
PHYSICAL REVIEW A 92, 023606 (2015)

Controlling disorder with periodically modulated interactions
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We investigate the celebrated problem of the one-dimensional tight-binding model in the presence of disorder
leading to Anderson localization from a novel perspective. A binary disorder is assumed to be created by immobile,
heavy particles that affect the motion of the lighter, mobile species in the limit of no interaction between mobile
particles. Fast, periodic modulations of interspecies interactions allow us to produce an effective model with
small diagonal and large off-diagonal disorder previously unexplored in cold-atom experiments. We present an
expression for an approximate Anderson localization length and verify the existence of the well-known, extended
resonant mode. We also analyze the influence of nonzero next-nearest-neighbor hopping terms. We point out that
periodic modulation of interaction allows disorder to work as a tunable bandpass filter for momenta.
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I. INTRODUCTION

Anderson localization (AL) in disordered systems has fas-
cinated and stimulated physicists for more than 50 yr [1,2]. For
one-dimensional (1D) systems, as discussed below, a particle
propagating with momentum k, in a disordered medium,
undergoes multiple scatterings and eventually localizes with
an exponentially decaying density profile [3–5]. AL is a
single-particle interference effect which cannot be observed
directly in solid-state systems due to the presence of electron-
electron and electron-phonon interactions. AL has been widely
studied for various systems including tight-binding models
with diagonal disorder and nearest-neighbor and/or next-
nearest-neighbor hopping [6–9].

Ultracold atomic gases have become a playground where
complex systems can be simulated and investigated [10–12]. In
particular, optical lattice engineering allows a high degree of
controllability. Various techniques, i.e., periodic modulation
of lattice positions and amplitudes [13–15] or Feshbach
resonance [16], are used to effectively tune parameters of
a given model [17–21]. The level of experimental control
and detection allows one to build quantum simulators, i.e.,
experimentally controlled systems that are able to mimic
other systems difficult to investigate directly [22,23]. Ultracold
atomic gases are ideal systems for theoretical and experimental
investigation of the Anderson localization of matter waves.
An experimental observation of AL was first realized in
one dimension 7 yr ago [24] (a closely related Aubry-
André [25] localization was also realized [26] independently).
For reviews see Refs. [27,28]. Recently AL was observed also
in three dimensions [29,30] in speckle potentials. In all these
experiments, in order to get rid of particle interactions, either
Feshbach resonances [16] were employed or a low atomic
density limit was reached.

Typically in cold-atom disorder experiments, as well as the-
oretical propositions, the disorder appears in a diagonal form,
either on the chemical potential level (lattice site energies)
like for quasiperiodic lattices [26] or for interactions [31].
Similarly, a diagonal disorder appears for a binary disorder
that is introduced by interactions with other species [32–36].
On the other hand, a more detailed analysis shows that for cold

atoms the off-diagonal disorder, i.e., a disorder in tunnelings,
appears in quite a natural way both for the incommensurate
superlattice potential [37] and for the speckle random potential
perturbing the optical lattice [38]. However in both these
cases, the disorder in tunneling is strongly correlated with
the diagonal disorder. The aim of this paper is to show that
periodic modulations of interactions allow a transfer of the
disorder to the kinetic energy (tunneling terms) creating a
tunable off-diagonal disorder, opening up the possibility of its
study in controllable cold-atom settings.

The interest in off-diagonal disorder stems from the fact
that it can profoundly affect the properties of the system.
Consider, for example, the case when the disorder is purely
off-diagonal. There has been a long debate about the nature
of states in the center of the band. The first works [39–41]
showed that the localization length diverges in the center
of the energy band (i.e., E = 0); therefore it was argued
that a transparency window appears and even the 1D system
exhibits the mobility edge. However, in the early 1980s it was
established that even for a purely off-diagonal disorder all
states are localized [42–45]. The puzzle of the E = 0 state
was solved showing that the wave-function envelope scales
as exp(−γ

√
N ), with N being the system size [42]. In the

presence of both diagonal and off-diagonal disorder all states
remain localized [46] except very special cases of correlated
diagonal and off-diagonal disorder [47]. Additional details,
especially in the context of conductance anomalies, may be
found in Ref. [48].

Possible correlations in the system and/or in the disorder
may also profoundly affect localization properties [49–51]. A
famous example is the dimer model [50] in which sites may
have energies εa and εb with the constraint that εb sites come
only in pairs. This short-range correlation leads to delocalized
states. A similar situation occurs for the dual random dimer
model (DRDM) in which consecutive sites may not have
εb energy. The model has several applications in different
areas from DNA studies [52,53] to photonic systems [54].
A cold-atom version of the DRDM has been proposed by
Schaff, Akdeniz, and Vignolo [55], who have shown that
by tuning the interaction between atomic species one may
observe the localization-delocalization transition and study the
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extended resonant mode. In our proposition we modify the
approach proposed in Ref. [55] by periodically modulating
the interactions which allows us a great freedom in changing
the relative importance of diagonal and off-diagonal disorder
in the system. For such a model we calculate the approximate
AL length and compare it with numerical results. We show
that the delocalization window may serve as a narrow energy
filter for the particles. In addition we point out that the
extended mode is vulnerable to effects due to next-nearest-
neighbor tunneling, limiting its existence to relatively deep
lattices. Details of numerical methods needed to calculate the
AL length with next-nearest-neighbor random tunneling are
presented in Appendix B.

II. THE MODEL

We consider a simple, standard 1D noninteracting tight-
binding Hamiltonian (with � = 1):

H =
∑

i

[εini − J (a†
i ai+1 + H.c.)], (1)

where ai (a†
i ) denotes an annihilation (creation) operator of

bosons at site i, ni = a
†
i ai is a particle counting operator, εi are

on-site energies, and J is the tunneling amplitude which will
serve as our energy scale. Let us apply a periodic modulation
of the on-site energies,

εi → εi[1 + δ sin(ωt)], (2)

where δ is the modulation amplitude and ω its frequency.
Hamiltonian (1) has periodic time dependence H (t) =

H (t + 2π/ω). In such a case we can use the well-established
formalism of Floquet theory [56] (see also Ref. [57]) ex-
tensively used, in the last century, to study the influence
of optical or microwave fields on atoms. Recently it has
been applied with great success for controlling properties of
ultracold atomic systems [13–15]. Solutions of the equation
i∂t |ψn(t)〉 = H (t)|ψn(t)〉 have the form of Floquet states:
|ψn(t)〉 = e−iεnt |un(t)〉, where εn is called the quasienergy
and |un(t)〉 have periodicity of the Hamiltonian. The Floquet
theorem is a time analog of the Bloch theorem for spatially
periodic potentials. Although we cannot treat |ψ(t)〉 as
eigenstates of H (t), |u(t)〉 are eigenstates of the Floquet
HamiltonianH(t) = H (t) − i∂t existing in the extended space
of T -periodic functions. In that space we can number states
using a new quantum number m ∈ Z: |um

n 〉 = |un〉eiωmt , where
|um

n 〉 is the eigenstate to the eigenenergy εm
n = εn + ωm. This

whole class corresponds to one physical state, |ψn(t)〉, as
adding ω to εn in physical space only takes us to the next
“Brillouin zone” for quasienergies. Therefore, it is sufficient to
find a block-diagonal form of a Hamiltonian (in an m-ordered
basis) and consider only one block corresponding to a single
“Brillouin zone.” Unfortunately, couplings between different
blocks make the block diagonalization a formidable task. One
may, however, make a unitary transformation U :

H′ = UHU †, U = exp

[
−iδ

cos(ωt)

ω

∑
i

εini

]
, (3)

H′(t) =
∑

i

[εini − (ei(εi+1−εi )
δ cos(ωt)

ω a
†
i ai+1 + H.c.)]. (4)

In effect, for frequencies ω � 1 (in units of J) one we can
neglect the couplings between different Floquet blocks and
consider only one diagonal block governing the long term
(t � 1/ω) dynamics:

Heff = 1

T

∫ 2π
ω

0
dtH′(t) =

∑
i

[εini − (tia
†
i ai+1 + H.c.)],

(5)

where

ti = J0

(
δ

ω
(εi+1 − εi)

)
(6)

is the effective position-dependent hopping and J0 is the
zeroth order Bessel function. It has been verified experi-
mentally [14,15] that the effective time-averaged Hamiltonian
governs the dynamics of periodically driven systems for long
times. In particular, localization properties of eigenstates of
Eq. (5) will be shared by the Floquet eigenstates of the
original Hamiltonian (1) [with the fast modulation (2)] after
averaging them over the period. This may be understood by
inspecting the unitary operator U in Eq. (3) and observing that
it consists of a product of local operators acting on single sites.
Thus U adds only local phases to single-particle states, which
cannot affect the resulting density distribution. Further detailed
discussion of the construction of the effective Hamiltonians for
high-frequency periodically driven systems may be found in
Refs. [58–60].

Note that for a uniform system with all εi being the same, the
tunneling (6) is unaffected, while ti changes if on-site energies
vary from site to site. Such is the case for superlattices [61,62]
or external potentials such as a harmonic trap or a linear
tilt [13]. In this work we will consider the on-site energy
variations due to disorder.

It is worth noting that it is usually possible to adiabatically
pass from eigenstates of one Heff to another (e.g., for different
δ) if the change of parameters is slow enough [63]. Thus it
is possible to prepare a time-independent system and turn on
periodic modulation or change modulation parameters during
experiments. For completeness let us note that, for the tight-
binding description in terms of a single lowest band to be
valid in Eqs. (1)–(5), ω, while much larger than the tunneling
amplitude, must be smaller than the energy separation to the
excited band [13,64].

To create disorder we consider two species of atoms
repulsively interacting with each other but allow only one of
them to move freely on the lattice. The frozen atoms (denoted
with a superscript f ) give rise to a binary disorder [33–
35,65]. The mobile particles are assumed not to interact
among themselves. They can be spin-polarized fermions or
bosons with interactions turned off by microwave or optical
Feshbach resonance [16]. The dynamics of the system can be
described by a single-particle Hamiltonian with the on-site
energy εi = V n

f

i , where V denotes an interspecies contact
interaction. When frozen particles are fermions or strongly
repelling (hard-core) bosons their occupation per lattice site
n

f

i takes a value of either 0 or 1 and the on-site energy
takes only two values, εi ∈ {0,V }. Further, we consider the
particular case of the DRDM when two adjacent sites cannot be
occupied by frozen atoms simultaneously [50]. For cold atoms
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the DRDM can be created by the method described in Ref. [55].
Referring the reader to that paper for details, let us mention
only that to assure no heavy particles reside in the neighboring
sites one may first trap the heavy species in an auxiliary
long-wavelength lattice with the lattice constant being, e.g.,
three times bigger than the final lattice to be considered. If
these heavy particles are strongly repelling and for sufficiently
low densities one may assure no double occupancy. Only then
one can switch on the desired shorter wavelength lattice which
holds the mobile component.

In Ref. [66] the authors considered fast periodic modulation
of interactions induced by an appropriate periodic modulation
of the magnetic field B(t) = B(t + T ) with period T = 2π

ω

for interacting bosons in the optical lattice. We assume a
similar mechanism applied to light-heavy particle interactions
resulting in periodic (for simplicity assumed to be harmonic)
time dependence of site energies in the form εi(t) = n

f

i [V0 +
V1 sin(ωt)], where V1 is the amplitude modulation strength and
ω is the modulation frequency. For magnetic field values close
to the Feshbach resonance [16] large variations of interactions
may be expected. In particular, choosing the value of the
mean magnetic field around which the oscillations occur one
may vary at will the relative importance of the V0 and V1

coefficients. Note that we can adjust the magnetic field for
this purpose since we assume that the mobile particles are
either fermions or bosons with interactions turned off by either
microwave or optical Feshbach resonance [16].

Compared to the general model discussed above we
have εi = n

f

i V0 and δ = V1/V0. As n
f

i ∈ {0,1}, the effective
tunneling, after time averaging, can take only two values:

εi =
{

0, if n
f

i = 0,

V0, if n
f

i = 1,
ti =

{
1, if n

f

i = n
f

i+1,

1 − γ, if n
f

i �= n
f

i+1,

(7)
where γ = 1 − J0(V1/ω) measures the strength of off-
diagonal disorder and varies in range from 0 to about 1.4
[to the minimum of the Bessel function, 1 + minx J0(x)].

III. ANDERSON LOCALIZATION LENGTH

To calculate the AL length let us start with the time-
independent Schrödinger equation for the disordered tight-
binding Hamiltonian (5):

−tiψi+1 − ti−1ψi−1 + εiψi = Ẽψi, (8)

where Ẽ is the eigenenergy. In the regime of small diagonal
and off-diagonal disorder (V0 	 1, γ 	 1) we can assume
that Ẽ is approximately given by the dispersion relation Ẽ ≈
−2 cos(k), where k is the quasimomentum. In order to define
the AL length in a system with off-diagonal disorder we utilize
the unitary transformation ψi = φiηi , where ηi = 1/[tiηi−1].
We transform Eq. (8) to the diagonal form:

φi+1 + φi−1 + Ṽiφi = 0, (9)

where Ṽi = |ηi |2[εi + 2 cos(k)] is a new effective diagonal dis-
order. In the considered DRDM model, ηi = 1/ti . Equation (9)

can be expressed as a 2D Hamiltonian map with position
and momentum of the form xi = φi and pi = (φi cos(k) +
φi−1)/ sin(k):{

xi+1 = −(pi + Aixi) sin(k) + xi cos(k),
pi+1 = (pi + Aixi) cos(k) + xi sin(k), (10)

where

Ai = −εi − 2(1 − |ti |2) cos(k)

sin(k)
. (11)

The map (10) describes the behavior of a harmonic oscillator
under periodic δ kicks with amplitude Ai . Expressing the map
in action-angle variables and iterating it, one may estimate
the localization length in the limit of small diagonal and off-
diagonal disorder. The details are given in Appendix A. We
obtain the approximate inverse localization length by

λ−1 = ρ

(1 + ρ)2

[V0 + 2γ (2 − γ ) cos(k)]2

8 sin2(k)

×
(

1 − 2
ρ[ρ + cos(2k)]

1 + ρ2 + 2ρ cos(2k)

)
, (12)

where ρ = ρ̃/(1 − ρ̃) and ρ̃ is the mean occupation number
of frozen particles. A simple analysis of Eq. (12) indicates an
anomalous behavior of the AL length due to the existence
of a transparent mode with momentum kt given by the
condition cos(kt ) = − V0

2γ (2−γ ) for which the localization length
diverges. Frozen particles in a lattice increase the on-site
energy and the motion of mobile particles can be seen as
a sequence of scattering processes on potential barriers. In
the DRDM two frozen particles are separated by at least
one lattice site and the resonance is caused by a lossless
transmission through a single barrier. The existence of the
transparent mode is given by the condition V0 � 2γ (2 − γ )
and the wave with momentum kt travels through the sample
without reflection. A similar anomalous mode was observed
in Ref. [55]. The on-site energy modulation allows us to
change the off-diagonal disorder significantly while keeping
the amplitude of the diagonal disorder small (contrary to
models deriving the changes of the tunneling from changes of
an effective lattice shape only [55,67]). In Fig. 1 we present the
numerically calculated AL lengths (using the standard transfer
matrix method, see, e.g., Ref. [68]) and compare them with
the analytical expression (12). The left panel corresponds to
the weak diagonal (V0 ∈ {0.05,0.1}) and weak off-diagonal
(γ ∈ {0.05,0.1}) regimes. The occupation of frozen particles
is equal to ρ̃ = 1/3. The theoretical predictions are in good
agreement with the numerical calculations. The right panel
corresponds to the weak diagonal (V0 = 0.1) and strong
off-diagonal (γ = 0.9) regimes. The width of the divergent
AL length window is significantly narrower than that for
the weak disorder case. The position of the transparent
mode kt is properly described by Eq. (12) while the AL
length shape is not. Due to the existence of the transparent
mode in the system, one can expect that the evolution of
an initial wave packet with a given momentum distribution
results in AL of all momenta except those very close to the
transparent mode kt . Disorder effectively works as a bandpass
filter for momenta. To verify this behavior we integrated the
Schrödinger equation in time for the Hamiltonian (5) with
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FIG. 1. (Color online) AL length obtained from transfer matrix
calculations (solid lines) and from Eq. (12) (dashed lines). Left
panel: AL length as a function of quasimomentum for two sets
of diagonal and off-diagonal disorder amplitudes: {V0 = 0.05, γ =
0.05} (black) and {V0 = 0.1, γ = 0.1} (red [gray]). Filling ρ̃ = 1/3.
Right panel: AL length as a function of quasimomentum from transfer
matrix calculations (black solid line) for diagonal disorder amplitude
V0 = 0.1, off-diagonal disorder amplitude γ = 0.9, and occupation
ρ̃ = 1/3. For comparison with Eq. (12) we present the analytical
expression (black dashed line).

the initial state consisting of one particle in the center of
the lattice with uniform momentum distribution. Figure 2
presents momentum distributions of Anderson localized atoms
and those that escaped from the disorder after time evolution
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FIG. 2. (Color online) The horizontal dotted thick line represents
the initial wave-packet momentum distribution. Solid lines present
momentum distribution of wave function outside area of the disorder
while dashed line the distribution of momenta that remain in the sys-
tem. N = 1000 lattice sites are considered with filling ρ̃ = 1/3. Two
cases are plotted. The data for diagonal and off-diagonal amplitudes
V0 = 0.1, γ = 0.5 are represented by red (thick) curves while those
for V0 = 0.5,γ = 0.3 by black (thin) lines. The evolution time is
t = 1000. The position of dips in momentum space agree with the
position of transparent modes kt ≈ 1.64 and kt ≈ 2.08, respectively.
One can observe two peaks in the momentum distributions of escaped
atoms. Due to a marginal difference in the dispersion relation between
in and outside of the disorder, the positions of peaks and dips are
slightly shifted. These results are obtained as the average over 1000
disorder realizations.

t = 1000. The momenta of escaped atoms reveal narrow peaks
at the position of the transparent mode while the momentum
distribution of Anderson localized atoms reveal dips, positions
of which agree with the former peaks. The lattice has N =
1024 sites with filling ρ̃ = 1/3. We choose two sets of
parameters for the amplitude of diagonal and off-diagonal
disorder (V0 = 0.1, γ = 0.5) and (V0 = 0.5, γ = 0.3). For
such parameters the transparent mode appears for kt ≈ 1.64
and kt ≈ 2.08, respectively. Our system presents, therefore,
a promising candidate for obtaining a highly controllable
monochromatic gun for matter waves. A similar mechanism
was observed in Ref. [69] where coherent multiple scattering
processes determined the emitted matter-wave mode. In the
following we inspect residual effects that may affect the
existence of the transparent mode for a realistic system. In
particular, in the next section we analyze the influence of the
next-nearest-neighbor tunneling on AL length in the regime of
strong off-diagonal disorder.

IV. NEXT-NEAREST-NEIGHBOR TUNNELINGS

For lattice depths U ≈ 10–20 ER , where ER is the lattice
recoil energy and the typical optical laser wavelengths, the
next-nearest-neighbor hopping amplitude t ′ ranges between
0.01 and 0.001, as can easily be estimated with appropriate
Wannier functions. This is why in typical situations long-range
hopping is often negligible. Still let us add the next-nearest-
neighbor tunneling term to the Hamiltonian (1):

H → H + t ′
∑

i

(a†
i ai+2 + H.c.). (13)

Under the same unitary transformation (3) and after time
averaging we obtain the effective Hamiltonian in the form
of Eq. (5) plus the additional term reading∑

i

t ′i (a
†
i ai+2 + H.c.), (14)

with t ′i = t ′J0[V0
ω

(εi+2 − εi)]. We numerically calculate the
AL length for this new effective Hamiltonian. The method we
use is applicable to finite but arbitrarily long-range hopping.
The transfer matrix approach is not directly applicable so we
transform the problem from a 1D to a 2D stripe. This could be
achieved with a simple winding of a string (see Fig. 3). In a
stripe all particle hoppings are between the neighboring slices,
which simplifies numerical calculations.

FIG. 3. (Color online) (a) One-dimensional gas on a lattice with
nearest-neighbor hopping (solid line) and next-nearest-neighbor
hopping (dotted line). (b) The same system can be viewed and
described differently, namely, as a stripe with nonuniform tunneling.
The advantage is that the hopping of particles takes place between
neighboring slices only.
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FIG. 4. (Color online) AL length as a function of quasimomen-
tum for diagonal disorder V0 = 1.95 (top panel), V0 = 1 (right
bottom panel), and V0 = 0.1 (left bottom panel), γ = 0.9, occupation
ρ̃ = 1/3. The values of the next-nearest-neighbor hopping are t ′ =
0.01 (black solid line), t ′ = 0.005 (blue dashed line), t ′ = 0.0025
(red dotted line), and t ′ = 0.0005 (black dashed-dotted line). The
resonance diminishes when t ′ grows. The effect is the strongest for
V0 = 1.95 because we are close to a regime without a delocalized
mode.

In Appendix B we present the derivation of the equation for
a Green’s function between the first and the last slice of the
stripe. Knowing the Green’s function we can easily calculate
the localization length [70,71].

As exemplary parameters for numerical analysis we choose
V0 = {1.95,1,0.1} and γ = 0.9 in order to obtain a regime
where a next-nearest-neighbor hopping significantly affects
the dynamics of the system. The results are presented in
Fig. 4. We observe that even extremely small values of t ′
significantly affect the resonance. The presence of a small
but nonzero next-nearest-neighbor tunneling t ′ significantly
reduces the localization length for the transparent mode kt

due to a nonzero probability that a mobile particle scatters
back on a frozen particle through a next-nearest-neighbor
hopping. This process can appear when two frozen particles
are separated by a single site. Indeed, when we exclude
such configurations, the resonance reappears. In deep lattices
next-nearest-neighbor tunneling also reduces the localization
length for the transparent mode, but the effect is weaker and
may not affect the selective emission due to a finite optical
lattice size (when this size is smaller than the localization
length).

V. CONCLUSIONS

In this paper we proposed a method to realize a controllable
off-diagonal disorder with binary random potential resulting
from time-periodic modulation of interactions between mobile
and frozen particles in an optical lattice. Since no interactions
between mobile particles are taken into account they may be
assumed to be spinless (spin-polarized) fermions. One could
also imagine a scheme with bosons with interactions turned off
by some microwave or optical Feshbach resonance [16] (note
that we already assume using a magnetic field for a standard
Feshbach tuning of different species interactions so this
method cannot be used simultaneously to control light-light
particle collisions). The presented method allows us to obtain
models with strong off-diagonal and weak diagonal disorder in
a broad regime of relative (off)-diagonal disorder amplitudes.
In a regime of weak diagonal and off-diagonal disorder,
an analytical expression for the AL length is in very good
agreement with numerical simulations. Moreover, we indicate
how the DRDM with random hopping can work as a tunable
bandpass filter for matter waves. The momentum of escaped
atoms reveals narrow peaks in the position of the transparent
mode in momentum space while momentum distribution of
the Anderson localized atoms reveals dips whose positions
agree with former peaks. We indicate the importance of the
next-nearest-neighbor hopping for the localization length of
the resonant extended mode appearing within the DRDM for
strong diagonal disorder.
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APPENDIX A: HAMILTONIAN APPROACH TO
ANDERSON LOCALIZATION LENGTH

To find the localization length starting from the
map (10) [47,72,73] it is more convenient to express it
in the action-angle variables (r,θ ) using the transformation
x = r sin(θ ), p = r cos(θ ):{

sin(θi+1) = D−1
i [sin(θi − k) − Ai sin(θi) sin(k)],

cos(θi+1) = D−1
i [cos(θi − k) + Ai sin(θi) cos(k)],

(A1)

where

Di ≡ ri+1

ri

=
√

1 + 2Ai sin(2θi) + A2
i sin2(θi). (A2)

We define the AL length as

λ−1 = lim
N→∞

1

N

N∑
i=1

ln Di, (A3)

and after expanding the logarithm to the second order in Ai

we get

λ−1 = 1
8

〈
A2

i

〉 + 1
2 〈Ai sin(2θi)〉, (A4)
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where 〈· · · 〉 stands for averaging over i. In order to calculate the
“kick-angle” correlator 〈Ai sin(2θi)〉 we expand the map (A1)
to second order in θi ,

θi = θi−1 − k + Ai−1
sin2(θi−1)

sin(k)
, (A5)

and express 〈Ai sin(2θi)〉 in terms of the preceding
〈Ai sin(2θi−1)〉 kick-angle correlator. Let us introduce the
correlation of the kick’s strength Ai with angle θi :

an = − 2i〈
A2

i

〉e2ik〈Aie
2iθi−n〉, (A6)

where 〈A2
i 〉 is variance of the Ai . Multiple applications of

Eq. (A5) to an give us the recursive relation

an−1 = e−2ikan + qn, (A7)

where qn = 〈AiAi−n〉/〈A2
i 〉 is the autocorrelation of Ai . From

the definition of an we can notice that

〈Ai sin(2θi)〉 = Re

(〈
A2

i

〉
2

e−2ika0

)
, (A8)

where from Eq. (A7) we obtain a0 = ∑∞
n=1 qne

−2ik(n−1).
The inverse AL length λ−1 takes the form [72]

λ−1 =
〈
A2

i

〉
8

(
1 + 2

∞∑
n=1

qn(k) cos(2kn)

)
. (A9)

In the specific case of the DRDM, the variance of Ai and the
autocorrelation of Ai read, respectively,

〈
A2

i

〉 = ρ

(1 + ρ)2

[V0 + 2γ (2 − γ ) cos(k)]2

sin2(k)
,

qn = (−1)nρn, (A10)

and the approximate expression for the inverse localization
length takes the form of Eq. (12).

APPENDIX B: ANDERSON LOCALIZATION LENGTH
FOR HAMILTONIAN WITH LONG-RANGE

RANDOM HOPPING

In this section we describe a method of calculating
localization length in a 1D system with long-range tunneling.
The idea is to transform the problem from a 1D to a 2D stripe.
This could be achieved with a simple winding of a string (see
Fig. 3).

1. Mapping to a 2D stripe

To start let us consider a 1D gas on a string of length Ñ .
We allow long-range tunneling up to the Mth neighboring site.
This geometry is equivalent to a 2D stripe of length N = Ñ/M

and width M . The evolution of particles in such a stripe is
characterized by a Hamiltonian:

H (Ñ ) =
N∑

n=1

Hn +
N−1∑
n=1

(Vn + H.c.), (B1)

where

Hn =
M∑

m=1

ε(n)
m |n,m〉〈n,m|

−
M−1∑
m=1

(
J

(n,n)
m,m+1|n,m〉〈n,m + 1| + H.c.

)
(B2)

is a standard tight-binding Hamiltonian for the nth slice and

Vn = −
M∑

m=1

M ′∑
m′=1

J
(n,n+1)
m,m′ |n,m〉〈n + 1,m′| (B3)

describes particles hopping onto the nth slice. J
(n,n′)
m,m′ denotes

tunneling between |n,m〉 and |n′,m′〉. Suppose now that we
add one extra slice to the system. A new Hamiltonian is
straightforward:

H (N + 1) = H (N ) + HN+1 + VN + V
†
N . (B4)

For later convenience, let us define the operators

H 0(N + 1) ≡ H (N ) + HN+1, (B5)

V (N ) ≡ VN + V
†
N, (B6)

and finally the Hamiltonian reads

H (N + 1) = H 0(N + 1) + V (N ). (B7)

2. A recursive equation for a Green’s function

Our goal is to find the Green’s function G+
E(N + 1) for the

Hamiltonian H (N + 1). By definition, a Green’s function can
be obtained from a resolvent of a Hamiltonian,

G+
E(N + 1) = lim

ε→0+
GE+iε(N + 1), (B8)

where a resolvent satisfies

[z − H (N + 1)]Gz(N + 1) = 1. (B9)

Let’s start with an equation for a resolvent of H (N + 1):

Gz(N + 1) = G0
z(N + 1) + G0

z(N + 1)V (N )Gz(N + 1),
(B10)

with G0
z being a resolvent of H 0. The resolvent equation (B10)

can be derived from a simple operator identity,

1

A
= 1

B
+ 1

B
(A − B)

1

A
, (B11)

with a substitution,

A = z − H (N + 1), B = z − H 0(N + 1). (B12)

Since we are interested in transport properties of the
system, we need to know the Green’s function matrix elements
between the first and the last slice only. Therefore, we want to
obtain 〈1|Gz(N + 1)|N + 1〉. To simplify the equations let us
introduce a notation:

Gn,m ≡ 〈n|Gz(m)|m〉. (B13)

From equation (B10) we get

G1,N+1 = G1,NVN GN+1,N+1, (B14)
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where we used the observation that

G0
z(N + 1) = Gz(N ) + 1

z − HN+1
, (B15)

which stems from the fact that H (N ) and HN+1 act in
orthogonal subspaces of the Hilbert space [see Eq. (B5)].

In order to get a recursive equation for G1,N , we need
to calculate the GN+1,N+1 matrix. It can be obtained from
Eq. (B9) by multiplying it from the right side by the projection
P = |N + 1〉〈N + 1| and by P (or Q = 1 − P ) from the left
side:

P [z − H (N + 1)](P + Q)Gz(N + 1)P = P,

Q[z − H (N + 1)](P + Q)Gz(N + 1)P = 0. (B16)

Solving the set of Eqs. (B16) one gets

GN+1,N+1 = 1

z − HN+1 − V
†
NGN,NVN

. (B17)

Combining Eqs. (B14) and (B17),

G1,N+1(z − HN + 1 − V
†
NGN,NVN ) = G1,NVN (B18)

and, again from Eq. (B14), extracting GN,N , we finally obtain
a recursive equation:

AN+2 = (E − HN+1)V −1
N AN+1 − V

†
NV −1

N−1AN, (B19)

with AN = G−1
1,N−2. The initial values of AN are not relevant,

but it is convenient to choose them as

A0 = 0, A1 = V0. (B20)

In Eq. (B19) there is no singularity; hence we can replace z

with E. From this equation we can calculate G1,N , which is
connected with the localization length of the system.

3. Calculation of the Anderson localization length

The AL length λM in a stripe of width M is defined as

2

λM

= − lim
n→∞

1

n
ln Tr|G1,n|2. (B21)

Since our system is in fact 1D the localization length should
not depend on the length of the stripe. When a particle reached

the nth slice it covered ñ = Mn lattice sites. Hence, the
localization length λ in one dimension equals λ = MλM.

The localization length can be obtained from the recursive
equation (B19). We solve the equation iteratively. The problem
with this equation is that the elements of An grow exponentially
for large n, so it requires some regularization. Therefore, in
each step we multiply both sides of the equation by some
matrix Rn. Starting from n = 1 and defining A

(1)
k ≡ AkR1,

A3 = (E − H2)V −1
1 A2 − V

†
1 V −1

0 A1 | × R1,

A
(1)
3 = (E − H2)V −1

1 A
(1)
2 − V

†
1 V −1

0 A
(1)
1 . (B22)

To avoid the exponential growth we put R1 = A−1
2 and

A
(1)
3 = A3A

−1
2 , A

(1)
2 = 1, A

(1)
1 = A1A

−1
2 . (B23)

We repeat this procedure in every iteration so that A
(n)
k =

A
(n−1)
k Rn, with Rn = [A(n−1)

n+1 ]
−1

, satisfies

A
(n)
n+2 = (E − Hn+1)V −1

n − V †
n V −1

n−1A
(n)
n . (B24)

Let us also define the matrix

B(n) = B(n−1)Rn/bn, bn = ‖B(n−1)Rn‖, (B25)

where ‖ · ‖ =
√

Tr| · |2 is a matrix norm. The B(n) matrix turns
out to be very useful, because

bn = ‖B(n−1)Rn‖ = 1

bn−1
‖B(n−2)Rn−1Rn‖

= 1

bn−1

∥∥B(n−2)
[
A

(n−2)
n+1

]−1∥∥
= 1

bn−1bn−2

∥∥B(n−3)
[
A

(n−3)
n+1

]−1∥∥ = · · · . (B26)

Continuing this, we notice that∥∥A−1
n+1

∥∥ = b1b2 . . . bn, (B27)

ln Tr|G1,n|2 = 2(ln bn+1 + · · · + ln b1). (B28)

The AL length can be expressed as

λ = −M lim
n→∞

n

cn+1
, cn+1 = cn + ln bn+1. (B29)

Iterations should be continued until λ converges within a
desired precision.
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