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Triplet pair amplitude in a trapped s-wave superfluid Fermi gas with broken spin rotation symmetry
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We investigate the possibility that the broken spatial inversion symmetry caused by a trap potential induces
a spin-triplet Cooper pair amplitude in an s-wave superfluid Fermi gas. Based on symmetry considerations, we
clarify that this phenomenon may occur, when a spin rotation symmetry of the system is also broken. We also
numerically confirm that a triplet pair amplitude is actually induced under this condition, using a simple model.
Our results imply that this phenomenon is already present in a trapped s-wave superfluid Fermi gas with spin
imbalance. As an interesting application of this phenomenon, we point out that one may produce a p-wave
superfluid Fermi gas by suddenly changing the s-wave pairing interaction to a p-wave one by using the Feshbach
resonance technique. Since a Cooper pair is usually classified into a spin-singlet (and even-parity) state and a
spin-triplet (and odd-parity) state, our results would be useful in considering how to mix them with each other in a
superfluid Fermi gas. Such an admixture has recently attracted much attention in the field of noncentrosymmetric
superconductivity, so that our results would also contribute to the further development of this research field, from
the viewpoint of cold Fermi gas physics.
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I. INTRODUCTION

Since any experiment on a superfluid Fermi gas is done
with a trap potential [1–7], it is interesting to explore physical
phenomena originating from this spatial inhomogeneity. An
example is surface oscillations observed in a 6Li superfluid
Fermi gas [3,4]. Another example is the phase separation
observed in a 6Li Fermi gas with spin imbalance [5–7],
where the spin-balanced superfluid region in the trap center
is spatially surrounded by excess atoms.

In addition to these macroscopic phenomena, spatial inho-
mogeneity can also affect microscopic superfluid properties.
Noting that a trap potential breaks the spatial inversion
symmetry when the inversion center is taken to be away
from the trap center, we expect that the parity becomes no
longer a good quantity for classifying the spatial structure of a
Cooper pair, leading to an admixture of even- and odd-parity
symmetry. Since a pair wave function is always antisymmetric
with respect to the exchange of two fermions, this naturally
leads to the mixing of spin-singlet and spin-triplet states.
When this phenomenon occurs, the s-wave superfluid state
is accompanied by a triplet Cooper pair amplitude, in addition
to the ordinary singlet component. (The Cooper pair amplitude
is symbolically written 〈c p,αc− p,α′ 〉, where c p,α is the annihi-
lation operator of a Fermi atom with pseudospin α = ↑,↓.)

The purpose of this paper is to theoretically explore this
possibility in a trapped s-wave superfluid Fermi gas. Using
symmetry considerations, we prove that this phenomenon
may occur when the spin rotation symmetry of this system
is also broken, in addition to the broken inversion symmetry
caused by a trap potential. In a two-component Fermi gas,
this additional condition is realized when two species feel
different trap potentials or chemical potentials or when they
have different atomic masses. Although this is a necessary
condition, we numerically confirm that a triplet pair amplitude
is actually induced under this condition, within the mean-field
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theory for a model two-dimensional lattice Fermi superfluid
in a harmonic trap.

In considering a triplet pair amplitude, one should note that
the appearance of this quantity does not immediately mean the
realization of a triplet superfluid state. Actually, the system is
still in the s-wave superfluid state, insofar as the system only
has an s-wave interaction. This is simply because the symmetry
of a Fermi superfluid is fully determined by the symmetry of
the superfluid order parameter, which is essentially given by
the product of a pairing interaction and a pair amplitude. For
example, an s-wave superfluid Fermi gas with a contact-type
s-wave pairing interaction −Us (<0) is characterized by the
ordinary s-wave superfluid order parameter,

�s = Us

∑
p

〈c p,↑c− p,↓〉, (1)

which is finite when the pair amplitude 〈c p,↑c− p,↓〉 has
the s-wave component. The odd-parity component does not
contribute to �s in Eq. (1).

However, for an s-wave superfluid Fermi gas with both a
singlet and a triplet pair amplitude, when one suddenly changes
the s-wave pairing interaction to a triplet (and odd-parity)
one U ( p, p′), while the s-wave superfluid order parameter in
Eq. (1) immediately vanishes due to the vanishing s-wave
interaction (Us = 0), the product of the triplet interaction
and the triplet component in the pair amplitude 〈c p,↑c− p,↓〉
(which is assumed to have existed already in the s-wave state)
immediately gives a finite triplet superfluid order parameter,

�( p) =
∑

p′
U ( p, p′)〈c p′,↑c− p′,↓〉, (2)

when the triplet interaction U ( p, p′) is chosen so that the
momentum summation in Eq. (2) can be finite. In an ultracold
Fermi gas, the change of the interaction is possible by using
a tunable interaction associated with a Feshbach resonance
[8–16]. Then, by definition, one obtains a triplet superfluid
Fermi gas characterized by the superfluid order parameter
�( p) in Eq. (2), at least just after this manipulation. This makes
us expect that, when one can induce a p-wave pair amplitude
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in an s-wave superfluid Fermi gas, a p-wave superfluid
Fermi gas may be realized. This possibility has recently been
discussed by one of the authors in [17], where a p-wave
pair amplitude is induced by a synthetic spin-orbit interaction
[18–26]. The present paper provides another source of p-wave
pair amplitude, without using an artificial gauge field.

The admixture of singlet and triplet Cooper pairs has
recently attracted much attention in the field of noncentrosym-
metric superconductivity [27,28], where a crystal lattice with
no inversion center causes this phenomenon. In this field, it has
been pointed out that this admixture may be the origin of the
anomalous temperature dependence of the penetration depth
observed in Li2Pt3B [29]. Thus, an s-wave superfluid Fermi
gas with a triplet pair amplitude would also be helpful in the
study of this electron system.

This paper is organized as follows. In Sec. II, we clarify
the necessary condition for a triplet Cooper pair amplitude to
appear in a trapped s-wave superfluid Fermi gas. In Sec. III,
we numerically evaluate how high a triplet pair amplitude is
induced under the condition obtained in Sec. II. In this section,
we treat a superfluid Fermi gas loaded on a two-dimensional
square lattice, within the mean-field theory. Throughout this
paper, we take � = kB = 1, for simplicity.

II. CONDITION FOR A TRIPLET PAIR AMPLITUDE
TO APPEAR IN A TRAPPED s-WAVE

SUPERFLUID FERMI GAS

We consider a three-dimensional s-wave superfluid Fermi
gas, described by the Hamiltonian

H =
∫

d r
[∑

α,α′
�†

α(r)hα,α′ (r)�α′ (r)

−Us�
†
↑(r)�†

↓(r)�↓(r)�↑(r)

]
. (3)

Here, �α(r) is a fermion field operator with pseudospin
α = ↑,↓, describing two atomic hyperfine states. −Us (<0)
is a contact-type s-wave pairing interaction. hα,α′ (r) is a one-
particle Hamiltonian density, consisting of a kinetic term and a
potential term, the detailed expression of which is given later.

We assume that the system is in the ordinary s-wave
superfluid state with the s-wave superfluid order parameter,

�s(r) = Us〈�↑(r)�↓(r)〉. (4)

We also assume that any other spontaneous symmetry breaking
is absent (such as the triplet superfluid state).

In this model superfluid, we consider the spin-triplet Cooper
pair amplitude, given by

�
Sz

t (r,r ′)

=
⎧⎨
⎩

〈�↑(r)�↑(r ′)〉 (Sz = 1),
1√
2
[〈�↑(r)�↓(r ′)〉 + 〈�↓(r)�↑(r ′)〉] (Sz = 0),

〈�↓(r)�↓(r ′)〉 (Sz = −1),

(5)

where Sz denotes the z component of the total spin of
each pair amplitude. The triplet pair amplitude in Eq. (5)
does not contribute the s-wave superfluid order parameter

�s(r) in Eq. (4), because �
Sz

t (r,r) = 0. The spin-singlet pair
amplitude,

�s(r,r ′) = 1√
2

[〈�↑(r)�↓(r ′)〉 − 〈�↓(r)�↑(r ′)〉], (6)

only contributes to Eq. (4).
We first prove that the broken spatial inversion symmetry

is necessary for a triplet pair amplitude to appear in an
s-wave superfluid Fermi gas. For this purpose, we conveniently
introduce the inversion operator P̂ (R) with respect to the
inversion center R. The field operator is transformed under
this operation as

�̃α(r) ≡ P̂ (R)�α(r)P̂ −1(R) = �α(R − l), (7)

where r = R + l . The inverted Hamiltonian H̃ = P̂H P̂ −1 is
then given by

H̃ =
∫

d l
[ ∑

α,α′
�†

α(R − l)hα,α′(R + l)�α′(R − l)

−Us�
†
↑(R − l)�†

↓(R − l)�↓(R − l)�↑(R − l)
]
. (8)

When the one-particle Hamiltonian density hα,α′ (r) has the
symmetry hα,α′ (R + l) = hα,α′ (R − l), this system is invariant
(H̃ = H ) under this symmetry operation. On the other hand,
the triplet pair amplitude �

Sz=1
t (r,r ′) in Eq. (5) with the center-

of-mass position R = [r + r ′]/2 is transformed as

�̃
Sz=1
t (r,r ′) ≡ 〈�̃↑(r)�̃↑(r ′)〉

= 〈�↑(R − r rel/2)�↑(R + r rel/2)〉
= −〈�↑(R + r rel/2)�↑(R − r rel/2)〉
= −�

Sz=1
t (r,r ′), (9)

where r rel = r − r ′ is the relative coordinate. We also find
�̃

Sz=0,−1
t (r,r ′) = −�

Sz=0,−1
t (r,r ′). That is, the triplet pair

amplitude �
Sz

t (r,r ′) vanishes when the system has the in-
version symmetry (H̃ = H ) with respect to the inversion
center R = [r + r ′]/2. Thus, the broken inversion symmetry
is necessary for a triplet pair amplitude to appear.

For the singlet pair amplitude in Eq. (6), this symmetry
operation simply gives �̃s(r,r ′) = �s(r,r ′). As expected, this
quantity may be finite.

The one-particle Hamiltonian density hα,α′ (r) in the ordi-
nary uniform Fermi gas has the form

hα,α′ (r) =
[ p̂2

2m
− μ

]
δα,α′ , (10)

where p̂ = −i∇, m is the atomic mass, and μ is the Fermi
chemical potential. Equation (10) has the symmetry property,
hα,α′ (R + l) = hα,α′ (R − l), with respect to l for an arbitrary
R. To conclude, any triplet pair amplitude is not induced.

In the presence of a harmonic trap, the one-particle
Hamiltonian density becomes inhomogeneous as

hα,α′ (r) =
[ p̂2

2m
− μ + 1

2
Kr2

]
δα,α′ , (11)

so that it does not have the inversion symmetry except at
R = 0. However, when we consider the s-wave superfluid
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state in this trapped case, any triplet pair amplitude is not
actually induced (although we do not explicitly show the
result here). Of course, since the condition obtained from
the inversion symmetry is a necessary condition, the broken
inversion symmetry does not guarantee the appearance of a
triplet pair amplitude.

In this regard, we point out that the vanishing triplet pair
amplitude in the trapped case is due to the fact that this system
still has a rotation symmetry in spin space. To see this, we next
consider the spin rotation of the field operator, given by

�̃α(r) = R̂(θ)�α(r)R̂−1(θ) =
∑
α′

(
e

i
2 θ ·σ )

α,α′�α′ (r). (12)

Here, θ = θeθ describes the spin rotation around the unit
vector eθ with the angle θ , and σ = (σx,σy,σz), where σj

(j = x,y,z) are Pauli matrices. (As usual, we take the spin
quantization axis in the σz direction.) For the three “π
rotations” specified by θ = (π,0,0)(≡ θx

π ), (0,π,0)(≡ θy
π ),

and (0,0,π )(≡ θ z
π ), Eq. (12) can be written as(
�̃↑(r)
�̃↓(r)

)
θ=θ j

π

= iσj

(
�↑(r)
�↓(r)

)
, (13)

where we have used the formula ei θ
2 σj = cos(θ/2) +

iσj sin(θ/2). Under the π rotation, the Hamiltonian in Eq.
(3) is transformed as

H̃ = R̂
(
θ j

π

)
HR̂−1

(
θ j

π

)

=
∫

d r
[ ∑

α,α′
�̃†

α(r)hα,α′ (r)�̃α′(r)

−Us�̃
†
↑(r)�̃†

↓(r)�̃↓(r)�̃↑(r)

]

=
∫

d r
[ ∑

α,α′
�†

α(r)(σj ĥ(r)σj )α,α′�α′(r)

−Us�
†
↑(r)�†

↓(r)�↓(r)�↑(r)

]
. (14)

Here, ĥ(r) = {hα,α′ (r)}. Thus, one has H̃ = H when

[ĥ(r),σj ] = 0 (15)

is satisfied.
While the singlet pair amplitude in Eq. (6) remains

unchanged under these π rotations, the triplet component is
transformed as

⎛
⎜⎝

�̃
Sz=1
t (r,r ′)

�̃
Sz=0
t (r,r ′)

�̃
Sz=−1
t (r,r ′)

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

−�
Sz=−1
t (r,r ′)

−�
Sz=0
t (r,r ′)

−�
Sz=1
t (r,r ′)

⎞
⎟⎠(

θ = θx
π

)
,

⎛
⎜⎝

�
Sz=−1
t (r,r ′)

−�
Sz=0
t (r,r ′)

�
Sz=1
t (r,r ′)

⎞
⎟⎠(

θ = θy
π

)
,

⎛
⎜⎝

−�
Sz=1
t (r,r ′)

�
Sz=0
t (r,r ′)

−�
Sz=−1
t (r,r ′)

⎞
⎟⎠(

θ = θ z
π

)
.

(16)

For example, when we set θ = θx
π , Eq. (16) means that

�
Sz=0
t (r,r ′) = 0, when [ĥ(r),σx] = 0. (The other two com-

ponents with Sz = ±1 are not excluded in this case.) When
the system is invariant under all the π -rotations (θx,y,z

π ), any
triplet pair amplitude is not induced.

To conclude, the broken spin rotation symmetry charac-
terized by θ j

π is necessary for a triplet pair amplitude to be
induced in a trapped s-wave superfluid Fermi gas. This is the
reason why the model case described by Eqs. (3) and (11) is
not accompanied by any triplet pair amplitude.

The broken spin rotation symmetry is realized when the
strength of the trap potential K in Eq. (11) depends on
the spin (≡ Kα). In this case, the one-particle Hamiltonian
ĥ(r) = {hα,α′ (r)} can be written as

ĥ(r) =
[

p̂2

2m
− μ + K↑ + K↓

4
r2

]
+ K↑ − K↓

4
r2σz. (17)

Equation (15) is then satisfied only when j = z. Thus, we find
from the last line in Eq. (16) that only the triplet pair amplitude
with Sz = 0 may be induced. Since the last term in Eq. (17)
works as an external magnetic field, this phenomenon is also
expected in the presence of spin imbalance [5–7,30,31], where
two species feel different Fermi chemical potentials μ↑ 
= μ↓.
Another possibility is a trapped hetero superfluid Fermi gas
[32–40], where two species have different atomic masses m↑ 
=
m↓. In Sec. III, we numerically examine these cases.

Before ending this section, we briefly note that the broken
inversion symmetry, as well as the broken spin rotation symme-
try, is also realized in a spin-orbit-coupled s-wave superfluid
Fermi gas [18–26]. Indeed, Refs. [17,41,42] predict that a
p-wave pair amplitude is induced in this case. Although we do
not deal with this case in Sec. III, we explain in Appendix A
how to apply the present symmetry consideration to this case.

III. NUMERICAL CONFIRMATION FOR THE INDUCTION
OF TRIPLET PAIR AMPLITUDE IN A TRAPPED s-WAVE

SUPERFLUID FERMI GAS

To examine whether or not a triplet pair amplitude is
induced under the condition obtained in Sec. II, we consider
a model s-wave Fermi superfluid loaded on an L × L two-
dimensional square lattice, within the mean-field approxima-
tion. Although this simple model cannot be directly applied
to a real continuum Fermi gas, it is still helpful to grasp basic
characters of this phenomenon.

The Hamiltonian is given by

HMF = −
∑

〈i,j〉,α
tα

[
c†r i ,α

crj ,α + H.c.
]

+
∑

i

�s(r i)
[
c
†
r i ,↑c

†
r i ,↓ + H.c.

]

+
∑
i,α

[Vα(r i) − μα − Usn−α(r i)]c
†
r i ,α

cr i ,α. (18)

Here, c
†
r i ,α is the creation operator of a Fermi atom at the

lattice site r i = (ri
x,r

i
y), with pseudospin α = ↑,↓ and Fermi

chemical potential μα . −tα describes the particle hopping
between nearest-neighbor sites, and 〈i,j 〉 means the summa-
tion over the nearest-neighbor pairs. In Eq. (18), the s-wave
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superfluid order parameter �s(r i) = Us〈cr i ,↑cr i ,↓〉, as well
as the Hartree potential −Usn−α(r i) = −Us〈c†r i ,−αcr i ,−α〉, is
obtained from the mean-field approximation for the on-site
Hubbard interaction −Usc

†
r i ,↑cr i ,↑c

†
r i ,↓cr i ,↓, where −Us (<

0) is the interaction strength. Vα(r i) = V α
0 (r i/rd )2 is the

harmonic trap potential, where V α
0 is the strength of a trap

potential which α-spin atoms feel. Here, the spatial position r i

is measured from the center of the L × L square lattice, and
rd is the distance between the trap center and the edge of the
system. For simplicity, we take the lattice constant a to be unity.

In the present model, the spatial inversion symmetry is
broken by the trap potential except at the trap center. For spin
rotation symmetry, it is broken when one of tα , μα , and V α

0
depends on pseudospin α = ↑,↓. Since all these cases satisfy
Eq. (15) only when j = z, Eq. (16) indicates that one may
only consider the possibility of the triplet pair amplitude with
Sz = 0. In the present model, this component is given by

�
Sz=0
t (r i ,rj ) = 1√

2

[〈
cr i ,↑crj ,↓

〉 + 〈
cr i ,↓crj ,↑

〉]
. (19)

For comparison, we also consider the ordinary singlet compo-
nent, given by

�s(r i ,rj ) = 1√
2

[〈
cr i ,↑crj ,↓

〉 − 〈
cr i ,↓crj ,↑

〉]
. (20)

Besides the superfluid order parameter, the condensate
fraction is also a fundamental quantity in the superfluid phase
[43–46], which physically describes the number of Bose-
condensed Cooper pairs. In an ordinary s-wave superfluid
state, it has the form

N s
c =

∑
R=(r i+rj )/2

ns
c(R), (21)

where the local condensate fraction ns
c(R) is directly related

to the singlet pair amplitude in Eq. (20) as

ns
c(R) = 1

2N

∑
r rel=r i−rj

|�s(R + r rel/2,R − r rel/2)|2. (22)

In addition to the singlet component of the condensate fraction
N s

c in Eq. (21), the present system may also have the spin-triplet
component [17], N t

c = ∑
R=(r i+rj )/2 nt

c(R), where

nt
c(R) = 1

2N

∑
r rel=r i−rj

∣∣�Sz=0
t (R + r rel/2,R − r rel/2)

∣∣2
.

(23)

The total condensate fraction is given by N s
c + N t

c. In what
follows, we simply call N s

c and N t
c the singlet and triplet

condensate fractions, respectively.
We note that the square lattice in our model does not affect

the symmetry consideration in Sec. II. This is because the
square lattice is invariant under the spatial inversion with
respect to the center-of-mass position R = [r i + rj ]/2 of a
triplet pair amplitude �

Sz

t (r i ,rj ). In addition, since the spin
rotation symmetry is also unaffected by the crystal lattice, the
necessary condition obtained in Sec. II is still valid for the
present case.
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FIG. 1. (Color online) (a) Calculated triplet pair amplitude
�

Sz=0
t ((ri

x,0),(ri
x + 1,0)) along the x axis (ri

y = 0) in an s-wave
superfluid Fermi gas with a trap-potential difference. (b) s-wave
superfluid order parameter �s(ri

x,0). (c) Density profile nα(ri
x,0).

We take V
↑

0 /V
↓

0 = 0.5, t↑/t↓ = 1, and Us/t = 2.5. This parameter
set is also used in Figs. 2–4.

As usual, we diagonalize the mean-field Hamiltonian HMF

in Eq. (18) by the Bogoliubov transformation [47]. Since this
is a standard procedure [48], we do not explain the details here
but summarize the outline in Appendix B. We numerically
carry out the Bogoliubov transformation to self-consistently
determine �s(r i), nα(r i), and μα . We then evaluate the triplet
pair amplitude �

Sz=0
t (r i ,rj ) in Eq. (19).

In numerical calculations, we take the lattice size L = 41,
and V

↑
0 = 2t , where t = [t↑ + t↓]/2. To avoid lattice effects,

we consider the low-density region, by setting N↑ = N↓ = 59
in the absence of spin imbalance (where Nα is the number
of Fermi atoms in the α-spin component). The total number
N = N↑ + N↓ of Fermi atoms then equals N = 118. In this
case, the particle density is at most nα(r i) � 0.3 � 1 even in
the trap center. We take a low but finite temperature T/t =
0.01, in order to suppress the effects of discrete energy levels
associated with the finite system size.

Figure 1(a) shows the evidence that a triplet pair amplitude
with Sz = 0 is induced in the s-wave superfluid state when both
the spatial inversion symmetry and the spin rotation symmetry
are broken by the trap potential Vα(r i). From comparison of
this figure with Figs. 1(b) and 1(c), one finds that �

Sz=0
t ((ri

x +
1,0),(ri

x,0)) appears everywhere in the gas cloud where the
s-wave superfluid order parameter �s(ri

x,0), as well as the
atom density nα(ri

x,0), is finite, except at the trap center. Since
the system still has spatial inversion symmetry at the trap
center, the node structure shown in Fig. 1(a) agrees with the
symmetry consideration in Sec. II. We emphasize that the
triplet pair amplitude is not induced when V

↑
0 = V

↓
0 , although

we do not explicitly show the result here.
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FIG. 2. (Color online) Calculated triplet pair amplitude �
Sz=0
t (r i ,rj ) in an s-wave superfluid Fermi gas with a trap-potential difference.

(a) �
Sz=0
t ((ri

x,r
i
y),(ri

x + 1,ri
y)). (b) �

Sz=0
t ((ri

x,r
i
y),(ri

x,r
i
y + 1)). (c) �

Sz=0
t ((ri

x,r
i
y),(ri

x + 1,ri
y + 1)). (d) Singlet pair amplitude �s(r i ,r i).

Figure 2(a) shows that the point node shown in Fig. 1(a)
is actually a line node along the y axis. This node structure
comes from the symmetry property that, while the present
square-lattice model has reflection symmetry with respect to
the y axis, the triplet pair amplitude �

Sz

t (r i ,rj ) behaves as

�
Sz

t (R+r rel/2,R−r rel/2) = −�
Sz

t (R−r rel/2,R+r rel/2)

(24)

when R = [r i + rj ]/2 = (0,Ry) and r rel = r i − rj =
(rx

rel,0). Since the present lattice model is also invariant under
the reflections with respect to the x axis, as well as the lines
along y = ±x, the triplet pair amplitude �

Sz

t (r i ,rj ), with
the relative vector r rel = r i − rj being perpendicular to one
of them, has the line node along the reflection line. [See
Figs. 2(b) and 2(c).] In a continuum system with no lattice,
the triplet pair amplitude is expected always to have the line
node, which is perpendicular to the relative vector of the pair
amplitude. We briefly note that such a node is not obtained in
the singlet component, as shown in Fig. 2(d).

Figure 3(a) shows the spatial structure of the triplet pair
amplitude �

Sz=0
t (r i ,rj ) with respect to the relative coordinate

r rel = r i − rj . Noting that the pairing symmetry is determined
by the angular dependence in relative-momentum space, we
find that the induced pair amplitude has p-wave symmetry.
That is, the pair amplitude has px-wave (py-wave) symmetry,
when the center-of-mass position is on the x axis (y axis).

An advantage of the cold Fermi gas system is that one can
tune the pairing interaction by adjusting the threshold energy of
a Feshbach resonance. Although this technique is usually used
to adjust the interaction strength for a fixed interaction channel,
one may also use this technique to change the interaction
channel from an s-wave one to a p-wave one. For example,
an ultracold 6Li Fermi gas consisting of two atomic hyperfine
states |F,mF 〉 = |1/2, ± 1/2〉 is known to have both an s-wave
and a p-wave Feshbach resonance at Bs � 822 G [2] and at
Bp � 186 G [11,12], respectively, so that one may change the
s-wave interaction to a p-wave one by rapidly decreasing the
external magnetic field from Bs to Bp. In the s-wave superfluid
Fermi gas with triplet pair amplitude shown in Fig. 3(a), when
one suddenly changes the s-wave interaction to a p-wave one

[49,50],

Hp-wave = −Up

∑
p, p′,q

p · p′c†p+q/2,↑c
†
− p+q/2,↓

× c− p′+q/2,↓c p′+q/2,↑, (25)

the p-wave superfluid order parameter,

�p( p,R) = Up

∑
p′

p · p′�Sz=0
t ( p′,R), (26)

immediately becomes finite. Here, �Sz=0
t ( p′,R) is the Fourier-

transformed triplet pair amplitude with respect to the relative
coordinate r rel. We emphasize that this triplet pair amplitude
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FIG. 3. (Color online) (a) Triplet pair amplitude �
Sz=0
t (r i ,rj ) as

a function of the relative coordinate r rel = r i − rj . We take V
↑

0 /V
↓

0 =
0.5. For each center-of-mass position R = [r i + rj ]/2 (small open
squares), the pair amplitude is plotted inside the region between
two dashed lines, by taking R as the origin. (b) Spatial variation
of synthesized p-wave superfluid order parameter �p( p,R). The p
dependence of �p( p,R) is shown schematically, centered at R (small
open squares).
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FIG. 4. (Color online) Local condensate fraction in an s-wave
superfluid Fermi gas with a trap-potential difference. (a) Triplet
component nt

c(R). The intensity is magnified to 10 times. (b) Singlet
component ns

c(R).

has already existed before the change of the interaction. Thus,
just after this manipulation, we expect the spatial structure of
the induced p-wave superfluid order parameter schematically
shown in Fig. 3(b). The s-wave superfluid order parameter
immediately disappears because of the vanishing s-wave inter-
action (Us = 0), and the s-wave pair amplitude �s(r i ,rj ) only
remains. Thus, at least immediately after this manipulation,
by definition, the system is in the p-wave superfluid state
with the synthesized p-wave superfluid order parameter in
Eq. (26). This unconventional superfluid phase would be in
the nonequilibrium state, so that we need further analyses
on the time evolution of this state. However, the combined
Feshbach technique with the induced triplet pair amplitude is
an interesting idea for realizing a p-wave superfluid Fermi gas.

Figure 4 shows the local condensate fraction ns,t
c (R) in an

s-wave superfluid Fermi gas with trap-potential imbalance.
In Fig. 4(a), the triplet component nt

c(R) is enhanced around
|R| = 6, as well as the region near the trap center (except at
R = 0, where the triplet condensate fraction vanishes). On the
other hand, Fig. 4(b) shows that the singlet component ns

c(R)
monotonically decreases as one goes away from the trap center.
The latter behavior is consistent with the spatial variation of the
s-wave superfluid order parameter �s(r i) shown in Fig. 1(b).

The large triplet condensate fraction nt
c(R) near the trap

center shown in Fig. 4(a) is due to the spin imbalance
[n↑(ri

x,0) > n↓(ri
x,0)] in the trap center. [See Fig. 1(c).] This

naturally leads to broken spin rotation symmetry through the
Fermi chemical potential μα , as well as the Hartree potential
−Usn−α(r i) in Eq. (18). Thus, although two spin components
feel almost the same trap potential [V↑(r i) � V↓(r i)] around
the trap center, the triplet condensate fraction is enhanced there
(except at R = 0).

While the difference V↑(r i) − V↓(r i) becomes remarkable
as one goes away from the trap center, the spin imbalance
[n↑(ri

x,0) − n↓(ri
x,0)] becomes small and eventually vanishes
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V0 /↑ V0
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(a)

FIG. 5. (Color online) Condensate fraction N s,t
c = ∑

R ns,t
c (R) in

an s-wave superfluid Fermi gas with a trap-potential difference. (a)
Triplet component N t

c. (b) Singlet component N s
c . (c) N t

c and N s
c ,

as functions of the interaction strength Us , when V
↑

0 /V
↓

0 = 0.5. In
(a) and (b), the region above the solid line is in the superfluid state
within our numerical accuracy. (Note that we take T/t = 0.01 > 0
in our numerical calculations.) The region between the solid line and
the dashed line is in the FFLO phase, characterized by a spatially
oscillating superfluid order parameter �s(r i). These lines are also
drawn in Fig. 6.

at |R| � 9. [See Fig. 1(c).] In the outer region, the spin
imbalance again occurs as n↑(ri

x,0) < n↓(ri
x,0). These enhance

n
Sz=0
c (|R| ∼ 6), as shown in Fig. 4(a).

Summing up the local condensate fraction ns,t
c (R) in the

gas cloud, one obtains the condensate fraction N s,t
c in Fig. 5.

As expected, Fig. 5(a) shows that the triplet component N t
c is

enhanced when V
↑

0 /V
↓

0 � 1. We also find that N t
c becomes

large in the intermediate-coupling regime but becomes small
when Us/t � 1. In the strong-coupling regime, most Fermi
atoms form singlet molecules, which suppresses the effects of
broken inversion and spin rotation symmetry. Indeed, Fig. 5(b)
shows that the singlet component N s

c monotonically increases
with increasing interaction strength Us . To clearly see the
difference between N t

c and N s
c , Fig. 5(c) shows these quantities

as functions of the interaction strength Us .
In Figs. 5(a) and 5(b), one sees the FFLO (Fulde-Ferrell-

Larkin-Ovchinnikov) phase [51–54]. In this regard, since we
are dealing with a two-dimensional lattice model within the
simple mean-field theory, it is unclear whether or not the FFLO
phase still remains in a realistic three-dimensional continuum
Fermi gas [55]. However, since Fig. 5(a) indicates that the
triplet condensate fraction is also induced in the ordinary BCS
region, we find that the FFLO state is not necessary for the
triplet pair amplitude to appear.
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FIG. 6. (Color online) Condensate fraction N s,t
c in a trapped s-

wave superfluid Fermi gas in the presence of a mass imbalance
t↑/t↓ 
= 1. (a) Triplet component N t

c. (b) Singlet component N s
c .

(c) N t
c and N s

c , as functions of the interaction strength Us/t , when
t↑/t↓ = 0.5.

Figure 6 confirms that the triplet pair amplitude
�

Sz=0
t (r i ,rj ) is also induced when the spin rotation symmetry

is broken by mass imbalance (t↑/t↓ 
= 1). In addition, Fig. 7
shows that this phenomenon also occurs in a trapped s-wave
superfluid Fermi gas with spin imbalance (N↑/N↓ 
= 1) [56].
In the latter case, the Fermi chemical potential μα depends
on the pseudospin α = ↑,↓, which breaks the spin rotation
symmetry [57].

In the presence of spin imbalance, phase separation is
known to occur [5–7], where the superfluid region in the
trap center is surrounded by excess atoms. Figure 8(a) shows
this case. In this figure, since the spin imbalance is almost
absent around the trap center, the triplet condensate fraction is
suppressed there, compared to the case where phase separation
does not occur [Fig. 8(b)]. In addition, the region around the
edge of the gas cloud is highly spin polarized, so that the triplet
pair amplitude is also suppressed there. As a result, when the
phase separation occurs, the triplet pair amplitude is localized
around the edge of the gas cloud of the minority component
(α = ↓), as shown in Fig. 8(a).

IV. SUMMARY

To summarize, we have discussed the possibility of induc-
ing a triplet pair amplitude in a trapped s-wave superfluid
Fermi gas. Using symmetry considerations, we have clarified
that both broken spatial inversion symmetry and broken spin
rotation symmetry are necessary for this phenomenon to
occur. We have numerically confirmed that a triplet pair

U s
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FIG. 7. (Color online) Condensate fraction N s,t
c in a trapped s-

wave superfluid Fermi gas with spin imbalance N↑/N↓ 
= 1. (a)
Triplet component N t

c. (b) Singlet component N s
c . (c) N t

c and N s
c ,

as functions of the interaction strength Us/t , when [N↑ − N↓]/N =
0.17 (N↑ − N↓ = 20). In (a) and (b), the region above the solid line
is in the superfluid phase. In the superfluid region shown here, the
superfluid order parameter in the outer region of the gas cloud always
exhibits an FFLO-type oscillation in the radial direction.

amplitude is induced when this condition is satisfied, within the
mean-field theory for a two-dimensional lattice model. In this
confirmation, we considered the three cases of (i) trap-potential
difference, (ii) mass imbalance, and (iii) spin imbalance. In the

n α
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FIG. 8. (Color online) Calculated density profile nα(ri
x,0) and

triplet condensate fraction nt
c(Rx,0) in a trapped s-wave superfluid

Fermi gas with spin imbalance. (a) Us/t = 6. (b) Us/t = 3. We set
(N↑ − N↓)/N = 0.17.
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first case, we showed that the induced triplet pair amplitude is
dominated by a p-wave symmetry. Among these three cases,
the trapped s-wave superfluid Fermi gas with spin imbalance
has been realized [5–7]. Thus, our results imply that a triplet
pair amplitude is already present in this system, although there
is no experimental evidence yet.

Since the symmetry of a Fermi superfluid is fully deter-
mined by the symmetry of the superfluid order parameter, the
induction of a triplet pair amplitude does not immediately
mean the realization of a triplet Fermi superfluid. In the
present case, the system is still in the s-wave superfluid
state, which is characterized by the s-wave superfluid order
parameter, even in the presence of a triplet pair amplitude.
In this situation, however, when one suddenly changes the
s-wave pairing interaction to an appropriate p-wave one,
the product of the p-wave interaction and the triplet pair
amplitude that has been induced before this manipulation may
immediately give a finite p-wave superfluid order parameter.
Since the s-wave superfluid order parameter vanishes, by
definition, we have a p-wave superfluid state, character-
ized by this p-wave superfluid parameter. Change of the
interaction would be possible using the Feshbach resonance
technique.

In cold Fermi gas physics, although the realization of
a p-wave superfluid state is a crucial challenge, current
experiments are facing various difficulties originating from
p-wave interaction, such as three-particle loss [58–60], as
well as dipolar relaxation [14]. In this regard, the above idea
may avoid these difficulties to some extent, because the triplet
pair amplitude is prepared in an s-wave superfluid Fermi gas
with no p-wave interaction. In addition, since we can start
from a finite value of the p-wave superfluid order parameter,
the system would be in the p-wave superfluid state for a
while, until it is strongly damaged by the particle loss and
dipolar relaxation after the p-wave interaction is introduced.
In this sense, the induction of a triplet pair amplitude
discussed in this paper is important not only as a fundamental
physical phenomenon, but also from the viewpoint of the
challenge of the realization of a p-wave superfluid Fermi
gas.

In this paper, we have treated a lattice model to simply con-
firm the induction of a triplet pair amplitude. To quantitatively
evaluate this quantity, we need to extend the present analyses
to a realistic continuum Fermi superfluid. To assess the idea
that one produces a p-wave superfluid Fermi gas from the
induced triplet pair amplitude, it is also important to clarify
the time evolution of the p-wave superfluid order parameter
after the s-wave interaction is replaced by a p-wave one.
These problems remain for the future. Since a pair amplitude
always exists in a Fermi superfluid, our results will be useful
for the study of this fundamental quantity in cold Fermi gas
physics.
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APPENDIX A: TRIPLET PAIR AMPLITUDE IN A
SPIN-ORBIT-COUPLED UNIFORM s-WAVE SUPERFLUID

FERMI GAS

We consider a uniform s-wave superfluid Fermi gas with a
spin-orbit interaction. The model Hamiltonian is given by

H =
∑
p,α

ξ pc
†
p,αc p,α + Hso

−Us

∑
p, p′,q

c
†
p+q/2,↑c

†
− p+q/2,↓c− p′+q/2,↓c p′+q/2,↑. (A1)

Here, c
†
p,α is the creation operator of a Fermi atom with

the kinetic energy ξ p = p2/(2m) − μ, measured from the
chemical potential μ. The antisymmetric spin-orbit interaction
Hso has the form [17]

Hso =
∑
p,α,α′

c†p,αhα,α′
so ( p)c p,α′ , (A2)

where ĥso( p) = {hα,α′
so } is assumed as

ĥso( p) = λ⊥[pxσx + pyσy] + λzσz. (A3)

Here, λ⊥ and λz are spin-orbit couplings.
We assume that the system is in the s-wave superfluid state

with the superfluid order parameter �s = Us

∑
p〈c p↑c− p↓〉.

We also assume that any other spontaneous symmetry breaking
is absent.

In momentum space, the spatial inversion P̂ is described
as c̃ p,α = P̂ c p,αP̂ −1 = c− p,α . Under this operation, each term
in Eq. (A1) is invariant except for the spin-orbit interaction,
which is transformed as

H̃so = P̂HsoP̂
−1 =

∑
p,α,α′

c
†
− p,αhα,α′

so ( p)c− p,α′

=
∑
p,α,α′

c†p,αhα,α′
so (− p)c p,α′ = −Hso. (A4)

Thus, the spin-orbit interaction Hso in Eq. (A2) breaks the
inversion symmetry.

For the spin rotation R̂(θ ), the three π rotations (θ = θ j
π ,

j = x,y,z) corresponding to Eq. (13) are given by
(

c̃ p↑
c̃ p↓

)
θ=θ j

π

= iσj

(
c p↑
c p↓

)
(j = x,y,z). (A5)

When λ⊥ = 0 and λz 
= 0 (single-component spin-orbit in-
teraction), Eq. (A1) is not invariant under the spin rotations
R̂(θx

π ) and R̂(θy
π ), because the spin-orbit interaction Hso is

transformed as

H̃so = R̂
(
θx,y

π

)
HsoR̂

−1(θx,y
π

) = λz

∑
p,α,α′

c̃†p,ασ α,α′
z c̃ p,α′

= −λz

∑
p,α,α′

c†p,ασ α,α′
z c p,α′ = −Hso. (A6)
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Thus, Eq. (A1) is invariant only under the π rotation with
θ = θ z

π . Noting that the triplet pair amplitude,

�
Sz

t ( p) =
⎧⎨
⎩

〈c p↑c− p↑〉 (Sz = 1),
1√
2
[〈c p↑c− p↓〉 + 〈c p↓c− p↑〉] (Sz = 0),

〈c p↓c− p↓〉 (Sz = −1),
(A7)

is transformed under the three π rotations as

⎛
⎜⎝

�̃
Sz=1
t ( p)

�̃
Sz=0
t ( p)

�̃
Sz=−1
t ( p)

⎞
⎟⎠ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

−�
Sz=−1
t ( p)

−�
Sz=0
t ( p)

−�
Sz=1
t ( p)

⎞
⎟⎠(

θ = θx
π

)
,

⎛
⎜⎝

�
Sz=−1
t ( p)

−�
Sz=0
t ( p)

�
Sz=1
t ( p)

⎞
⎟⎠(

θ = θy
π

)
,

⎛
⎜⎝

−�
Sz=1
t ( p)

�
Sz=0
t ( p)

−�
Sz=−1
t ( p)

⎞
⎟⎠(

θ = θ z
π

)
,

(A8)

we find that only �
Sz=0
t ( p) may be induced. Indeed, Ref. [17]

shows that it is induced in this case.
When λ⊥ 
= 0, the spin-orbit interaction Hso is not invariant

under any π rotations R̂(θx,y,z
π ). Within this analysis, one

concludes that all the triplet pair amplitudes in Eq. (A7) may
be induced. However, within the mean-field theory, Ref. [17]
shows that the component with Sz = 0 is not induced when
λ⊥ 
= 0 and λz = 0. This is because, in this two-component
case, the mean-field BCS Hamiltonian,

HBCS =
∑
p,α

ξ pc
†
p,αc p,α + Hso + �s

∑
p

[c†p,↑c
†
− p,↓ + H.c],

(A9)

is invariant under the momentum-dependent π -spin rotation,
which is followed by the U (1) gauge transformation, given by

(
c̃ p↑
c̃ p↓

)
= e−i π

2 × ei π
2 p̂⊥·σ

(
c p↑
c p↓

)
, (A10)

where p̂⊥ = (px,py)/
√

p2
x + p2

y . In this case, the triplet

pair amplitude with Sz = 0 is transformed as �
Sz=0
t ( p) →

−�
Sz=0
t ( p), so that one finds �

Sz=0
t ( p) = 0, as obtained in

Ref. [17].

APPENDIX B: DIAGONALIZATION OF THE BCS
HAMILTONIAN IN EQ. (18)

The mean-field BCS Hamiltonian in Eq. (18) can be
diagonalized by the Bogoliubov transformation in real space,

given by ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cr1,↑
...

crL2 ,↑
c
†
r1,↓
...

c
†
rL2 ,↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= Ŵ

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1
...

γL2

γL2+1
...

γ2L2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

Here, Ŵ is a 2L2 × 2L2 orthogonal matrix, which is chosen
so that HMF in Eq. (18) can be diagonalized as

HMF =
2L2∑
j=1

Ejγ
†
j γj , (B2)

where Ej is a Bogoliubov single-particle excitation energy.
After the diagonalization, the superfluid order parameter
�s(r i), as well as the number density nα(r i) = 〈c†r i ,αcr i ,α〉,
is evaluated as, respectively,

�s(r i) = Us

2L2∑
j=1

Wi,jWi+L2,j f (−Ej ) (B3)

n↑(r i) =
2L2∑
j=1

W 2
i,j f (Ej ), (B4)

n↓(r i) =
2L2∑
j=1

W 2
i+L2,j f (−Ej ), (B5)

where f (E) = 1/[eβEj + 1] is the Fermi distribution function.
The number Nα of Fermi atoms in the α-spin component is
given by

Nα =
L2∑
i=1

nα(r i). (B6)

We numerically calculate Eqs. (B1) and (B3)–(B6), to self-
consistently determine �s(r i), nα(r i), and μα . The triplet pair
amplitude �

Sz=0
t (r i ,rj ) in Eq. (19), as well as the singlet

pair amplitude �s(r i ,rj ) in Eq. (20), is then calculated as,
respectively,

�
Sz=0
t (r i ,rj ) =

2L2∑
k=1

[Wi,kWj+L2,kf (−Ek)

+Wi+L2,kWj,kf (Ek)], (B7)

�s(r i ,rj ) =
2L2∑
k=1

[Wi,kWj+L2,kf (−Ek)

−Wi+L2,kWj,kf (Ek)]. (B8)
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