmetry class of the model.
In particular we showed that with this simple model it is
possible to realize four different symmetry classes. In terms
of the localization, two of them, the chiral ones, are especially
interesting since they may support a transition to a metallic
phase in the center of the spectrum. Strictly speaking, the
metallic state should only appear at zero energy, but since
the system always has a finite size, a metallic-looking phase
should also appear at nonzero energies. Experimentally, such
extended states could be studied after a quench where an
initially localized state is prepared with an energy close to zero;
if the system is metallic, then one should see an everlasting
diffusion of the density, while in the Anderson insulating phase
the diffusion is rapidly hindered following a short expansion.

Properties of the symmetry classes are also reflected in
the sort of excitations. We found that excitations can be
characterized as either domain walls or vortices depending on
whether the Hamiltonian is purely real or complex. It should
be noticed that these results only occur due to the two-species
structure of the problem and that similar excitations cannot
occur in models with only one species. We also argued that
both the vortices and the domain walls should be verifiable in
time-of-flight measurements following a quench of the system,
and we concluded with a discussion on the phenomenon of the
RFIO.

With the newly developed transport experiments with
cold atoms [44], using two atomic reservoirs with different
chemical potentials, one should be able to explore the unique
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properties of chiral models in the vicinity of E = 0. In
particular, the scattering of the particle current as a function
of energy should behave qualitatively different for chiral and
nonchiral models at E = 0 [45]. This might become even
more relevant for topological models, for example, a 1D
system hosting Majorana modes [46] that has gained enormous
attention lately.

As a final remark, we notice that the present model
could be easily extended to other situations, for example,
to include more species (internal electronic levels), different
lattice geometries and dimensions, and atom-atom interaction.
These ideas could also be explored to engineer systems in class
CII by using four-level atoms, were the levels are coupled to
yield two species, a and b, both with an intrinsic spin-1/2
structure. Probably most interesting, however, would be to

consider the present model in the presence of interactions.
How to characterize interacting systems in the topological
periodic table is a very open question, and here, experiments
might provide valuable information for understanding the new
physics.
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