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High-order-harmonic spectra from atoms in intense laser fields: Exact versus approximate methods
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We compare harmonic spectra from hydrogen based on the numerical solution of the time-dependent
Schrödinger equation and three approximate models: (i) the strong field approximation (SFA), (ii) the
Coulomb-Volkov modified strong field approximation (CVA), and (iii) the strong field approximation with the
stationary phase approximation applied to the momentum integrals (SPSFA). At laser intensities in the range of
(1 − 3) × 1014 W/cm2 we find good agreement when comparing the SFA and CVA with exact results. In general
the CVA displays an overall better agreement with ab initio results, which reflects the role of the Coulomb field
in the ionization as well as in the recombination process. Furthermore, it is found that the widely used SPSFA
breaks down for low-order harmonic generation; i.e., the approximation turns out to be accurate only in the outer
part of the harmonic plateau region as well as in the cutoff region. We trace this deficiency to the singularity of
the SPSFA associated with short trajectories, i.e., short return times. When removing these, we obtain a version
of the SPSFA which works rather well for the entire harmonic spectrum.
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I. INTRODUCTION

High harmonic generation (HHG) of photons during
interaction between atoms and intense laser fields has its
phenomenological origin [1] and quantum mechanical expla-
nation [2] from about 20 years ago. At that time the basic cutoff
law, i.e., the relation between the highest photon frequencies
generated and the laser intensity and driving frequency, was
established both classically and based on the stationary phase
method applied to the strong field approximation. Since
then, HHG in molecules [3–6], extended systems [7,8], and
solids [9] has opened new aspects with regard to both the
cutoff laws and the production of attosecond light [10] with
tunable polarization. Nevertheless, the basic mechanism of
HHG from simple atoms with linear polarized light sources is
still debated, in particular, the role of the binding potential [11].

When it comes to the quantum mechanical description it is
obvious that harmonic spectra based on accurate solutions of
the time-dependent Schrödinger equation (TDSE) are limited
to one active electron systems and in a few cases to two
active electron systems. In addition to the numerical challenges
associated with solving the TDSE directly, the application of
ab initio methods is limited to systems where an accurate
description of the potential is available. Approximate models
on the other hand, like, e.g., the widely used strong field ap-
proximation (SFA), can relatively straightforwardly be applied
to complex molecular systems without detailed knowledge
of the potential, as it only requires a sufficiently accurate
representation of the initial state. Nevertheless, the detailed
comparison between HHG spectra from such approximate
methods and exact results are relatively few [12,13]. Also, it
is well established [14–18] that Coulomb corrections in the
continuum state, leading to the so-called Coulomb-Volkov
approximation (CVA), allow for some accounting of the
remaining core and thus describe ionization more accurately.
In the SFA, on the other hand, the influence of the core is
neglected, i.e., the continuum states are eigenstates of a free
electron in the time-dependent electric field. Introducing an

additional approximation on the resulting SFA integrals, i.e.,
the so-called stationary phase approximation, the stationary
phase strong field approximation (SPSFA) is obtained. A
related comparison of the CVA, the SFA, and the TDSE for
differential electron emission in laser fields was performed
some time ago [19], and this study showed that the CVA
performed much better than the SFA. At present, there exist
a variety of models based on Coulomb-Volkov type states
for atomic ionization by ultrashort laser pulses, e.g., the
modified Coulomb-Volkov approach that uses an initial bound
state which takes into account transitions to intermediate
bound states, allowing the multiphoton ionization process to
occur from these levels [20]. The double-distorted Coulomb-
Volkov approximation is another example, which includes the
distortion by the laser field in the initial state, accounting for
dynamic Stark effects in the presence of the field [21].

Coulomb corrections were introduced in the SFA model
for the calculation of high-harmonic spectra in several works
[22–24], but it is still an open question whether the
CVA approach is more suitable for HHG as compared to
the SFA. Another aspect regarding HHG is the reliability
of the commonly used stationary phase approximation (SPA)
to the electron momentum integral [23–25]. The theory here
contains an adjustable parameter which has to be introduced to
keep integrals finite. To the extent that the harmonic spectrum
depends on this parameter, attempts to describe structures in
the harmonic spectrum should be performed with care [26].

In this work, we perform a detailed comparison between the
CVA and the SFA, the latter calculated with and without the
SPA. HHG spectra at three characteristic peak laser intensities
[(1 − 3) × 1014 W/cm2] are compared with exact spectra from
the TDSE. It will be shown that the CVA is in general in best
agreement with the ab initio result. However, also the SFA
is reasonable in describing the general shape of the harmonic
spectrum, in particular, in the cutoff region.

The standard SPSFA approach, on the other hand, turns out
to be valid only around the cutoff and needs to be modified
in order to capture the exact SFA result in the lower part
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of the harmonic spectrum. The origin of the fault lies in the
use of the saddle point approximation when calculating the
momentum integrals within the SFA. This leads to an inherent
divergence in the resulting harmonic signal which is usually
circumvented by introducing a regularization parameter [2].
We show that the final result is sensitive to the actual choice
of regularization, in particular, in the lower-harmonic region.
It is generally assumed that the SFA fails, due to the missing
influence of the Coulomb potential in the model, in situations
where the electron only spends a short time in the continuum
before it recombines, i.e., for very short trajectories leading
to the emission of lower-order harmonics. We demonstrate
that the standard SPSFA can be significantly improved simply
by removing all trajectories from the model corresponding to
the electron spending only some fraction of a field cycle in
the continuum. In the next section we describe the numerical
models and in the following one we discuss the detailed
results. Atomic units (e = � = me = a0 = 1) are used unless
explicitly otherwise mentioned.

II. NUMERICAL MODELS

The starting point is the time-dependent Hamiltonian
describing a hydrogen atom interacting with a driving elec-
tromagnetic pulse described by the vector potential A(t). In
the velocity gauge form and within the dipole approximation
the TDSE reads as follows:[

1

2
[p + A(t)]2 − 1

r
− i∂t

]
�(r,t) = 0. (1)

Performing a phase transformation of the wave func-
tion, � −→ exp[−i

∫ t

0 A2(t ′)dt ′]�, an effective Hamiltonian,
H (t) = H0 + A(t) · p, is obtained, where H0 represents the
field-free atomic part. The case of 800-nm laser light (ω0 =
0.057 a.u.) is treated in the present work with a linear
polarization of the electric field along the z axis, A(t) = A(t)ẑ.
We consider a flat-top pulse with a sine-squared ramp-on and
ramp-off at the temporal edges:

A(t) =

⎧⎪⎪⎨
⎪⎪⎩

A0 sin2
(

tπ
2Tr

)
sin(ω0t), 0 � t � Tr,

A0 sin(ω0t), Tr < t < T − Tr,

A0 sin2
( (T −t)π

2Tr

)
sin(ω0t), T − Tr � t � T ,

0, elsewise,

(2)

where Tr = 5.31 fs is the ramp duration and T = 21.25 fs is the
full pulse duration leaving an intermediate flat-top region of
10.63 fs. In terms of optical cycles, the ramp and intermediate
pulse durations correspond to two and four cycles, respectively.
The amplitude A0 is the value of the vector potential when the
laser is at peak brilliance. The TDSE [Eq. (1)] interacting with
the field described in Eq. (2) is solved in a basis of radial
B-spline functions and spherical harmonics,

�(r,t) =
∑
k,l

ck,l(t)
Bk(r)

r
Ym=0

l (�), (3)

where Bk(r) is the kthB-spline function and Ym=0
l (�) is the

standard spherical harmonic for the solid angle. From the initial
ground-state vector c(t = 0), obtained by diagonalization of
the Hamiltonian matrix, the vector of coefficients c(t) is
propagated in time throughout the laser-atom interaction with

the following scheme:

c(t + �t) =
(

S + i�t

2
H(t + �t)

)−1(
S − i�t

2
H(t)

)
c(t),

(4)

where �t is the propagator time-step and S and H are the
matrices associated with the basis overlap and the Hamiltonian
operator, respectively. Equation (4) in its present form is
manifestly nonunitary, with the consequence that the norm
of the wave function is not conserved per se, as opposed to
the unitary time-synchronized version of the propagator [27].
However, the nonunitary scheme provides a practical means
for controlling the truncation error committed in the time
integration in that the stability of the wave function norm
is monitored during the propagation. More details regarding
our computational scheme for solving the TDSE can be found
in Ref. [28].

The HHG spectra Irad(ω) are here obtained by taking the
Fourier transform of the time-sampled expectation value of the
momentum operator [29],

Irad(ω) =
∣∣∣∣n̂ ·

∫ ∞

−∞
W (t)〈�(r,t)| p |�(r,t)〉e−iωt dt

∣∣∣∣
2

, (5)

where n̂ is the unit direction and W (t) is a finite window
function. Strictly speaking, the expectation value of the
momentum should be calculated as 〈�(r,t)| p + A |�(r,t)〉.
However, the contribution from the second term, i.e., the A
term, is unimportant for all harmonics but the first (at the
fundamental frequency). Provided the wave function is exact,
the expectation value (5) is gauge independent, and there
exists a one-to-one correspondence between the spectrum
obtained using the dipole, the dipole velocity, or the dipole
acceleration form of the expectation value [29]. Within the
SFA this is not necessarily the case; i.e., the length and
velocity gauge forms may differ and care should be taken
when calculating the spectrum. Nevertheless, in the present
study of HHG in hydrogen we have found that the dipole
and dipole velocity forms of the expectation value result in
similar spectra, and therefore the velocity form Eq. (5) has
been applied throughout. The time-dependent wave function is
obtained within the velocity gauge, i.e., Eq. (1). This choice of
gauge is well known to be numerically most efficient in terms
of basis size in the exact treatment. Furthermore, within the
SFA, it does not contain spurious coupling terms for extended
systems, as, for example, is the case within the length gauge
formulation [8,30,31].

The following cosine expansion is used as a window
function in Eq. (5),

W (t) =
n�4∑
n=0

(−1)nan cos

(
2n

πt

T

)
, (6)

where the coefficients are set to a0 = 0.209 671, a1 =
0.407 331, a2 = 0.281 225, a3 = 0.092 669, and a4 =
0.009 104. This particular form is called the minimum side lobe
five-term flat-top window (MS-5FT) in Ref. [32]. Although
a different choice of window function, e.g., the commonly
used Gaussian window, would suffice, the MS-5FT window
is chosen here for two reasons. First, the MS-5FT window
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results in relatively narrow harmonic peaks, and second, the
peaks are separated by “deep valleys,” making the individual
radiation yield at each harmonic order clearly distinguishable
from the neighboring harmonics. This is advantageous when
comparing harmonic spectra obtained with different models.

The model approaches are based on expanding the wave
function in a superposition of the (unperturbed) ground state
and a complete set of (field-dressed) continuum states, i.e.,

�(r,t) = c1s(t)�1s(r,t) +
∫

ck(t)�f

k (r,t)d3k, (7)

where �1s(r,t) = ψ1s(r) e−iEi t , with Ei = −0.5 a.u. The
models are derived by assuming negligible depletion of the
initial state, i.e., c1s(t) � 1, as well as neglecting the overlap
in the basis due to the over completeness, and then writing the
amplitude of the continuum wave in the approximate first-order
form,

ck(t) = −i

∫ t

−∞

〈
�

f

k (r,t ′)
∣∣ A(t ′) · p|�1s(r,t ′)〉dt ′. (8)

The two models, SFA and CVA, are obtained with two different
sets of continuum basis functions �

f

k . We start with the Volkov
wave function, describing an electron at time t ′ moving in the
electromagnetic field only,

�
f =V

k (r,t ′) = 1

(2π )3/2
ei[k·r−S(k,t ′,t0)]

= ψV
k (r)e−iS(k,t ′,t0), (9)

where t0 is a common (arbitrary) reference time for the Volkov
states, and the action S(k,t ′,t0) = 1

2

∫ t ′

t0
[k + A(t ′′)]2dt ′′. By

augmenting these functions with Coulomb phases it is ar-
gued that effects of the Coulomb potential are taken into
account [14]. The description of the electron propagating in
the continuum then becomes

�
f =CV
k (r,t ′) = ψCV

k (r)e−iS(k,t ′,t0)

= e1/2πβ
(1 + iβ)1F1(−iβ,1,−1kr − ikr)

×ψV
k (r)e−iS(k,t ′,t0), (10)

where β = Z/k is the Sommerfeld parameter, 
 is the
gamma function, and 1F1 is the confluent hypergeometric
function. Inserting Eq. (8) into the expansion (7) and using
that �

f

k (r,t ′) = ψ
f

k (r)e−iS(k,t ′,t0), we arrive at the following
expression for the momentum expectation value:

〈�| p |�〉 = 2Re

{
−i

∫ t

−∞
eiEi (t−t ′)

×
[∫

Rion(k,t ′)Vrec(k) e−iS(k,t,t ′)d3k

]
dt ′

}
. (11)

Here, the contributions from the (small) continuum-continuum
term have been neglected and the ionization amplitude at time
t ′ and the corresponding recombination amplitude at time t

are, respectively, given by

Rion(k,t ′) = A(t ′)
∫

ψ
f ∗
k (r) p ψ1s(r)d3r, (12)

Vrec(k) =
∫

ψ∗
1s(r) p ψ

f

k (r)d3r. (13)

Using �f =V as basis functions in Eq. (7) results in the SFA
while the use of the �f =CV continuum functions defines the
CVA. These basis functions lead to different ionization (Rion)
and recombination (Vrec) amplitudes. In both cases they result
in analytical expressions:

RV
ion(k,t ′) = A(t ′)

2
√

2k cos(θk)

π (1 + k2)2
. (14)

With Coulomb phases the result is slightly more complex [33],

RCV
ion (k,t ′) = A(t ′)

2
√

2

π

k

(1 + k2)2
cos(θk)e(1/2πβ)

×
(1 − iβ)

(
1 − 2k(i + k)

1 + k2

)−iβ

(1 − iβ). (15)

We note that Eq. (15) reduces to the SFA result in the limit of
β → 0 as expected. For finite β the Volkov and the Coulomb-
Volkov wave functions are independently normalized, which
is a prerequisite in order to perform a one-to-one comparison
between the two resulting HHG spectra.

To minimize the computational effort the stationary phase
approximation is usually invoked in order to solve the
momentum integrals. It involves accounting for only the
momentum of electrons which are born at some position
at time t ′ and return to the same position at a later time
t . This gives a final time integral left which involves the
stationary phase momentum ks = − ∫ t

t ′ A(t ′′)dt ′′/(t − t ′). The
momentum expectation value is then found as

〈�|p|�〉 = 2Re

{
−i

∫ t

−∞
eiEi (t−t ′)Rion(ks,t

′)Vrec(ks)

× e−iS(ks,t,t
′)
(

2π

i(t − t ′) + ε

)3/2

dt ′
}
. (16)

The regularization parameter ε is here an ad hoc quantity
introduced to keep the integrals finite at t = t ′, and the precise
value of it has generally been believed to be unimportant
for the HHG spectrum [2]. However, our calculations show
that this is only true for the harmonic spectrum around the
cutoff region. In the limit of vanishingly small ε the integral in
Eq. (16) diverges due to the singularity in the denominator. The
divergence appears in the limit t → t ′ and originates from the
contribution of electron trajectories where the electron spends
an infinitesimal time in the continuum before it recombines,
giving rise to lower-order harmonics.

The physics of the three HHG models is illustrated in
Fig. 1. All the model approaches considered here conceptually
share the same three-step mechanism from which they are
derived: (a) ionization at time t ′, (b) acceleration in the
field during the interval t − t ′, and (c) recombination at
time t . This three-step mechanism is shown in the top panel
together with the time evolution of the eight-cycle 800-nm
laser pulse. Also shown is the temporal shape of the applied
window function (in blue). The three methods are shown in
the next three panels of Fig. 1, in descending order based
on the degree of approximation made in each scheme. The
second panel shows the most sophisticated approximate model
considered, namely, the CVA method. Here, the electron is
during step (b) accelerated in a potential which comprises
both the interaction with the laser and the Coulomb potential.
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FIG. 1. (Color online) Schematic illustration of the three approx-
imate models used to predict the HHG spectrum in the present
work. In the top panel, the 800-nm laser pulse is drawn (red line)
together with the time-dependent window function (blue line) used
in the spectral analysis. The three approximations follow a three-step
model: (a) ionization at time t ′, (b) acceleration in the laser field,
and (c) recombination at time t with emission of high-harmonic
light. The models are illustrated in descending order from most
to least sophisticated in terms of the level of approximation and,
as such, expected accuracy. Second panel from the top: The CVA
method where the electron during step (b) propagates in the combined
potential of the laser and the nucleus. Third panel from the top:
Illustration of the SFA approach where the Coulomb potential
generated by the nucleus is neglected when the electron resides in
the continuum. Bottom panel: The SFA method with the stationary
phase approximation applied to the momentum integrals. Here the
recombination amplitude is restricted to contributions from (discrete)
stationary phase momenta, depicted by individual (green) trajectory
lines.

The total recombination amplitude is taken as the integral over
a continuum of momenta, illustrated by the thick (red) layer
in the figure. The next panel shows the SFA method where
the Coulomb potential is only present in the initial ground

state and neglected during the acceleration step (b). In this
method, integration over the Volkov-continuum contributions
is performed numerically which is illustrated by the (blue)
shaded area of trajectories. Last, the lower panel depicts the
presumably least accurate method, namely, the SFA method
with the SPA applied to the momentum integrals. The electron
is again assumed to propagate only in the potential due to
the laser once ionized, but as opposed to the full SFA, only
a restricted set of stationary phase momenta associated with
recombination at a particular time t is included (depicted as
discrete green trajectory lines).

In the next section we display results based on calculations
performed within the SFA and CVA directly as well as for
the SFA when the stationary phase argument is invoked.
The results are compared with spectra obtained by solving
the TDSE on an absolute scale which provide a reference
calculation for both the shape and the strength of each
harmonic.

III. RESULTS AND DISCUSSION

We now present the spectra of the high-order-harmonic
radiation generated when atomic hydrogen is exposed to
800-nm laser light in the intensity regime I0 = (1 − 3) ×
1014 W/cm2. The lower intensity is chosen high enough for
generating a pronounced harmonic yield, but still low enough
for differences in the spectra to appear when including or
excluding Coulomb corrections. From here we increase the
laser intensity to investigate to which extent these corrections
become less important with stronger fields. Nevertheless, we
restrict the highest intensity to 3 × 1014 W/cm2 as saturation
effects may become important, thus obstructing a direct
comparison between the approximate results and the ab initio
calculations to be made.

Concerning convergence issues of the different approaches,
the TDSE produces fully converged results for all considered
intensities using a basis including angular momenta up to
lmax = 41 and with a radial representation consisting of 6000 B

splines distributed in a radial box of size R = 3200 a.u.
The size of the radial box is chosen to be sufficiently large
in order to completely contain the ionized wave packet
during the laser-atom interaction, thus preventing unphysical
reflections at the grid boundary responsible for artificial
contributions to the momentum expectation value. In the
SFA and CVA approaches, the numerical convergence is
determined by the choice of discretization in the k3 and t

integrals [cf., Eq. (11)]. Here, we have included 218 and
212 discrete values of momentum and time, respectively,
and increasing these numbers does not influence the results.
The large number of integration points is necessary due to
the highly oscillatory kernel functions. It implies that the
approximate calculations (full SFA and CVA) become quite
time-consuming. However, when the SPSFA is applied, the
number of included electron trajectories or allowed momenta
is directly determined by the discretized number of possible
start and stop times [cf. Eq. (16)], i.e., the discretization in time,
which of course reduces the numerical labor significantly. A
few hundred thousand time steps (corresponding to the number
of trajectories included) were made necessary in order to obtain
fully converged SPSFA results for the smallest value of the
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FIG. 2. (Color online) HHG spectrum as obtained by Eq. (5),
given in atomic units and shown on a logarithmic scale. The
CVA result (thick red line) is compared with the exact TDSE
results (thin black line) at three different peak laser intensities:
I0 = 1 × 1014 W/cm2 (top panel), 2I0 (middle panel), and 3I0 (lower
panel).

regularization parameter ε = 0.01 considered in the present
work.

We start out by comparing the CVA (Fig. 1, second panel
from the top) results with those of the TDSE at three different
laser intensities in Fig. 2. The harmonic spectra are drawn
in thick red and thin black lines for the CVA and the TDSE,
respectively. The generated yields based on the intensities I0 =
1 × 1014 W/cm2, 2I0, and 3I0 are shown in descending order.
We see that the general shape of the harmonic spectrum and
the position of the cutoff are reasonably well reproduced with
the CVA approach, even though it seems to underestimate
the strength of the harmonic spectra at the lowest intensity
(I0) by 2–3 orders of magnitude. The CVA results depict a
cutoff at about the 23rd, 33rd, and 45th harmonics for the
three laser intensities considered, which is in close agreement
with the prediction of the well-known cutoff “law” Nmax �
(Ip + 3Up)/ω0 [2], where Ip is the ionization potential and
Up = A2

0/4 is the ponderomotive energy.
We then compare the “full” SFA results (Fig. 1, third panel

from the top) with those of the TDSE for the same three laser

FIG. 3. (Color online) HHG spectrum, Irad(ω) [Eq. (5)], plotted
on a logarithmic scale, from the SFA method (thick blue line)
compared with the exact TDSE results (thin black line) at three
different peak laser intensities: I0 = 1 × 1014 W/cm2 (top panel),
2I0 (middle panel), and 3I0 (lower panel).

pulses considered in Fig. 2. The harmonic spectra are shown
in Fig. 3 and drawn in thick blue and thin black lines for the
SFA and the TDSE, respectively. Comparing Figs. 2 and 3,
it is evident that the CVA in general performs better than
the SFA as far as the strength of each respective harmonic
is concerned. This applies in particular to the plateau region
where clear discrepancies between the TDSE and the SFA are
depicted. In the cutoff region, on the other hand, the CVA
and the SFA give very similar results, and both compare well
with the TDSE results for the two highest laser intensities
considered. Furthermore, the SFA predicts the correct position
of the cutoff.

In general, the SFA seems to underestimate the harmonic
yield. In particular, for the lower intensity (Fig. 3, top panel)
we note that on an absolute scale the SFA shows a strong
disagreement with the TDSE result around the 10th to the15th
harmonics, which correspond to small electron continuum
energies. At these energies it seems reasonable to assume
that the Coulomb field plays an important role as illustrated
by the better performance of the CVA method. For the same
reason it is interesting to observe that the SFA method performs
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FIG. 4. (Color online) HHG spectrum [Eq. (5)] calculated based
on the two approximate approaches, the SFA and the CVA, respec-
tively, versus the exact result calculated from the TDSE. The spectra,
Irad(ω), are shown on logarithmic scale and the peak laser intensity is
2I0. Thick red line: Peak harmonics from the CVA. Dotted blue line:
Peak harmonics from the SFA. Thin black line: The TDSE result.

gradually better at higher laser intensities when the Coulomb
potential plays a less important role.

For illustrative purposes, the harmonic spectra are shown
in Fig. 4 where only the maximal values at each odd
harmonic are drawn. Here, the intermediate laser intensity
I0 = 2 × 1014 W/cm2 is shown as an example, but the general
trends apply to the other intensities as well. Again, apart
from two harmonics (numbers 7 and 25 in the spectrum),
the overall picture is that the CVA performs better than the
SFA as far as the strength of the harmonics is concerned, in
particular in the plateau region. As such, these results show
that the target distortion plays a non-negligible role in the HHG
process and that approaches which include Coulomb effects
are advantageous when applying approximate models.

We then turn to the stationary phase results. The upper
panel in Fig. 5 shows a comparison between the exact SFA
result (thin blue curve) and the result obtained based on the
SPSFA amplitude [Eq. (16)], for three different values of the
regularization parameter ε = 0.01 (black curve), 0.1 (green
curve), and 1 (red curve), and also for the intermediate laser
intensity I0 = 2 × 1014 W/cm2. As apparent from the figure,
the stationary phase results strongly depend on the choice
of ε, in particular for the lower harmonics (up to roughly
the 29th harmonic) as well as for the very highest harmonics
beyond the 45th one. In the intermediate region, i.e., between
the 29th and 45th harmonics, the results turn out to be less
sensitive to the choice of regularization. As such, the validity
of the stationary phase approximation is severely limited to
harmonics in the immediate neighborhood of the cutoff. This
conclusion is perhaps not unexpected, considering the fact that
the integral in Eq. (16) is inherently divergent in the limit t ′ →
t , corresponding to infinitesimally short electron trajectories
and an associated low-order harmonic generation.

A common way to circumvent the problem of the diver-
gence in Eq. (16) in the limit ε → 0 is to apply the SPA
a second time, but now to the time integral instead, set ε

to zero, and then drop the stationary phase point at time
t ′ = t . Here we propose a somewhat different approach based

FIG. 5. (Color online) Upper panel: HHG spectrum, Irad(ω)
[Eq. (5)], plotted on a logarithmic scale, based on fully (numerically)
integrated SFA [Eq. (11)] (thin blue curve) at the peak laser intensity
2I0 compared with the SPSFA result [Eq. (16)] for three different
values of the regularization parameter: ε = 0.01 (black curve), 0.1
(green curve), and 1 (red curve). Lower panel: Same as upper panel,
but now a comparison with the modified SPSFA result obtained by
Eq. (17) for three different values of the constant N in the upper
integration limit: N = 3 (black curve), 4 (green curve), and 6 (red
curve).

on some known physical properties of the system. In the
limit t ′ → t , by definition, the electron only spends a short
time in the continuum, i.e., only a fraction of a field period,
before it recombines with the nucleus, and as such it does
not have time to gain much kinetic energy in the field. By
performing classical simulations and neglecting the effect of
the Coulomb potential on the motion of the electron, just
like in the SFA, one can explicitly show that trajectories
corresponding to the electron being accelerated for less than a
quarter of a field period before it recombines only contribute to
the generation of lower-order harmonics [34]. This means that
times such that t ∼ t ′ exclusively correspond to the emission
of low-order-harmonic radiation and that only the lower part
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of the spectrum is supposedly affected by the divergence
in the integral. Based on this observation, we suggest that
it might be advantageous to remove any contribution from
short trajectories in the integral Eq. (16). As such, the upper
limit in the integral is modified accordingly, so that only those
trajectories corresponding to the electron spending more than
some fraction of the laser period in the continuum before it
recombines are taken into account, i.e.,

〈�| p |�〉 = Re

{
−i

∫ t−T/N

−∞
eiEi (t−t ′) Rion(ks,t

′) Vrec(ks)

× e−iS(ks,t,t
′)
(

2π

i(t − t ′)

)3/2

dt ′
}

, (17)

where T is the period of the laser field and N is some positive
constant. With this modification the singularity in the SPSFA
model is removed and the value of the regularization parameter
ε can safely be set to zero. The clear advantage of this
alternative choice of regularization is that the integrand now
remains mathematically correct and the new regularization
parameter N has a clear intuitive interpretation related to the
minimum time interval between ionization and recombination.

The lower panel in Fig. 5 shows a comparison between
the exact SFA result (thin blue curve) and the result obtained
based on the modified SPSFA amplitude [Eq. (17)], for three
different choices of the upper integration limit, corresponding
to three different values of the constant N , i.e., N = 3 (black
curve), 4 (green curve), and 6 (red curve). Comparing the upper
and lower panels, it becomes clear that the spectra based on
the modified SPSFA are less sensitive to the choice of regular-
ization parameter (N ) as compared to the results obtained with
the standard regularization approach (ε) and that the modified
method compares better with the exact SFA. This improvement
applies to all harmonics in the spectrum. Furthermore, it is
found that the harmonics beyond the 19th one are essentially
unaltered by the three choices of the constant N . For the lower
harmonics discrepancies are displayed, which is expected
since contributions from short trajectories have been omitted.
One interesting finding is that, as a rule of thumb, the harmonic
signal tends to be higher when contributions from the short
trajectories are left out. The effect is especially pronounced
at the 15th harmonic, where the numerically integrated SFA
signal is clearly suppressed with respect to the others. This
means that the contributions from short and long trajectories in
effect interfere destructively in the lower part of the spectrum.
Inspecting the corresponding exact TDSE result (middle panel
in Fig. 3) a similar suppression is seen at the 15th harmonic.
As such, even the modified SPSFA method, which obviously
does not display the suppression at this particular harmonic,
should be used with care at the lower part of the spectrum.

Figure 6 shows a comparison of the high-harmonic spectra
as obtained by the modified SPSFA amplitude in Eq. (17)
and the exact (numerically integrated) SFA results, for the
three intensities I0 = 1, 2, and 3 × 1014 W/cm2. Only those
trajectories corresponding to the electron spending more than
a quarter of a period in the continuum before it recombines
are taken into account in the SPSFA amplitude, i.e., N = 4.
As it turns out, there is now a high degree of (qualitative)
agreement for all intensities and for all harmonics ranging from

FIG. 6. (Color online) HHG spectrum, Irad(ω) [Eq. (5)], plotted
on a logarithmic scale, from the modified SPSFA method [Eq. (17)],
using N = 4 as the regularization, compared with exact SFA results
(thin blue line) at three different peak laser intensities: I0 = 1 ×
1014 W/cm2 (top panel), 2I0 (middle panel), and 3I0 (lower panel).

the lowest (except possibly the first ones as well as the above-
mentioned 15th harmonic in the intermediate spectrum) to the
highest. Still, a more careful inspection of the lower-lying
harmonics (before the plateau region) reveals some deviation
on the absolute scale. It should here be noted that the SFA (even
beyond the SPA) in itself is questionable in the low-harmonic
limit, as the Coulomb potential can no longer be neglected and
excited bound states (that are not accounted for in the SFA)
become important in the HHG process. However, as far as the
higher-lying harmonics are concerned, i.e., harmonics located
from the start of the plateau region and beyond, the Coulomb
potential is assumed to play a less important role. The results in
Fig. 6 also clearly demonstrate that short trajectories associated
with the continuum electron being born and recombined during
less time than a quarter-cycle are of less importance in this
upper region.

IV. CONCLUDING REMARKS

In this work we have explored three sets of approximate
methods to calculate the harmonic generation from hydrogen.
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We have presented harmonic spectra obtained by applying
the SFA, the CVA, and the SFA with the SPA applied to the
momentum integrals. We expect that the obtained results are
general and valid for other atomic systems as well. In general,
all the approximate models studied here seem to capture
the overall shape of the high-harmonic spectrum as well as
giving a precise prediction of the cutoff position. However,
the approximate methods seem to underestimate the harmonic
yield and fail to describe detailed structures. It has also been
shown that the CVA in general performs better than the SFA
for intermediate and low laser intensities. Furthermore, we
have demonstrated that the SPSFA performs almost at random
regarding the strength of the lowest harmonics, while it is
rather parameter insensitive at the end of the harmonic plateau

region as well as in the cutoff. This indicates that studies of
structures in the harmonic spectra must be performed with
great care if the SPA is applied to the momentum integrals
of the SFA. However, by removing the contribution from
short electron trajectories (short times in the continuum) the
resultant modified SPSFA performs rather well, almost like
the fully integrated SFA.
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