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Twist-and-turn spin squeezing in Bose-Einstein condensates
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We demonstrate experimentally an alternative method for the dynamic generation of atomic spin squeezing,
building on the interplay between linear coupling and nonlinear phase evolution. Since the resulting quantum
dynamics can be seen as rotation and shear on the generalized Bloch sphere, we call this scheme twist-and-turn.
This is closely connected to an underlying instability in the classical limit of this system. The short-time
evolution of the quantum state is governed by a fast initial spreading of the quantum uncertainty in one direction,
accompanied by squeezing in the orthogonal axis. We find an optimal value of ξ 2

S = −7.1(3) dB in a single
Bose-Einstein condensate and scalability of the squeezing to more than 104 particles with ξ 2

S = −2.8(4) dB.
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I. INTRODUCTION

The efficient generation of highly entangled states is among
the biggest challenges in quantum technologies, as they allow
approaching the ultimate quantum limits such as the elusive
Heisenberg limit in metrology [1]. Within the past decade,
technological development has enabled a number of schemes
that reliably produce entangled many-particle quantum states,
ranging from spin squeezed to Dicke states for neutral atoms
[2–14].

The Lipkin-Meshkov-Glick Hamiltonian, originally de-
veloped in nuclear physics [15], captures the dynamics of
interacting particles in two modes. It allows the generation
of a rich variety of spin squeezed [16] and highly entangled
non-Gaussian states [17]. In ultracold gases, this Hamiltonian
can be implemented using linear Rabi coupling and atomic
interactions between two internal states. With that system,
entangled non-Gaussian states have been created [18]. In this
work, we detail the dynamic generation of spin squeezed states.

The addition of linear coupling to the standard one-axis-
twisting scheme [19] leads to an exponentially increasing
quantum uncertainty, implying a corresponding squeezing
along the orthogonal axis on a short time scale. This results
from the interplay of the twist due to the interaction and the
rotation (turn) caused by the linear coupling. Semiclassically,
this behavior can be understood as the dynamics of a classical
phase-space volume around an unstable fixed point. The
corresponding emergence of correlations has also been studied
in a three-mode scenario [10,20].

II. EXPERIMENTAL SYSTEM

In our experiment, the Lipkin-Meshkov-Glick Hamiltonian
is realized by employing two internal states of a 87Rb Bose-
Einstein condensate (BEC) [21]: the |↓〉 = |F = 1,mF = 1〉
and |↑〉 = |2,−1〉 hyperfine states of the electronic ground
state. We simultaneously prepare up to 30 independent con-
densates, each containing N = 200–600 atoms, in an optical
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standing wave potential [18]. The large trapping frequencies
ensure that external dynamics is frozen out. Additionally, the
array of condensates yields many independent realizations and
enables scalability to large atom numbers [22].

Linear coupling between the two internal states is achieved
using a two-photon microwave (≈ 6.8 GHz) and radio-
frequency (≈ 6.3 MHz) transition. The phase of the coupling
can be nonadiabatically adjusted by switching the phase of the
radio-frequency radiation, which is created using an arbitrary
waveform generator. In addition, the coupling power can be
altered by changing the amplitude of the radio-frequency
signal and attenuating the microwave by use of a fixed
attenuator on an RF switch with two ports. The atomic
nonlinearity is enhanced in the vicinity of an interspecies
Feshbach resonance between |↑〉 and |↓〉 at a magnetic bias
field of 9.12 G. After each experimental cycle, state-dependent
detection is implemented using absorption imaging after Stern-
Gerlach separation of the two components [23] [see Fig. 1(a)].
The imaging is performed at low magnetic fields (∼1 G) after
a ramp-down of the bias field in 300 ms. In order to inhibit
spin-relaxation loss of the |↑〉 state during the ramp-down, we
transfer its population to |1,−1〉 via a microwave π pulse.

III. THEORETICAL DESCRIPTION

In a quantum-mechanical description, the system of N

indistinguishable two-level bosons can be treated as a pseu-
dospin (J = N/2) and displayed on a generalized Bloch
sphere. Using the respective creation and annihilation op-
erators of the two modes, the z component of the pseu-
dospin Ĵz = 1

2 (â†
↑â↑ − â

†
↓â↓) = (N̂↑ − N̂↓)/2 is defined by

the population difference between the two levels, which
can be directly detected in the experiment. The orthogonal
components (coherences) are given by Ĵx = 1

2 (â†
↑â↓ + â

†
↓â↑)

and Ĵy = 1
2i (â

†
↑â↓ − â

†
↓â↑), fulfilling the angular momentum

commutation relation [Ĵj ,Ĵk] = iεjkl Ĵl .
In this pseudospin picture, our experimental system can be

described by the Hamiltonian

Ĥ = χĴ 2
z − �Ĵx + δĴz, (1)
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FIG. 1. (Color online) Experimental system and classical phase
space. (a) We simultaneously generate around 30 BECs, each
containing N = 200–600 atoms, using an optical lattice potential. We
employ two internal states |↓〉 = |F = 1,mF = 1〉 and |↑〉 = |2,−1〉
of 87Rb. The populations of the two states are read out by absorption
imaging after Stern-Gerlach separation. (b) The nonlinearity χ

induces an angular velocity that depends on the population imbalance
and twists the quantum uncertainty. The squeezing dynamics of this
one-axis twisting scheme in a single BEC is shown on a generalized
Bloch sphere (right panel). (c) The interplay of the nonlinearity and
linear coupling (rotation around the x axis with angular velocity
�) creates a twist-and-turn scenario. The resulting dynamics features
initial squeezing and the emergence of non-Gaussianity at later times.

which is a special case of the Lipkin-Meshkov-Glick Hamilto-
nian [15]. The quantum dynamics of this system is governed by
the relative strength of the three parameters: the nonlinearity
χ arising from the interparticle interaction, coupling strength
� given by the microwave and radio-frequency radiation, and
the detuning δ resulting from the mismatch of the coupling
and the atomic frequency, the ac Zeeman shift, and the
particle-number-dependent mean-field shifts.

The resulting dynamics can be understood from the fact that
angular momentum operators are the generators of rotations.
Thus, (χĴz)Ĵz leads to a rotation around the z direction whose
angular velocity χĴz depends on the population difference Ĵz.
This can be interpreted as a twist [Fig. 1(b)]. The one-axis
twisting scheme exploits this nonlinear twist exclusively.

The second and third terms in the Hamiltonian describe
linear rotations around the x and the z axis, respectively.
In the regime � = |Nχ/�| > 1, the relative sign between
linear coupling � and nonlinearity χ can be chosen such
that the linear rotation leads to a speed-up of the shear of
the quantum state. This is achieved when the linear coupling
transfers the enlarged spread in phase (∼Ĵx) into an increased
spread in particle-number difference (∼Ĵz), which implies
faster twisting.

IV. CLASSICAL PHASE-SPACE PICTURE

Further insight can be gained by analyzing the correspond-
ing classical description, which is valid in the limit N → ∞.
The corresponding classical Hamiltonian is

Hclass = N2χ

4
z2 − N�

2

√
1 − z2 cos φ + Nδ

2
z, (2)

with the imbalance z = (N↑ − N↓)/N and the phase φ =
arctan(〈Ĵy〉/〈Ĵx〉). In the case of sole twisting, the phase-space
portrait features two stable fixed points at the north and south
poles of the generalized Bloch sphere. Exemplary classical
trajectories are visualized by solid lines in Fig. 1(b). The
addition of linear coupling leads, in the case of a dominating
interaction, i.e., � > 1, to two additional fixed points on
the equator of the Bloch sphere, one of which is stable and
one unstable [21,24–26]. The twist-and-turn (TNT) scenario
exploits this unstable fixed point and is experimentally realized
for � ≈ 1.5 and δ ≈ 0 [Fig. 1(c)]. The instability leads to rapid
spreading of the quantum state along the separatrix that divides
the classical phase space into regions of macroscopically
different temporal behavior. Spin squeezing is generated
during the early dynamics [16]. At later times, the bending
around the stable fixed points leads to the appearance of
non-Gaussianity and squeezing vanishes [17,18]. In contrast,
the quantum states created by the one-axis-twisting scheme
[4–6,19,27] remain Gaussian on much longer-time scales.

V. STATE PREPARATION

In the experiment, after initial preparation of all atoms in
|↓〉, a coherent superposition between |↑〉 and |↓〉 is produced
by applying a π/2 pulse of the linear two-photon coupling.
Subsequently, microwave and radio frequencies are attenuated
to reach the regime of � ≈ 1.5 and the phase of the Rabi
coupling is adjusted by 3π/2, which changes the rotation axis
from the y to the negative-x axis. Additional phase shifts due
to the microwave attenuator are compensated by shifting the
phase of the radio frequency accordingly and the frequency is
adjusted, taking into account the change in ac Zeeman shift
caused by the altered power of the coupling radiation.

The influence of technical detuning fluctuations, caused
by variations of the magnetic bias field of ≈ 45 μG over
several days, is reduced by applying a spin-echo pulse (π
rotation around the x direction) at half the evolution time.
This also reduces the sensitivity to coupling phase errors. By
omitting the linear coupling during the evolution time, the
same sequence is used for a direct comparison to the one-axis
twisting scenario.

VI. STATE ANALYSIS

To investigate the states generated by the twist-and-turn
scheme, we perform a tomographic readout. This is achieved
by rotating the state around the x direction for various
angles and analyzing the fluctuations of the particle-number
difference for repeated measurements [Fig. 2(a)]. The fluc-
tuations are quantified by the number squeezing parameter
ξ 2

N = Var(N↑ − N↓)/Varclass(N ), normalized to the binomial
variance of the corresponding coherent spin state Varclass(N ) =
4p(1 − p)N with p = 〈N↑〉/N . One representative experi-
mental result is shown in Fig. 2(b), from which we extract the
maximal observed variance as well as the minimal fluctuations
ξ 2

min = min(ξ 2
N) and the corresponding rotation angle αmin.
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(a) (b)

FIG. 2. (Color online) Squeezing analysis. (a) The generated
states are tomographically analyzed by rotation around the x axis
and detection of the population difference N↑ − N↓. The uncertainty
of a squeezed state is characterized by three parameters using
the fluctuations of repeated experiments: the extension along the
elongated direction (long axis, ξ 2

max), the size of the minimal
fluctuations (short axis, ξ 2

min), and the optimal tomography rotation
angle αmin. (b) An exemplary tomography result after 15 ms of TNT
evolution shows a strong modulation of the observed variances and
suppression below the classical limit (dotted line).

VII. EXPERIMENTAL RESULTS

The generation of squeezing with the TNT scheme is
quantified in Fig. 3 by the resulting spin squeezing parameter
ξ 2

S = ξ 2
min/〈cos ϕ〉2, taking into account the reduced mean spin

length N〈cos ϕ〉/2 due to the extension of the state along the
long axis. We infer 〈cos ϕ〉 by applying a rotation with an angle
−π/2 + αmin and detecting the distribution of particle-number

(a) (b)

(c)

FIG. 3. Spin squeezing dynamics. (a) Spin squeezing for dif-
ferent evolution times obtained from one-axis twisting (gray
squares) and TNT squeezing (black squares), which van-
ishes as the state becomes non-Gaussian. The minimal ob-
tained value for the TNT scenario is −7.1(3) dB after a
15-ms evolution time. The experimental results are in agreement
with a numerical Monte Carlo wave-function analysis for the
experimental parameters, which includes the effects of loss (solid
lines). Additionally including known sources of noise during readout
yields better quantitative agreement (dashed lines). The dotted line
depicts the classical limit. (b) In contrast to the one-axis twisting
scheme (gray squares), the optimal tomography angle for the TNT
scheme (black squares) increases with time. (c) The fluctuations along
the long axis increase exponentially for the first 25 ms in the TNT
scheme (black squares; dashed-dotted line: exponential fit), indicating
the underlying classical instability. Error bars are statistical 1 s.d.
confidence intervals.

differences. Since the population imbalance after the rotation is
z = sin ϕ, we can directly access the expectation value 〈cos ϕ〉
[4].

We experimentally find strong initial spin squeezing, reach-
ing a minimal value of ξ 2

S = −7.1(3) dB after an evolution time
of 15 ms [Fig. 3(a)]. The precisely characterized photon shot
noise of the absorption images (standard deviation σdet ≈ 4
atoms for each component) has been subtracted for all given
values. Small fringe noise contributions remain [23]. Our
results confirm the generation of entanglement during the early
evolution.

After this minimal value, squeezing is quickly lost. This
does not imply the loss of entanglement, as spin squeezing
only captures the variance properties of the state and thus
does not fully characterize non-Gaussian states. In this regime,
entanglement can be shown by extraction of the Fisher
information [18].

The solid lines in Fig. 3(a) represent the results of a Monte
Carlo wave function (MCWF) simulation discussed in detail in
the Appendix which qualitatively agrees with the experimental
data. This simulation includes particle losses and the resulting
change of the parameters χ (N ) and δ(N ), which depend on the
atomic density, as well as the technical detuning fluctuations.
The dashed line includes additional known sources of noise
during the detection process, such as the residual losses due to
background collisions during the ramp-down of the magnetic
field, which corresponds to a loss of approximately eight
atoms.

We also compare this scheme with the well-established
one-axis-twisting scheme. While the corresponding experi-
mentally obtained value of the best squeezing [gray squares in
Fig. 3(a)] is comparable, the transition to non-Gaussian states
happens at much longer time scales, which are longer than the
largest investigated evolution time.

The experimentally extracted angle of minimal fluctuations
αmin and the size of the long axis [see Figs. 3(b) and 3(c)]
are much less susceptible to loss than the minimal squeezing,
yielding very good agreement with our MCWF simulations.
The underlying classical instability in the TNT scheme leads
to an exponential growth of quantum-mechanical uncertainty,
which is directly observed by analyzing the increase of
fluctuations of the long axis shown in Fig. 3(c). This is
in contrast to one-axis twisting, where the deviation from
the initial exponential growth occurs much earlier [16],
and confirms that the exponentially fast initial squeezing is
prolonged in the TNT scheme.

VIII. UPSCALING OF THE TNT SCHEME
TO LARGE ATOM NUMBERS

The obtainable phase precision in an interferometric se-
quence is limited by 
φ = ξS/

√
N for a spin squeezed state

with N particles and spin squeezing parameter ξS. Therefore,
it is one of the main challenges to generate squeezing also for
large atom numbers. It has been shown that the use of many
mesoscopic condensates allows the upscaling of squeezing
to large numbers [22] by adding up the populations of the
individual condensates.

To analyze the number squeezing parameter for different
ensemble sizes, we sum the atom numbers of different lattice
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FIG. 4. (Color online) Scalability to large atom numbers. The
best obtained number squeezing after 15 ms of TNT evolution
can be scaled to large particle number by summing up the atom
numbers of adjacent sites (upper left panel), yielding ξ 2

N = −3.1(4)
dB for 10 200 particles (gray circles). A differential analysis of the
fluctuations between two different parts of the array (lower left
panel) is more robust against technical fluctuations and improves
this value to −4.5(4) dB. The remaining decrease of the observed
fluctuation suppression is caused by the atom number inhomogeneity
of the lattice, which leads to different optimal rotation angles. As a
reference, the scaling for a coherent spin state is indicated as black
diamonds and is in good agreement with the classical limit (dotted
line). Error bars are 1 s.d. confidence intervals from a resampling
analysis [28].

sites N↑tot = ∑
i N↑i and N↓tot = ∑

i N↓i (upper left panel of
Fig. 4) and calculate ξ 2

N in analogy to the evaluation for the
single sites. For an evolution time of 15 ms and the optimal
angle α = 52◦, this analysis yields a noise suppression ξ 2

N =
−3.1(4) dB even for the full ensemble of 10 200 particles (gray
circles in Fig. 4). As the classical reference, the corresponding
scaling for a coherent spin state is in agreement with the shot-
noise limit for all atom numbers (diamonds).

The loss of squeezing for large atom numbers is caused
by both atom number inhomogeneities over the array and
technical noise sources, which are dominated by fluctuations
of the magnetic bias field. The influence of the latter can
be minimized by employing a differential analysis, in which
the array is divided in two parts and the relative fluctua-
tions of the two population imbalances zleft and zright are
analyzed. This is robust against the technical fluctuations,
as these are suppressed for the difference δz = zleft − zright

[22]. The corresponding relative squeezing parameter ξ 2
rel =

Var(δz)/Var(δz)class quantifies the noise suppression relative
to the classical limit Var(δz)class. With this analysis, we find
ξ 2

rel = −4.5(4) dB for the full sample. This is on a comparable
level with the value of ξ 2

rel = −5.3(5) dB that can be obtained
using one-axis twisting [22].

The remaining decrease of squeezing can be attributed to
the atom number dependence of the TNT squeezing scheme
(Fig. 5), for which the degree of single-site squeezing improves
as the particle number increases. This results from the particle-
number dependence of the detuning since the intraspecies
scattering lengths of the two components are slightly different.
The numerical solution of the stationary Gross-Pitaevskii

(a) (b)

(c)

FIG. 5. Atom number dependence in the single BECs. Due to
the criticality of the TNT scheme and the atom number dependence
of χ and δ, the characteristics of final states after a fixed evolution
time change with atom number. This is shown for an evolution time of
15 ms and three key parameters of the spin squeezed states: (a) the spin
squeezing parameter ξ 2

S , (b) the optimal rotation angle αmin, and (c)
the extension of the long axis. The results are reproduced by a MCWF
simulation including the experimental parameter dependences on
atom number (solid line). The dashed line indicates the results
including additional noise during the readout sequence and the dotted
lines are the corresponding classical limits. Error bars are statistical
1 s.d. confidence intervals.

equation for our experimental situation reveals to a good
approximation the scalings δ ∝ √

N and χ ∝ 1/
√

N . Both
effects are included in the MCWF simulation (solid lines).
Since we fix the angle of rotation to α = 52◦, the strong
dependence αmin on atom number [see Fig. 5(b)] mainly
limits the scalability using mesoscopic samples with varying
atom number. Note that this atom number dependence of
the final state is stronger compared to the one-axis-twisting
scheme, which leads to the slightly lower value for the relative
squeezing of the full ensemble.

For the sum of several independent condensates, the two-
mode approximation is not valid and the mean spin length
has to be extracted from the visibility V of Ramsey fringes.
As we observe V = 94.2% for the full ensemble, the whole
resource can be directly exploited for quantum-enhanced
measurements, either in a dc or a gradiometric scheme.
The corresponding spin squeezing parameters [29] are ξ 2

S =
−2.8(4) dB for the direct analysis and ξ 2

S diff = −4.0(4) dB for
the differential case, showing the applicability for quantum-
enhanced metrology.

IX. CONCLUSION

We have shown that the twist-and-turn scheme can effi-
ciently generate spin squeezing on short experimental time
scales and is thus favorable for squeezing in lossy environ-
ments. These spin squeezed states can be directly employed in
quantum-enhanced measurement schemes, which have already
been demonstrated for clocks and magnetometry [22,30–32].
Extending this process to one-dimensional systems, the crit-
icality of the TNT scheme is the underlying mechanism of
the miscible-immiscible quantum phase transition at zero
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temperature [33]. Such a system is ideally suited for studies
of spatial quantum correlations and scaling behavior in pattern
formation dynamics.
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APPENDIX: MONTE CARLO WAVE-FUNCTION
SIMULATION

For the quantitative description of the experimental results
(Fig. 3 and 5), we perform numerical simulations using the
Monte Carlo wave-function method [34–36]. This description
includes the effects of atomic losses as well as the atom
number dependences of the parameters, which change due
to varying atomic densities. For our calculations, we find good
agreement using χ = 2π × 1.43 Hz/

√
N , � = 2π × 19 Hz,

and δ = −2π × 0.63(
√

N − √
550) Hz. These parameters are

consistent with independent measurements using plasma, π ,
and Rabi oscillations and the determination of collisional shifts
from Ramsey sequences. Two-body spin-relaxation loss from
|↑〉 and three-body Feshbach losses are included, with loss
rates calibrated by independent measurements. The simulation
also includes the spin-echo pulse at half the evolution time
and detuning fluctuations with a standard deviation σδ =
2π × 0.45 Hz caused by variations of the bias magnetic field
at 9.12 G. These fluctuations are independently determined
by repeated Ramsey measurements. All pulses are simulated
with a Rabi frequency of �pulse = 2π × 340 Hz and in the
presence of the atomic nonlinearity, which leads to an effective
shortening of the spin-echo rotation around the x axis.

For each data point, we numerically calculate 8000 trajec-
tories using a fourth-order Runge-Kutta method and evaluate
the observables by calculating the mean of the expectation
values for the different trajectories. In each time step of a
single trajectory, a random number determines if either the

(a) (b)

(c)

FIG. 6. Comparison of ideal theory and MCWF results. The
results of the MCWF simulations (thin black line for the twist-and-
turn scheme and thin gray line for one-axis twisting) qualitatively
agree with the ideal quantum evolution (thick solid lines) that does
not include losses and the corresponding parameter changes for (a)
the spin squeezing parameter ξ 2

S , (b) the optimal rotation angle αmin,
and (c) the fluctuations along the long axis of the state. In both
ideal theory and MCWF simulation, the spin squeezing rate of the
twist-and-turn scheme exceeds the corresponding rate of one-axis
twisting at intermediate evolution times and squeezing is lost in the
later evolution.

wave function is evolved according to an effective Hamiltonian
incorporating the ideal description (1) with the addition of
decay terms or a loss event is implemented [34–36]. This is
done by properly cutting and renormalizing the evolved state
vector and adjusting δ(N ) and χ (N ) accordingly.

In Fig. 6, the results of the MCWF simulation are compared
with the ideal theory. We assume an initial atom number
of N = 500 atoms and the time-averaged parameters Nχ =
2π × 30 Hz, δ = 0 Hz, and � = 2π × 19 Hz for the twist-
and-turn scheme and � = 0 Hz for one-axis twisting. On a
qualitative level, we find good agreement between the ideal
quantum evolution and the results of the MCWF simulations
shown in Fig. 3. For the chosen parameters, the value for the
optimal spin squeezing obtained from the ideal evolution is
ξ 2

S = −13.0 dB after an evolution time of 18 ms, while for
the MCWF description we find optimal squeezing of ξ 2

S =
−10.1 dB after 16 ms.
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