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We study drag dynamics of several fermions in a fermion cloud in one-dimensional continuous systems, with
particular emphasis on the nontrivial quantum many-body effects in systems whose parameters change gradually
in real time. We adopt the Fermi-Hubbard model and the time-dependent density-matrix renormalization group
(DMRG) method to calculate the drag force on a trapped fermion cluster in a cloud of another fermion species
with contact interaction. The simulation result shows that a nontrivial peak in the resistance force is observed
in the high-cloud-density region, which implies a criterion of effective ways in diffusive transport in a fermion
cloud. We compare the DMRG simulation result with a mean-field result, and it is suggested that some internal
degrees of freedom have a crucial role in the excitation process when the cloud density is high. This work
emphasizes the difference between the full-quantum calculation and the semiclassical calculation, which is the
quantum effects, in slow dynamics of many-body systems bound in a fermion cloud.
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I. INTRODUCTION

Recently nonequilibrium dynamics of cold-atom systems
has been enthusiastically targeted, because cold-atom systems
are ideal as isolated quantum systems configured in laboratory,
whose parameters can be modified dynamically [1]. In cold-
atom systems, the strength and sign of interaction between
atoms can be adapted by use of Feshbach resonance [2],
and also the lattice potentials can be composed using optical
lattices. The dynamics of quantum quench [3–7] has been
explored by suddenly changing the trap potential and the
interaction, and also theoretically this dynamics has been
studied [8–25].

However, dynamics induced by a gradual change of
parameters in real time has a lot more to be investigated.
These dynamics are completely different from the quantum
quench dynamics, because the constant change of the system
parameters in time continuously causes energy excitation and
dissipation in the systems. In other words, these systems are
not expected to relax to an equilibrium state, but they or their
subsystems may reach a steady state; one of the goals of this
work is to investigate a relaxation not to an equilibrium state
but to a steady state of the whole system or only a subsystem,
due to the time-dependent Hamiltonian.

Of these dynamics, in particular we focus on the drag
dynamics of a fermion cluster trapped by a moving trap in
a fermion cloud, interacting with cluster particles by contact
interaction. Drag dynamics is one of the basic concepts of
dynamics; for example, recently spin drag dynamics has been
studied [26–36] in different situations. Our study aims at a
detailed investigation of typical many-body drag dynamics,
which is essential to the understanding of the nonequilibrium
dynamics in quantum systems. Also, this study observes the
steady state of the moving cluster in the background of the
fermion cloud; for example, when the cluster reaches its steady
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state, the total energy increases linearly in time because the
cluster is driven at a constant speed against the cloud, which
means that our system as a whole is not in a steady state.

Thus in this study we simulate the cluster drag dynamics in
one-dimensional two-component Fermi systems with contact
interaction. In this system, a cluster of fermions is forced
to move by a species-dependent trap at a constant speed,
interacting with a cloud of the other type of fermions by contact
interaction. We calculate the energy of the whole system as a
function of time and evaluate the energy increase per unit time
by a linear fit. The reason is that the total energy increase
is closely related to the energy increase in the cloud, which
is observable experimentally by measuring the momentum
distribution of the cloud, since when the cluster reaches a
steady state, the cloud energy increase per time equals the
total energy increase per time. Then we compare the simulation
result with a semiclassical mean-field result to clarify whether
and how this dynamics is explained by a semiclassical theory.
As a result, the characteristic peak structure in the profile of
the energy increase per unit time cannot be explained by the
semiclassical theory; internal degrees of freedom of the cluster
are indispensable for the calculation in the high-cloud-density
region.

Our simulation is limited to one-dimensional systems, but
high-dimensional versions of our system could be calculated
or explored experimentally. Especially in cold-atom systems,
contact interaction between two species is realized (in this
case there is no intraspecies interaction because of the Fermi
statistics), and also some kinds of spin-dependent potentials
are possible. Our study could give some intuition for the
investigation of such drag dynamics in high dimensions.

II. SIMULATION

A. System setup

We simulate drag dynamics and calculate the energy of
the whole system in one-dimensional two-component Fermi
systems. Initially a cluster of n fermions is trapped by a
harmonic potential within a cloud of the other type of free
fermions [Fig. 1(a)], where the average fermion density of
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FIG. 1. (Color online) (a) Initial particle density and trap po-
tential at n = 6, D = 0.5η−1, r = 1, u = 10�T −1

0 η. (b) Final
particle density and trap potential at n = 6, D = 0.5η−1, r = 1,
u = 10�T −1

0 η, v = 4η/T0.

the cloud is D (the Fermi momentum is π�D). The mass
of a cloud fermion, which we call a background fermion
below, is mback = m0, and the mass of a cluster fermion
is mcluster = m0r; the mass ratio is mcluster/mback = r . The
harmonic trap potential is set as 1

2m0ω
2
0X

2, where X is the
displacement from the trap center. Therefore, in the r = 1 case,
the frequency of the harmonic trap is ω0 (and the oscillation
cycle is T0 = 2π/ω0), and the typical width of the particle
density distribution of a cluster fermion is η = √

�/m0ω0. The
interaction exists only between two fermions of the different
types, and it is contact interaction which is expressed as
uδ(x1 − x2), in which x1 and x2 are the locations of the two
interacting fermions.

The trap moves within the region −5η � x � 5η, and the
whole system size is L = 40η � 5η; we approximate the
infinite-size system by the large-size system. In fact, if we
change the system size to L = ∞, an extrapolation shows that
energy increase per unit time (see Sec. III) is changed by 7%
at D = 0.3η−1, 21% at D = 0.6η−1, and 6% at D = 0.9η−1,
when the particle number of the cluster is n = 4, and r = 1.
The effect of the finite system size is discussed in Sec. III. We
set the hard-wall boundary conditions. The initial trap center is
x = −5η and finally moves to x = 5η. In this paper, we use η

and T0 as the units of the system, and units of other dimensions
are expressed as products of η, T0, and �; for example, the unit
of energy is �T −1

0 and the unit of power is �T −2
0 . Therefore,

the independent variables in the system are n, D, r , u, and
v, where v is a trap speed as mentioned below. We perform
calculations for conditions of n � 6 and D � 1.5η−1 to obtain
numerically exact results.

At t = 0 we suddenly move the trap potential by a constant
speed v. Although this condition seems to be enough for the

cluster to get the final speed v, the acceleration takes a little
time. For faster convergence to a steady state, simultaneously
we give a speed v to the fermion cluster. Then the cluster
pushes the background fermions as shown in Fig. 1(b), while
it is forced to move by the moving trap potential. The moving
trap increases the total energy of the system, E(t), where we set
E(0) = 0 (just after v is given to the cluster) as a linear function
of the time approximately. Finally the trap reaches x = 5η in
tF = 10η/v, and then we finish the simulation. Figure 1(b)
shows that the background fermions have been pushed in the
positive direction. Later, we plot the system energy E(t) as a
function of time, and thus we obtain P , the energy increase
per unit time, by a linear fit of that plot.

B. Method

We discretize the system to adopt the one-dimensional
Fermi-Hubbard model and apply the time-dependent density-
matrix renormalization group (t-DMRG) method [37–39]
to simulate the dynamics. We take 399 sites numbered
−199,−198, . . . , + 198, + 199 at regular intervals; the site
−50 (+50) is the initial (final) location of the potential center
for the fermion cluster. The lattice constant is δx = 5η/50 =
0.1η, which is small enough so that the system can be treated
as a continuous system: if we change the lattice constant into
a half one, and at the same time we change the time step to
preserve [(time step) × �

2/(2m0δx
2)], the results are changed

by 0.3% at n = 4,D = 0.3η−1 and 4% at n = 4,D = 0.6η−1.
The value of the trap potential at site i is

V cluster
i (t) = 1

2m0ω
2
0(xi + 5η − vt)2 (t > 0). (1)

The discretized Hamiltonian is

Ĥ (t) = −
∑

i,σ=cluster,back

�
2

2mσδx2
(â†

i,σ âi+1,σ + â
†
i+1,σ âi,σ )

+
∑

i

V cluster
i (t)n̂i,cluster + u

δx

∑
i

n̂i,clustern̂i,back, (2)

where âi,cluster (âi,back) annihilates a fermion of the cluster
(background) on site i, and n̂i,σ ≡ â

†
i,σ âi,σ . We prepare the

ground state of the system at t = 0 by DMRG calculation,
in which the six or seven sweeps are needed for the ground
state to converge. Next we give the constant speed v to the
cluster particles as an initial state; starting from this state,
we calculate the time evolution by that Hamiltonian with
t-DMRG up to t = tF = 10η/v. The time step is 2×10−4T0

and the maximum discarded eigenvalue of the reduced density
matrix is below ε = 1×10−10. In this system we apply the
“usual” second-order Suzuki-Trotter approach in spite of the
time-dependent Hamiltonian, and we estimate the errors as
about 1%, changing the time step to twice or half one. The
simulation is conducted in the following range of parameters:
the fermion number of the cluster n � 6, the background
fermion density (or cloud density) D � 1.4η−1, the trap
speed v ∼ 4η/T0, the mass ratio r = 1 or 2, and the contact
interaction strength u ∼ 5�T −1

0 η or 10�T −1
0 η (these values of

u are comparably large so that the reflection is dominant in
typical collision cases).
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FIG. 2. (Color online) (a) Time dependence of the total energy
E at n = 6, r = 1, u = 10�T −1

0 η, v = 4η/T0 for the four cases
D = 0.4η−1, D = 0.6η−1, D = 0.8η−1, and D = 1.0η−1. (b) Trap
speed dependence of total energy increase per unit time P at n = 1,
D = 0.5η−1, r = 1, u = 10�T −1

0 η (log scale).

III. RESULTS

A. Time dependence and error estimation

Figure 2(a) shows the time dependence of the total energy
obtained by the DMRG simulation for various values of the
cloud density D. The figure implies the linear increase in the
system energy E with an oscillation whose cycle is about
T0: the oscillation is expected to come from the motion in
the trap. The oscillation is approximated by an exponentially
dumped oscillation; the exponential decay constants for the
four cases in Fig. 2(a) are evaluated at about 0 (no convergence
during the simulation time), 0.23T −1

0 , 0.10T −1
0 , and 0.27T −1

0 ,
respectively. This fact suggests that, in these three cases, the
cluster loses the effect of the initial conditions. Therefore, we
evaluate P , the energy increase per unit time, by a linear fit
of this plot neglecting the oscillation, so that we extract the
asymptotic behavior in the longer period of time: the linear
fit is conducted over one or two cycles of internal motions in
the trap (χ2 fit in the region 0.5 < t/T0 � 2.5 for r = 1 and
2.5 − √

2 < t/T0 � 2.5 for r = 2). In other words, P , which
corresponds to the power of the trap motion, is expected to
give approximate information of the steady state of the cluster.
The resistance force F against the trap is calculated by the
relation Fv = P ; P is proportional to F when the trap speed
v is fixed.

The errors of P come from the DMRG simulation (<5%),
the linear fit, the discretization effect (∼5%), and the finite-size
effect. Here the errors of the linear fit are of the same order as
those of the DMRG simulation. This is because the linear-fit
errors mainly come from the dumped oscillation (comparably
weak during a cycle) and from the uncertainty of the oscillation
cycle, which is assumed as T0 for r = 1 and

√
2T0 for r = 2,

and in our system, the oscillation amplitude is of the same or
smaller order than the one-cycle difference of the energy.

In our system, the finite-size effect is dominant and it
determines the order of the total errors. The finite-size effect is
shown in Fig. 3, where the site number is changed so that the
lattice constant is fixed to δx = 0.1η. The system size depen-
dence is extrapolated by quadratic functions of L−1. The finite-
size effect is estimated to be |P (L = 40η) − P (L = ∞)|/
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FIG. 3. (Color online) Effect of the finite system size: total
energy increase per unit time P as a function of the inverse of the
system size L−1 at n = 4, r = 1, u = 10�T −1

0 η.

P (L = ∞), where P (L = ∞) are the extrapolated data in
the limit of L−1 → 0. The ratio is 7% at D = 0.3η−1, 21%
at D = 0.6η−1, and 6% at D = 0.9η−1; thus, the finite-size
effect is of the order of 20% or smaller. Therefore, the total
errors of the slope P are estimated to be about 20%.

B. Velocity and interaction dependence

We focus on the dependence of the value of P on the
simulation parameters in the following. To see the velocity
dependence of P , we plot P against v in the case of n =
1,r = 1 in Fig. 2(b). The figure demonstrates the relation P ∝
v3, so that the reaction force to the trap is proportional to
v2; this suggests the existence of the inertial resistance. The
inertial resistance is physically expected, because this system
is one-dimensional and a cluster particle gives its momentum
to a background fermion in a single collision, whose rate is
proportional to v.

Then, we show the interaction dependence of P in Fig. 4
at n = 4,D = 0.6. This figure indicates that P is proportional
to u2.35 in the small-u region, but it seems to be saturated
in the limit of u → ∞: even if u is infinite, P remains
finite because infinite u corresponds to a moving hard wall.
Although we cannot explain the exponent, the interaction
strength has little effect on other than the peak height at u ∼ 10
as discussed below. In our simulation, we do not use attractive
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FIG. 4. (Color online) Energy increase per unit time P versus
interaction strength u at r = 1, n = 4, D = 0.6, and v = 4η/T0.
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0 η case and (b) u = 10�T −1
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case.

interaction to avoid any possibility of an initial bound state, but
we believe that the sign of the interaction has no effect on P

if there is no initial bound state, because the sign inversion of
the interaction only changes the phase sign of scattered wave
functions in scattering processes, and then makes no change
in observables.

C. Cloud density and other dependence

Next we investigate how P depends on the cloud density and
the number of the cluster particles. Figures 5(a) and 5(b) show
the energy increase per unit time P for 0.3η−1 � D � 1.5η−1

in the cases of u = 5�T −1
0 η and u = 10�T −1

0 η, respectively.
In the figures, D goes to zero exponentially in large D; no
resistivity is observed in this region. Also, the figures exhibit
a single-peak structure for the cases of n = 1 or n = 2, and a
double-peak structure for the cases of n � 3. In the large-D
region, the decay curves of 3 � n � 6 have very similar shapes
at regular intervals, and the distance between the neighbors is
about 0.10η−1 (i.e., the values of Dη when P is 0.2�T −2

0
after the second peaks in Fig. 5(a) are 0.93 at n = 3, 1.05
at n = 4, 1.15 at n = 5, and 1.24 at n = 6). This suggests
that the second peaks are at regular intervals of about 0.1η−1.
These characteristics do not strongly depend on interaction
strength u.

The important result obtained from Figs. 5(a) and 5(b)
is that P < nPn=1 (P > nPn=1) holds for small (large) D,
where Pn=1 is P at n = 1. In other words, if one wants to
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FIG. 6. (Color online) Energy increase per unit time P as a
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r = 2 and v = 4η/T0: (a) u = 5�T −1

0 η case and (b) u = 10�T −1
0 η

case.

reduce the energy increase in moving n fermions in a fermion
background, one should trap the fermions in a single trap in
the small-D case, but in n traps independently in the large-D
case; this is a criterion of ways for energy saving in diffusive
transport in a fermion background. In the following we mainly
focus on the peak structure, especially the peak location.

Let us now explore the dependence of P on the mass ratio
r . Figures 6(a) and 6(b) show P in the same parameters as in
Fig. 5, except for r = 2. Except that the height of the second
peak differs between different values of n, these plots have
the same features as in Fig. 5. To extract the locations of the
second peaks, we interpolate the data close to the second peak
as a quadratic curve and obtain the average distance 0.1η−1

(i.e., the estimated values of Dη at the peak in Fig. 6(a) are
0.86 at n = 3, 0.98 at n = 4, 1.09 at n = 5, and 1.20 at n = 6);
the distance between the neighboring second peaks has values
similar to the r = 1 case.

D. Cluster energy

Here we examine the energy of the cluster, the expectation
value of the cluster Hamiltonian

Ĥcluster(t) = −
∑

i,σ=cluster

�
2

2mσδx2
(â†

i,σ âi+1,σ + â
†
i+1,σ âi,σ )

+
∑

i

V cluster
i (t)n̂i,cluster, (3)
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which is calculated in the case of r = 1, u = 10�T −1
0 η. We

plot the cluster-energy increase per unit time in Fig. 7, which is
evaluated by a linear fit of the expectation values; the linear fit
is done by averaging two lines which come in contact with two
consecutive cycles of the oscillation curve of the cluster energy,
because in this case a χ2 linear fit under large oscillation
compared to the slope gives large estimation errors. In the
figure, a peak (peaks) are observed in the case of n = 1,2 (n >

2). In the peak region, the energy of the cluster increases over
time. Therefore, the cluster does not completely reach a steady
state in the finite simulation time, since the cluster energy
should not change in a steady state. On the other hand, we
observe that the system reaches a steady state out of the peak
region in our simulation time. The values of D giving the peak
structure are a bit larger than those in Fig. 5(b), so the excessive
energy flux into the cluster corresponds to the decreasing
P . In other words, the steady state assumed becomes the
farthest from the initial state just after the peak region of P .
Nevertheless, the total energy increase in Figs. 5(a) and 5(b)
approximately represents the energy increase per unit time
after the steady state (with no increase in the cluster energy)
has been established, because the cluster-energy increase is
much smaller than the total energy increase.

IV. DISCUSSION

We compare naı̈ve mean-field results with the DMRG
results in order to investigate the many-body effects in the
system. Under a mean-field approximation, the background
particles move in the potential created by the average inter-
action with the cluster, which is calculated by the density
distribution of the cluster particles of the ground state (e.g., a
Gaussian function at n = 1). The potential moves by velocity
v, pushes the cloud, and excites the system. The mean-field
Hamiltonian of the background particles is

HMF(t) = − �
2

2m0

∂2

∂x2
+ VMF(x − vt), (4)

VMF(x) = u

n−1∑
k=0

|ψk(x)|2, (5)

ψk(x) = CkHk

(√
rm0ω0

�
x

)
exp

(
− rm0ω0

2�
x2

)
, (6)
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0 η,
v = 4η/T0.

where Hk are the Hermite polynomials and Ck are normal-
ization constants; ψk(x) are the wave functions of the cluster
particles trapped by a harmonic trap.

The energy increase per unit time under this Hamiltonian is
calculated by solving the scattering problem for the potential
VMF(x). On the coordinates fixed to the trap, the reflectance
R(p) can be calculated as a function of incident momentum
p. Within the time dt , the number of reflected particles whose
momenta are between p and p + dp is

(|p|/m0)dt · dp

2π�
R(p) = dt

|p|R(p)dp

2π�m0
. (7)

Therefore, the energy increase per unit time can be computed
as

PMF =
∫ π�D−m0v

−π�D−m0v

|p|R(p)dp

2π�m0

(−p + m0v)2 − (p + m0v)2

2m0

= v

π�m0

∫ π�D+m0v

|π�D−m0v|
p2R(p)dp. (8)

We calculate R(p) and PMF numerically, in the case of r = 1,
u = 10�T −1

0 η, v = 4η/T0.
The mean-field results are compared with the DMRG

results in Fig. 8. We find that they have the same tendency
in the small-D region, although they are slightly different in
their scale of D and P . However, they disagree in the large-D
region: the mean-field results have small plateaus, instead
of peaks which are observed in the DMRG results. This is
partially because the mean-field potential does not strongly
scatter the background fermions with larger momenta than the
Fermi momentum of the cluster; if the Fermi momentum of
the background is much larger than that of the cluster, the
moving mean-field potential has little effect. Thus, while the
mean-field theory can explain this dynamics for small D with
a slight transformation in scale, it fails to explain the second
peaks in the large-D region. Therefore, the many-body effects
such as the internal degrees of freedom of the cluster have a
crucial role in forming the peak structure in the large-D region;
the possible model for this system, which is one of the future
works, has to contain its many-body effects.
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V. CONCLUSION

In summary, using the time-dependent density-matrix
renormalization group method and the Fermi-Hubbard model,
we have calculated the drag dynamics of several fermions
in a fermion cloud in one-dimensional continuous systems.
We have obtained the steady energy increase per unit time
as a function of the particle number of the cluster, n, the
cloud density, the mass ratio between fermions, the interaction
strength, and the trap speed. We have discovered the emergence
of a double-peak structure; one is in the low-cloud-density
region, and the other is in the high-cloud-density region.
We have revealed that when one wants to reduce the system
excitation in moving a fermion cluster in a fermion cloud, one
should move the cluster packed together if the cloud density
is low, but one should move the fermions in separate n traps if
the cloud density is higher. We have introduced a mean-field

approximation for the system to estimate whether and how
this dynamics can be explained by semiclassical models. We
have elucidated that the drag dynamics in the high-density
fermion cloud cannot be explained by our mean-field model,
while it can be reproduced with a small-scale transformation
in the low cloud density; we have emphasized the quantum
effects in the drag dynamics of a cluster bound in a fermion
cloud.
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