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Quantum interference in time-delayed nonsequential double ionization
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We perform a systematic analysis of quantum interference in nonsequential double ionization focusing on the
recollision excitation with subsequent ionization (RESI) mechanism, employing the strong-field approximation
(SFA). We find that interference has a major influence on the shape, localization, and symmetry of the correlated
electron momentum distributions. In particular, the fourfold symmetry with regard to the parallel momentum
components observed in previous SFA studies is broken. Two types of interference are observed and thoroughly
analyzed, namely that caused by electron indistinguishability and intracycle events, and that stemming from
different excitation channels. We find that interference is most prominent around the diagonal and antidiagonal in
the parallel-momentum plane and provide fully analytical expressions for most interference patterns encountered.
We also show that this interference can be controlled by an appropriate choice of phase and excited-state geometry.
This leads a to myriad of shapes for the RESI distributions including correlated, anticorrelated, and ring shaped.
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I. INTRODUCTION

Quantum interference in strong-field phenomena has estab-
lished itself as a very powerful attosecond-imaging tool. Well-
known examples of interference are dynamic and structural
patterns in molecular high-order harmonic generation (HHG)
(for reviews see, e.g., [1] and our recent publication [2]), and
the fan-shaped structure in above-threshold ionization (ATI) of
rare-gas atoms [3–7]. The connection with imaging stems from
the physical mechanism behind these phenomena, namely the
laser-induced recollision or recombination of an electron with
its parent ion [8]. Recombination and elastic recollision lead
to HHG and high-order ATI, respectively. If the electron is
released in the continuum and reaches the detector without
further interaction, this will lead to direct ATI. Thus, HHG
and ATI transition amplitudes may be associated with electron
orbits and there will be many possible routes for the active
electron. Hence, quantum mechanically, they will interfere.

Strong-field nonsequential double ionization (NSDI) may
also be described as the recollision of an electron with its
parent ion. However, upon return the electron gives part of its
kinetic energy to the core. This leads to the release of a second
electron. Hence, a legitimate question is whether quantum
interference also influences NSDI. There are, however, re-
markably fewer studies of interference effects in this context,
even though NSDI has been investigated for over two decades.

This apparent lack of interest may be related to the
widespread belief that interference does not play a significant
role in NSDI. This may be attributed to the success of classical
NSDI models (for reviews see [9,10]), which have reproduced
key features in NDSI electron-momentum distributions and
have shown a very good agreement with experimental findings.
These include, for instance, the shapes and maxima of
the electron-momentum distributions, and even finer details
such as the v-shaped structure that is a fingerprint of the
long-range electron-electron interaction [11,12]. Furthermore,
several studies of quantum-classical correspondence in NSDI
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have suggested that interference will not survive integration
over momentum components perpendicular to the laser-field
polarization. This is the typical scenario in NSDI experiments.
Such conclusions have been inferred from the excellent
agreement between classical models and the full solution of the
time-dependent Schrödinger equation [13], or the strong-field
approximation (SFA) [14–16].

The above-stated studies, however, have focused on the
electron impact ionization mechanism, in which the first
electron, by recolliding with the core, immediately releases
a second electron. Another physical mechanism, which is less
studied, is recollision excitation with subsequent ionization
(RESI). In RESI the first electron does not provide the second
electron with enough energy to be released in the continuum.
Hence, it is excited to another bound state, from which it
subsequently leaves via tunneling ionization.

The prevalent view is that the above-mentioned time
delay leads to anticorrelated electron momentum distributions.
They would populate the second and fourth quadrant of the
plane spanned by the electron momentum components pn‖
(n = 1,2) parallel to the driving-field polarization. These
features have been identified in experiments performed in
the below-threshold intensity regime [17–21]. However, more
recent results strongly suggest that this interpretation is
oversimplified.

For instance, recent experiments of RESI of Ar with few-
cycle pulses have revealed cross-shaped distributions strongly
localized along the axes pn‖ = 0 [22]. Subsequent studies
by the same group have shown that if the pulse length is
increased, the distributions spread across the four quadrants
of the parallel momentum plane with a slight preference for
back-to-back emission [23]. This agrees with the findings in
[24] for NSDI in Xe, namely distributions equally occupying
all momentum quadrants that exhibited RESI characteristics.
Hence, it is plausible that in [18–21] the signal in the first and
third quadrant of the parallel momentum plane, which was
dismissed as electron-impact ionization, could in fact be RESI.

This affirmative is backed by theoretical findings using
methods as diverse as the SFA and related approaches
[25–27] and classical-trajectory [24,28–30] computations.
Although back-to-back emission was highlighted, in many
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classical-trajectory studies cross- or ring-shaped distributions
spreading across all quadrants have been identified [24,28–30].
This behavior has even been found for intensities far below the
threshold, for which electron-impact ionization can definitely
be ruled out [29]. In particular for semianalytical methods
such as the SFA [25,26,31] or the quantitative rescattering
theory [27], exclusively fourfold symmetric distributions were
identified for RESI. One should note, however, that in none
of the SFA computations has interference between different
events or excitation channels been incorporated. Recently,
however, SFA computations using interchannel interference
have shown that the fourfold symmetry can be broken [32].
Indeed, it has been argued that quantum interference is
paramount, and that it may lead to anticorrelated distributions.

Nonetheless, more systematic studies of quantum-
interference effects in RESI are missing. This interference may
occur (a) between events which are displaced by half a cycle
and those present due to the symmetry of indistinguishable
electrons, (b) between different channels of excitation for the
second electron, and (c) between different orbits along which
the first electron may return.

In this article we present a systematic analysis of the two
first types of interference, employing the SFA. The SFA, if
used in conjunction with the steepest descent method, provides
a very intuitive interpretation in terms of electron orbits, and
retains quantum interference and tunneling. This makes it an
ideal tool for analyzing different types of interference. The last
type of interference is incorporated in the model, but is washed
out when the perpendicular momentum components are
integrated over. This has been studied in previous publications
[25,33].

This work is organized as follows. In Sec. II we briefly
review the necessary background for understanding the subse-
quent results. These are provided in Secs. III–V. In Sec. III
we investigate symmetry-related interference and provide
expressions for the features encountered. Subsequently, in
Sec. IV we analyze how the geometry of the bound states
involved modifies this interference, and in Sec. V we study
how different excitation channels interfere and how this affects
the electron-momentum distributions. Finally, in Sec. VI we
provide an overall discussion and state our main conclusions.

II. BACKGROUND

A. Transition amplitude and saddle-point equations

Within the strong-field approximation and in atomic units,
the RESI transition amplitude reads

M(p1,p2) =
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫
d3k

×Vp2eVp1e,kgVkg exp[iS(p1,p2,k,t,t ′,t ′′)], (1)

where

S(p1,p2,k,t,t ′,t ′′)

= E1gt
′′ + E2gt

′ + E2e(t − t ′) −
∫ t ′

t ′′

[k + A(τ )]2

2
dτ

−
∫ ∞

t ′

[p1 + A(τ )]2

2
dτ −

∫ ∞

t

[p2 + A(τ )]2

2
dτ (2)

gives the semiclassical action, and the prefactors

Vkg = 〈k̃(t ′′)|V ∣∣ψ (g)
1

〉
= 1

(2π )3/2

∫
d3r1V (r1)e−ik̃(t ′′)·r1ψ

(g)
1 (r1), (3)

Vp1e,kg = 〈
p̃1(t ′),ψ (e)

2

∣∣V12

∣∣ k̃(t ′),ψ (g)
2

〉
= 1

(2π )3

∫∫
d3r2d

3r1 exp[−i(p1 − k) · r1]

× V12(r1,r2)
[
ψ

(e)
2 (r2)

]∗
ψ

(g)
2 (r2), (4)

and

Vp2e = 〈p̃2(t)|Vion

∣∣ψ (e)
2

〉
= 1

(2π )3/2

∫
d3r2Vion(r2)e−ip̃2(t)·r2ψ

(e)
2 (r2) (5)

incorporate all information about the interactions and elec-
tronic bound states. Specifically, Eqs. (3)–(5) are related to
the ionization of the first electron, the recollision of the
first electron with excitation of the second electron, and the
tunnel ionization of the second electron, respectively. Therein,
V (r1) and Vion(r2) denotes the binding potential “seen” by
the first and the second electron, respectively, and V12(r1,r2)
gives the electron-electron interaction. Furthermore, k̃(τ ) =
k + A(τ ) and p̃n(τ ) = pn + A(τ )(τ = t,t ′,t ′′) in the length
gauge, and k̃(τ ) = k and p̃n(τ ) = pn in the velocity gauge,
with n = 1,2. In our previous publication [25] we have verified
that, in practice, the results obtained in both gauges lead to
qualitatively similar results. Here we employ the latter gauge
in order to avoid bound-state singularities.

The transition amplitude (1) describes a process in which
the first electron, initially bound in the ground state |ψ (g)

1 〉,
is released at a time t ′′ into a continuum state, which is
approximated by the Volkov state |k̃(t ′′)〉. Subsequently, it
remains in the continuum from the time t ′′ to the time t ′ with
intermediate momentum k. At t ′ it returns to its parent ion
and interacts with a core electron via V12. This interaction
excites the second electron from the ground state |ψ (g)

2 〉 of
the singly ionized target to the state |ψ (e)

2 〉. The first electron
reaches the detector with final momentum p1 immediately after
rescattering. The second electron remains bound until a later
time t , when it is released by tunnel ionization into a Volkov
state |p̃2(t)〉. It reaches the detector with final momentum p2.
The ground-state energy of the neutral system is given by
E1g , and the energies of the ground and excited states of the
singly ionized target are E2g and E2e, respectively. For details
on how this transition amplitude is derived we refer to our
previous publication [26].

Throughout we employ the steepest descent method in order
to compute the transition amplitude (1). In this method we seek
variables t , t ′ t ′′, and k so that the action is stationary. This
leads to the saddle-point equations

[k + A(t ′′)]2 = −2E1g, (6)

k = − 1

t ′ − t ′′

∫ t ′

t ′′
dτA(τ ), (7)

[p1 + A(t ′)2] = [k + A(t ′)]2 − 2(E2g − E2e), (8)
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and

[p2 + A(t)]2 = −2E2e. (9)

Equations (6) and (9) give the energy conservation of the first
and second electron at the instant of tunnel ionization. For the
former, this occurs from the ground state at time t ′′, while the
latter tunnels from an excited state at a later time t . Neither
has a real solution, which reflects the fact that tunneling has
no classical counterpart. Equation (7) restricts the intermediate
momentum of the first electron so that it returns to the core,
which is assumed to be located at the origin. Finally, Eq. (8)
states that, upon return, the first electron gives part of its
kinetic energy upon return to “bridge” the gap E2g − E2e

and promotes the second electron to an excited state. We use
both the standard saddle point approximation and a uniform
asymptotic expansion whose only applicability requirement is
that the orbits occur in pairs. For details on these methods see
our previous work [34].

B. Momentum constraints

For simplicity we will consider a monochromatic field
throughout. Hence the vector potential reads

A(τ ) = 2
√

Up cos(ωτ )ê‖, (10)

where τ is a generic time that may be t,t ′, or t ′′, ω is the
driving-field frequency, and Up = I/(4ω2) is the ponderomo-
tive energy, which is proportional to the intensity I of the
driving field. This choice of field means that A(τ ± T/2) =
−A(τ ), where T = 2π/ω denotes the field cycle. Thus, events
whose times are displaced by half a cycle are related by
momentum inversion. Furthermore, since both electrons are
indistinguishable, one must also exchange p1 and p2 in Eq. (1)
and add the corresponding amplitudes.

The distributions will be located around (p1‖,p2‖) =
(±2

√
Up,0). This comes from the fact that the rescattering

of the first electron and ionization of the second electron occur
most probably near field crossings and crests, respectively.

Estimates for the regions in the parallel momentum plane
to be populated follow from the saddle-point equations. For
the first electron, Eq. (8) gives

±2
√

Up −
√

2�E � p1‖ � ±2
√

Up +
√

2�E, (11)

where �E = Ekin(t ′,t ′′) − Ẽexc yields the energy difference
between the kinetic energy Ekin(t ′,t ′′) of the first electron upon
return and the energy Ẽexc = E2g − E2e + p2

1⊥/2. The above-
stated inequality indicates that the region where rescattering
has a classical counterpart, which is largest if p1⊥ = 0. For the
second electron, one must bear in mind that Eq. (9) is formally
identical to that describing tunnel ionization in direct ATI. The
direct ATI cutoff energy is 2Up, so that

−2
√

Up � p2‖ � 2
√

Up. (12)

In this latter estimate we have considered p2⊥ = 0. Equa-
tions (11) and (12) give cross-shaped electron momentum
distributions strongly located around the axes of the p1‖p2‖
plane. Detailed explanations of these constraints have been
provided elsewhere [25,26,35].

FIG. 1. (Color online) Schematic representation of the momen-
tum regions occupied by the transition amplitudes Ml , Mu, Md , and
Mr , which are displayed as the rectangular patterned regions. The
overlap regions indicate areas within these constraints for which
quantum interference may occur. The intensity represented in the
figure is high enough to allow some interference at the origin
(p1‖,p2‖) = (0,0).

III. INTERFERENCE OF EVENTS

Here we will analyze interference between events displaced
by half a cycle and those present due to the particle exchange
symmetry of the system. This leads to four transition ampli-
tudes, M(p1,p2), M(p2,p1), M(−p1,−p2), and M(−p2,−p1),
which must be combined. Due to the localization of these
transition amplitudes near the negative p1‖ half axis, positive
p2‖ half axis, positive p1‖ and negative p2‖ half axis, i.e.,
occupying the left, upper, right, and lower regions in the
parallel momentum plane, we relabel them Ml , Mu, Mr , and
Md , respectively. A schematic representation of the momen-
tum regions occupied by the different transition amplitudes is
provided in Fig. 1.

Throughout this analysis we will compare coherent and in-
coherent sums of these amplitudes integrated over momentum
components perpendicular to the laser field, which are given by

W (c)(p1‖,p2‖) =
∫

d2 p1⊥d2 p2⊥|Ml + Mu + Mr + Md |2
(13)

and

W (i)(p1‖,p2‖) =
∫

d2 p1⊥d2 p2⊥

× (|Ml|2 + |Mu|2 + |Mr |2 + |Md |2), (14)

respectively.
Quantum interference occurs predominantly in the overlap

regions in Fig. 1. Apart from the region around (p1‖,p2‖) =
(0,0), in which, potentially, all amplitudes may interfere,
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FIG. 2. (Color online) Coherent and incoherent sums of all am-
plitudes integrated over the perpendicular momenta as given by
Eqs. (13) and (14). The columns from left to right show a coherent
sum of amplitudes [(a), (d), and (g)], an incoherent sum of amplitudes
[(b), (e), and (h)], and the difference between the two [(c), (f), and (i)].
The rows show different laser intensities of I = 2.28, 4.56, and 6.84
(×1013 W/cm2) from top to bottom with values for Up of 0.05, 0.1,
and 0.15 a.u. corresponding to an angular frequency ω = 0.057 a.u.
The RESI channel corresponds to a ground state valence orbital 3s

and an excited orbital 3p for the second electrons. The ionization
potentials of the ground state of the first and second electron and
the excited state of the second electron are I1g = 0.58, I2g = 1.02,
and I2e = 0.52 a.u., respectively. The diagonal and antidiagonals
p1‖ = ±p2‖ are indicated with the orange lines in the figure. The
signal in each panel has been normalized with regard to its maximum.

due to the constraints discussed in the previous section, we
expect that Ml and Mu will interfere predominantly in the
second quadrant and that Ml and Md will overlap in the third
quadrant of the p1‖p2‖ plane. Similarly, interference between
Mr and Mu is expected to occur in the first quadrant, and
interference between Mr and Ml will take place mostly in
the fourth quadrant. For simplicity, throughout this section
we will neglect the prefactors in Eqs. (13) and (14). This
will help us identify how the phases determined by the
corresponding actions interact without further momentum
bias. The prefactors will be reintroduced in Sec. V.

In Fig. 2 we display the coherent and incoherent sum
for three driving-field intensities. The figure shows that the
interference between different events survives the integration
over the transverse momentum coordinates, as there are
obvious differences between coherent and incoherent sums of
events. Clearer features can be outlined from the difference of
the two probability maps. There are maxima along the diagonal
and antidiagonal at all intensities and hyperbolic fringes whose
presence becomes more obvious as the intensity increases. For
higher intensities the patterns become more complicated.

These features can be explained by looking at the integrand
of the coherent sum, which can be rewritten in terms of the
actions Sl , Sr , Su, and Sd associated with the above-stated
amplitudes. A common factor can be taken out, leaving terms

that will contribute to the interference. Explicitly,

W (c)(p1‖,p2‖) =
∫

d4p⊥

∣∣∣∣
∫

d3t(eiSl + eiSr + eiSu + eiSd )

∣∣∣∣
2

=
∫

d4p⊥

∣∣∣∣
∫

d3teiSl (1 + eiαlr + eiαlu + eiαld )

∣∣∣∣
2

,

(15)

where the action Sl = S(p1,p2,k,t,t ′,t ′′) is associated with
the matrix element Ml = M(p1,p2), giving the left peak. The
integrals over time and momenta have been abbreviated as∫

d3t =
∫ ∞

−∞
dt

∫ t

−∞
dt

′
∫ t ′

−∞
dt

′′
(16)

and ∫
d4p⊥ =

∫∫
d2p1⊥d2p2⊥, (17)

and the phase differences between the actions read

αld = 1

2

(
p2

1 − p2
2

)
(t − t ′)

+ 2
√

Up

ω
(p1‖ − p2‖)[sin(ωt) − sin(ωt ′)], (18)

αlu = π

2ω

(
4Up + 2E2e + 2E1g + p2

1 + p2
2

)
+ 1

2

(
p2

1 − p2
2

)
(t − t ′)

− 2
√

Up

ω
(p1‖ + p2‖)[sin(ωt) − sin(ωt ′)], (19)

and

αlr = π

2ω

(
4Up + 2E2e + 2E1g + p2

1 + p2
2

)

− 4
√

Up

ω
[p1‖ sin(ωt ′) + p2‖ sin(ωt)]. (20)

In Eqs. (18)–(20) the general form αij has been adopted,
where the indices i,j refer to the interfering amplitudes.
Constructive interference requires that the integrand in Eq. (15)
is maximized, which will occur when αij = 0, or as small as
possible. We will start by investigating the “left-down” phase
difference (18), between the actions associated with the left
and lower peak. This phase vanishes for arbitrary times t,t ′ if
conditions

p2
1 − p2

2 = 0 (21)

and

p1‖ = p2‖ (22)

are satisfied.
Condition (21), if written as a function of the parallel and

perpendicular momentum components for p2
2⊥ − p2

1⊥ 
= 0,
give the hyperbolae

p2
1‖

p2
2⊥ − p2

1⊥
− p2

2‖
p2

2⊥ − p2
1⊥

= 1, (23)

whose asymptotes lie at the diagonal and antidiagonal p1‖ =
±p2‖ and whose vertices and transverse axis will depend
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FIG. 3. (Color online) Correlated electron-momentum distribu-
tions obtained by combining the transition amplitudes Ml and Md ,
isolating the effect of αld , integrated over the transverse-momentum
components. The left, middle, and right columns have been computed
for laser intensities of I = 2.28, 4.56, and 6.84 (×1013 W/cm2), with
values for Up of 0.05, 0.1, and 0.15 a.u., respectively. Panels (a),
(b) and (c) show the coherent sum �ud

coh = |Ml + Md |2, while in (d),
(e), and (f) the incoherent sum �ud

in = |Ml |2 + |Md |2 is displayed.
The intensities and ionization potentials are the same as in Fig. 2.
The diagonals p1‖ = p2‖ are indicated with the orange lines in the
figure. The signal in each panel has been normalized with regard to
its maximum.

on whether p2
2⊥ − p2

1⊥ are positive or negative. The former
and latter case will lead to hyperbolae with transverse axes
along p1‖ and p2‖, respectively. For equal transverse momenta,
instead, condition (21) will give p1‖ = ±p2‖, i.e., the diagonal
and the antidiagonal. In this case, the interference condition
is independent of the transverse momenta, so that they are
expected to survive when the integration over these variables
is performed. The hyperbolae, on the other hand, depend
on the transverse momentum coordinates, but may survive
integration. If this happens, however, integration may influence
their transverse axes, vertices, and foci.

The analysis performed above suggests that there will be
maxima along the diagonal and the antidiagonal, and that
there could be hyperbolic fringes in the coherent sum of
the two-electron transition amplitudes, in agreement with
Fig. 2. In Fig. 3 we have a closer look at this interference,
and plot a partial distribution in which only Ml and Md

are summed, coherently and incoherently (upper and lower
panels, respectively). The strongest feature in the figure
is the maximum along the diagonal, which comes from
condition (22) and also from the case p1⊥ = p2⊥ related to
the hyperbolic condition (21). Parallel to the diagonal, there
are also interference fringes, whose number increases with
the driving-field intensity. The interference maxima along the
antidiagonal cannot be seen as the partial sum employed in
the figure is vanishingly small in the second quadrant of the
parallel momentum plane.

An estimate for the position of the fringes can be obtained
by considering the coherent superposition of Ml and Md ,
and expanding the momenta in the vicinity of the diagonal,
i.e., p1‖ = p2‖ + δ. Fringes will occur for exp[iαld ] = ±1,
i.e., for αld = nπ , where even and odd n give maxima and
minima, respectively. Assuming small momenta pn(n = 1,2),
rescattering times at field crossings and ionization times at the

FIG. 4. (Color online) Absolute value of the difference between
the sums from the upper and lower panels in Fig. 3. (a) and (b), with
Up = 0.05 and Up = 0.1 a.u., respectively. The approximate fringes
given by Eq. (24) are marked by black lines. The panels have been
plotted in a logarithmic scale [log(|�ud

coh − �ud
in |)] and the signal in

each has been normalized with regard the maximum absolute value.

subsequent field crest [t ′ = nπ/ω and t = (2n + 1)π/(2ω)],
the fringe position can be approximated as

|δ| � ωnπ

2
√

Up

. (24)

The above-stated equation shows that the spacing between the
fringes is inversely proportional to the driving-field strength, in
agreement with what has been observed in the previous figures.

The interference patterns are highlighted in Fig. 4, where we
display the difference between the coherent and the incoherent
sum, for the two lower driving-field intensities in the previous
figure. Overall, for small momenta the fringe position exhibits
a very good agreement with Eq. (24). Furthermore, all panels
in the figure exhibit clear hyperbolic structures, whose number
increases with the driving-field intensity. One should note that
their transverse axis is not located along pn‖ = 0 (n = 1,2).
This displacement is probably related to the integration over
the transverse momenta, which influence the direction of the
hyperbolae. Furthermore, the last diagonal term will act to
shift the center of the hyperbola along the diagonal, which can
be observed by the fact the hyperbolae are opening, instead of
exhibiting asymptotic behavior towards the diagonals. As the
laser intensity increases the hyperbola should be shifted further
from (p1‖,p2‖) = (0,0) and the number of fringes increases,
as indicated by Eq. (24).

The remaining phase shifts αlr and αld will not vanish.
However, by an adequate choice of parameters one may
identify momentum regions in which they are smallest, which
will give rise to interference maxima. The exponent αlu, which
gives the interference between the left and the upper peaks,
behaves in a similar way as αld , with the main difference that
Eq. (19) shows an additional phase, with regard to Eq. (18)
giving the left-down phase difference. This phase depends on
p2

1 + p2
2 and has a constant factor. Furthermore, the last term in

Eq. (19) causes a strong enhancement along the antidiagonal.
The coherent and incoherent sums of Ml and Mu are pre-

sented in Fig. 5. The figure shows a very clear maximum along
the antidiagonal p1‖ = −p2‖, and interference fringes with a
richer substructure than the previous map. These effects are
caused by the additional phases mentioned above. An estimate
of the position of the fringes is not straightforward. However,
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FIG. 5. (Color online) Correlated electron-momentum distribu-
tions obtained by combining the transition amplitudes Ml and Mu,
isolating the effect of αlu, integrated over the transverse-momentum
components. The driving-field parameters and ionization potentials
are the same as in Fig. 3. We have also employed the same
normalization and labeling as in Fig. 3, with the coherent and
incoherent sums in the upper and lower panels, respectively. The
antidiagonals p1‖ = −p2‖ are indicated with the orange lines in the
figure.

we have verified that their spacing, for small momenta, is
approximately one fourth of that of the fringes along the
diagonal. It also decreases with driving-field intensity.

Finally, we display the partial sum between the left and
right amplitudes Mr and Ml (Fig. 5). In this case the
interference effects are minimal and only present close to
the origin (p1‖,p2‖) = (0,0). This is expected as according
to the constraints the overlap between both amplitudes is
vanishing in the other momentum regions. In the case of
αlr there is no obvious condition on the parallel momentum,
independent of time or the perpendicular components, other
than p1‖ and p2‖ being close or equal to zero. A time-dependent
condition can be extracted,

p2‖ = − sin(ωt ′)
sin(ωt)

p1‖. (25)

These trajectories will overlap for very low values of parallel
momenta. In this case, for the dominant trajectories t ′ is
near a crossing and t is near the next maximum [26]. These

FIG. 6. (Color online) Correlated electron-momentum distribu-
tions obtained by combining the transition amplitudes Ml and
Mr , isolating the effect of αlr and integrating over the transverse
momentum. The field parameters, ionization potentials, and plotting
style are the same as in Fig. 3.

trajectories are located close to the axis. Near a crossing
sin(ωt ′) � ωt ′ and near a maximum sin(ωt) � 1. This strongly
suggests that the slope in the overlap region will be constant
as the rescattering time will not vary substantially. This is
approximately the behavior observed in Fig. 6.

IV. THE EFFECT OF THE PREFACTORS

Additionally to the interference effects studied above,
the prefactors (4) and (5) will introduce a momentum bias,
which influences the shapes and, in principle, the quantum
interference between events or channels. In the specific
problem addressed in [32], the target chosen is argon, whose
first and second ionization potentials are E1g = 0.58 a.u.
and E2g = 1.02 a.u., respectively. For the parameter range
of interest, there exist six relevant excitation channels, which
are provided in Table I and involve excitations to states of very
different spatial geometry. Hence, they will give us a fairly
good idea about the role of the prefactors. Throughout we will
restrict our studies to m = 0, in order to facilitate a comparison
with the results in [32].

In Eqs. (26) and (27) we give the general expressions for
the excitation and ionization prefactors, respectively, assuming
that all bound-states involved are of the form ψnlm(r) =
Rnl(r)Ym

l (�), i.e., hydrogenic states. These prefactors have
been first derived in [25] in the context of a qualitative analysis,
so that only their functional form has been emphasized. In the
present work we go beyond those qualitative expressions and
include all normalization constants and phases, as they will be
necessary for computing coherent superpositions.

Vp1e,kg =
le+lg∑

L=|le−lg |

L∑
M=−L

(−i)LA1Y
M
L (θq,φq)

× (〈lg,le,0,0|L,0〉 〈lg,le,mg,−me|L,M〉√
(2L + 1)

Ir

Ir =
bng lg∑
kg=0

bnele∑
ke=0

(−1)kg+ke 2a1−1−2LξL−a1�
ng

lgkg
�

ng

leke
(a1)

kg!ke!
(
bnglg

)
!
(
bnele

)
!

(
3
2 + L

)

× d
ng

lgkg
d

ne

leke

∣∣∣∣qξ
∣∣∣∣
L

2F1

(
1

2
a1,

1

2
(a1 + 1);

3

2
+ L; −q2

ξ 2

)
,

(26)

TABLE I. Relevant excitation channels for Ar+, ordered ac-
cording to principal and orbital quantum numbers for the second
electron’s excited state. From left to right, the columns give the
number associated with the channel, the electronic configurations for
the sublevels involved in the excitation, and the absolute value E2e

of the excited-state energy, respectively. For clarity, the excitation
pathway for the second electron is given in brackets.

Channel Excited-state configuration E2e (a.u.)

1 3s3p6 (3s → 3p) 0.52
2 3p53d (3p → 3d) 0.41
3 3p54s (3p → 4s) 0.4
4 3p54p (3p → 4p) 0.31
5 3p54d (3p → 4d) 0.18
6 3p55s (3p → 5s) 0.19
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TABLE II. Number of radial nodes bnele = ne − le − 1 and the numerator polynomials (and their associated roots) that give rise to these
nodes. Note that p2

2 = p2
2‖ + p2

2⊥, so that the expressions in the third column describe circles in the p2‖p2⊥ plane.

Channel and State bnele Numerator Roots

1 3p 1 2E2e − p2
2 p2 = √

2E2e

2 3d 0 const. no roots

3 4s 3 8E3
2e − 28E2

2ep
2
2 + 14E2ep

4
2 − p6

2 p2 = √
2E2e, p2 =

√
(6 ± 4

√
2)E2e

4 4p 2 20E2
2e − 28E2ep

2
2 + 5p4

2 p2 =
√

2
5 (7 ± 2

√
6)E2e

5 4d 1 2E2e − p2
2 p2 = √

2E2e

6 5s 4 80E4
2e − 480E3

2ep
2
2 + 504E2

2ep
4
2 − 120E2ep

6
2 + 5p8

2 p2 =
√

(2 ± 4√
5
)E2e, p2 =

√
(10 ± 4

√
5)E2e

where

A1 = (−1)meCnglgCnele

V12(q)√
2π

√
(2lg + 1)(2le + 1),

Cnl =
√

(n − l − 1)!

2n(n + l)!
, �n

lk = (
√

2En)
3
2 +l+k,

dn
lk = (n + l)!

(2l + k + 1)!
, ξ =

√
2Eng

+ √
2Ene

,

a1 = 3 + kg + ke + lg + le + L, bnl = n − l − 1.

Now here is the expression for Vp2e again with all normaliza-
tion constants and phases:

Vp2,e = A2

bnele∑
k=0

(−1)k
2k

(√
2Ene

)− 1
2 −le

p
le
2(

bnele − k
)
!k!

d
ne

lek

× (a2)


(

3
2 + le

) 2F1

(
1

2
a2,

1

2
(a2 + 1);

3

2
+ le; − p2

2

2Ene

)
,

where

A2 = 2(−i)leCneleY
me

le

(
θp2 ,φp2

)
,

a2 = 2 + k + 2le. (27)

The above-stated prefactors have radial and angular nodes.
For the first electron, Eq. (26) depends on the intermediate
momentum k(t ′′,t ′), which will vary with regard to p1. This
will lead to these nodes being washed out to a great extent.
We have verified that this happens even if the integration
over p1⊥ is not performed. In general, transverse momentum
integration will cause further blurring. Mostly, the prefactor
Vp1e,kg will cause a shift in the peaks of the electron momentum
distribution from p1‖ = ±2

√
Up and alter their width.

The effects caused by the prefactor Vp2e are much more
dramatic. This has been observed in our previous publications
[25,31] for atoms and molecules, but has not been investigated
systematically. Similarly to what is observed for hydrogenic
wave functions, the number of radial nodes is given by ne −
le − 1, and angular nodes by le. This is because, formally, the
prefactor is the Fourier transform of a hydrogenic excited state
ψneleme

(r2) modified by the interaction Vion(r2) = 1/r2. Since
Vion and exp(ip2) · r2 have no nodes, the number of nodes will
be preserved but their energy positions will be different, if
compared to the momentum-space wave function ψneleme

(p2).

Their number and position with regard to the momentum p2 =√
p2

2‖ + p2
2⊥ are given in Table II.

According to Table II, the radial nodes will manifest
themselves as circles in the p2‖p2⊥ plane. They are clearly seen
if we fix the momentum of the first electron at (p1‖,p1⊥) =
(2

√
Up,0) and plot the probability distribution as a function

of the momentum components p2‖ and p2⊥ of the second
electron. This procedure is similar to the computation of partial
momentum maps employed in our previous publications
[33,35], and provide a wealth of detail which is lost if the
transverse momentum integration is performed.

Figure 7 displays these distributions for the six channels
in Table I. The panel labels each correspond to the channel
number, which is detailed in Table I. The circle p2

2‖ +
p2

2⊥ = 4Up indicates the direct ATI cutoff, according to the
condition (12). Changes in the shapes of the distributions will
be caused by nodes within this region. The radial nodes will

FIG. 7. (Color online) Cross section of the total probability dis-
tribution with p1 fixed at (p1‖,p1⊥) = (2

√
Up,0), which gives an

effective partial probability distribution over p2. The ponderomotive
energy is given by Up = 0.1 a.u. (I = 4.56 × 1013 W/cm2). A
logarithmic scale has been used to highlight the orbital-geometrical
features. The radial and angular nodes resulting from the second
ionization prefactor are marked by green circles and orange lines,
respectively. The direct ATI cutoff p2

2‖ + p2
2⊥ = 4Up is marked with

a dashed circle. Beyond this point the probability distribution decays
exponentially. Phases for each prefactor are indicated by + and −
signs, with a change in sign indicating a flip. The signal in each panel
has been normalized with regard to its maximum value.
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FIG. 8. (Color online) Full probability distribution with both
prefactors included, whereby an incoherent sum of events has been
used. The panels are marked with the channel number and excitation
state (top left and right corners, respectively). Red lines have been
used to show the splitting caused by angular nodes and green circles
mark the secondary peaks due to radial nodes. The ponderomotive
energy is given by Up = 0.1 a.u. (I = 4.56 × 1013 W/cm2). The yield
in channel four has been overexposed in order to show the secondary
nodes.

then be particularly important for highly excited states, as
in this case E2e is small. Physically this is related to the
fact that localization in momentum space corresponds to a
position-space spread. The smaller the binding energy, the
more delocalized ψneleme

(r2) will be.
The effect of the radial nodes can be seen by comparing

channels 3 and 6, which involve s states. For channel 3 there is
only one radial node in the momentum region of interest, while
for channel 6 the two existing nodes influence the electron
momentum distributions. This will lead to an overall narrowing
in momentum space. In the remaining channels, additionally
to this effect, there are also angular nodes, which behave in
very distinct ways. For le = 1 (channels 1 and 4) they lead to
a strong suppression in the electron-momentum distributions
for p2‖ = 0. Since these nodes occur for all p2⊥, they will
survive the transverse-momentum integration. This will cause
the correlated two-electron distributions to move away from
the axes. For d states there are x-shaped nodes which intersect
at (p2‖,p2⊥) = (0,0). We have verified that these nodes will
also survive the integration over the transverse momentum
components, but will lead to a secondary, much weaker
maximum at the axes instead of a complete suppression.

In Fig. 8 we plot the incoherently symmetrized, correlated
distributions, for the same channels as in Fig. 7. The figure in
fact shows an overwhelming influence of the prefactor Vp2e.
Angular nodes in p2‖ are clearly visible as cuts marked by
orange lines and radial nodes can be seen by small secondary
peaks marked by green circles. Only for very loosely bound
states does the excitation prefactor lead to some substructure
(see channel 4), although it is an order of magnitude below
the main peak. This figure establishes which substructure
comes from the prefactors themselves, so that they cannot
be attributed to the interference between different events.

If a coherent sum is considered upon symmetrization, Fig. 9,
the same diagonal fringes can be seen as in Fig. 2. Given

FIG. 9. (Color online) Full probability distribution with both
prefactors included, for identical parameters as in Fig. 8, except that
a coherent sum of events has been used. The same panel labels are
used as in Fig. 8. The signal in each panel has been normalized with
regard to its maximum value.

interference only occurs along the diagonals, localization for
s states by the two prefactors, which narrows the distribution
width and pushes the peak away from the origin, cause the
diagonal and central region to be minimally occupied. Hence,
little interference occurs for s states. For p and d states there
is a lot of interference as the effect of the angular nodes is
to split the distribution apart, widening it, causing much of
it to be along the diagonal. The actual type of interference
is unchanged from Fig. 2. We verified this by looking at the
phase information from the prefactor. For the second ionization
prefactor, looking at the phase plotted over p2, the nodes
represent a phase shift of π . If this is applied to the partial
momentum distribution there is little change in the resulting
phase map and the effect of this after integration over p⊥ will
be lost entirely. Hence the prefactors affect the interference
only by localization and all the effects derived, discussed
earlier, are still valid.

V. INTERFERENCE OF CHANNELS

We will now study the quantum interference between
the different excitation channels in Table I. A uniform
superposition of channels is used, which can be justified if
one views each channel as a path the second electron can take
from its ground state to the final Volkov state. Hence, the final
transition amplitude should sum over the possible channels,
leading to |∑c Mc|2, where Mc is the transition amplitude
calculated for each channel.

In Fig. 10 we plot the full sum of channels 1 to 6,
using different combinations of coherent and incoherent
superpositions for events and channels. The figure shows that a
fourfold momentum symmetry only occurs if the channels and
events are summed incoherently [Fig. 10(a)]. Once quantum
interference is introduced, only the reflection symmetry with
regard to the diagonal or antidiagonal remains, as shown in
Figs. 10(b) to 10(d). In this case the features along the diagonal
and the antidiagonal differ. However, only channel interference
[Fig. 10(c)] exhibits a diagonal enhancement. The antidiagonal
fringes only come from event interference [see Fig. 10(b)]. The
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FIG. 10. (Color online) Full coherent and incoherent superposi-
tions of all channels in Table I, for the same field parameters as in
Fig. 8. Panel (a) shows an incoherent sum of all the channels and
their events, (b) an incoherent sum of channels with a coherent sum
of event, (c) a coherent sum of channels with an incoherent sum of
events, and (d) a coherent sum of channels and events. The symbols i
and c in the bottom right corners denote incoherent and coherent sums
for event and channel, respectively, with event preceding channel. All
panels use the same arbitrary scale.

diagonal enhancement and breaking of symmetry in Fig. 10(c)
is consistent with what was found in [32].

A legitimate question is whether one may identify dominant
channels and/or features related to the channel type in the su-
perpositions presented above. The shapes of the superpositions
in Fig. 10 suggest that excitations involving p and d states pre-
vail. Table III shows the mean values of the correlated electron
momentum distributions for each channel, which are compara-
ble. Since one channel does not dominate significantly over the
rest, interference is expected to be important. This is contrary to
the results in [32], where channels 1–3 were found to dominate.

More insight is obtained by considering superpositions
of two channels, which may be incoherent or coherent. The
former and the latter case are given by

�in(p1‖,p2‖) = ||M1||2 + ||M2||2 (28)

and

�coh(p1‖,p2‖) = ||M1 + eiφM2||2, (29)

TABLE III. Mean values of the two electron parallel momentum
probability distribution of each channel for different laser intensities,
within the parameter range of interest. These distributions have been
computed for a monochromatic field.

Up = 0.05 Up = 0.1 Up = 0.15

1 3.49 × 10−28 5 2.95 × 10−22 5 4.67 × 10−19

4 2.02 × 10−28 4 1.31 × 10−22 4 1.02 × 10−19

5 1.54 × 10−28 1 9.91 × 10−23 2 5.43 × 10−20

2 1.01 × 10−28 2 7.62 × 10−23 1 3.26 × 10−20

3 7.78 × 10−29 3 4.94 × 10−23 3 2.52 × 10−20

6 6.17 × 10−30 6 1.21 × 10−23 6 1.94 × 10−20

FIG. 11. (Color online) Channel sum 1 and 4 without prefactors.
Panel (a) shows an incoherent sum of channel and a coherent sum
of events, (b) a coherent sum of channels and events, and (c) is
the difference between the two. The driving-field parameters are the
same in Fig. 8. The signal in each panel has been normalized to its
maximum value.

respectively. In the coherent sum (29) we have included a phase
φ that can be used to manipulate interference effects such as
diagonal or antidiagonal enhancement.

Without the effect of prefactors there is little qualitative
difference between the possible channel sums, given that the
actions only differ by the term E2gt [see Figs. 11(a) and
11(b)]. Nonetheless, in the difference between the coherent
and incoherent sums we can see hyperbolic fringes [Fig. 11(c)].
We have verified empirically that the position of the fringes is
determined by the value of the phase φ and the thickness of the
fringes is inversely related to E2e1 − E2e2 . Due to their location
in the p1‖p2‖ plane, the most significant interfering terms will
be equivalent events between channels, e.g., M1l and M2l , but
the terms related by particle exchange such as M1l and M2d will
also be important. The prefactors add a momentum-dependent
phase difference between the two channels. In the case of
the second ionization prefactor, which mainly determines the
interference effects, the phase is constant but inverts when a
nodal line is crossed. The other prefactors depend on k, which
has a complex phase relation determined by the saddle point
equations.

Figure 12 shows a selection of particular interference
phenomena occurring in two-channel sums. In Fig. 12(a) the

FIG. 12. (Color online) Two-channel sums with prefactors, for
the same driving-field parameters in Fig. 8. The numbers at the top
right in each panel labels the excited states used in the superposition,
with the phase difference given in the bottom left. The signal in each
panel has been normalized to its maximum value.
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FIG. 13. (Color online) Same two-channel sums as Fig. 12, ex-
cept that the events have been summed incoherently. For clarity, the
prefactor phase information has been marked on (e) in white. This
information can be related to panels 2 and 4 in Fig. 7. The green
dotted lines mark nodal lines. The same logic can be applied to (f),
with the difference that the 4s state does not have angular nodes.

recollision and second ionization prefactor both cause phase
inversion, which overall cancels. The diagonal enhancement
comes from the fringes related to channel interference shifted
by a phase of −i, whereas i would cause an antidiagonal
enhancement. For Fig. 12(b) the total effect of the prefactors
is to cause an inversion in the channel-interference fringes.
This leads to a suppressed signal along the diagonal. However,
the effect is not as strong as the fringes are distorted by Vp2e.
In both Figs. 12(a) and 12(b) the thickness of the channel-
interference fringes are comparable to those associated with
the “left-down” interference. There are no significant diagonal
effects in Fig. 12(c) as both distributions are concentrated near
the axes pn‖ = 0 (n = 1,2). This happens because, for the two
interfering channels, the second electron is excited to an s

state. However, there are some interference effects breaking
the fourfold momentum symmetry.

The remaining panels show some implications of channel
interference involving energetically very close and distant
excited states. For the interference of channels 1 and 5,
shown in Fig. 12(d), there is a large difference in the
excited-state energies. This causes small interchannel fringes,
so that suppression along the diagonal or antidiagonal is not
possible. In contrast, for Fig. 12(e) the excited bound states are
energetically very close. This implies that fringes stemming
from channel interference are too thick to cause a diagonal
or antidiagonal suppression. However, the prefactor does this
instead (see below). For Fig. 12(f) the channel-related fringes
are even thicker, so that the substructure is determined by the
event interference and the prefactors.

Figure 13 shows the same coherent sums of channels as
in Fig. 12, but, instead, incoherent sums of events. All the
diagonal and antidiagonal effects remain and are in general
stronger without the phase information and fringes from
different events. The influence of the combined prefactors
can also be seen more clearly. For instance, in Figs. 13(a) to
13(c) the features related to p, d, and s states are very evident,
with a further bias introduced by the interchannel interference.

These features are (a) probability densities concentrated at the
diagonal and antidiagonal; (b) similar probability distributions
as in (a), but with secondary maxima at the axes; and (c)
distributions concentrated mostly at the axes, respectively. This
happens because the angular momentum quantum number le of
the excited states are the same for the two interfering channels.

The situation becomes more complex in the lower panels, in
which channels with different angular momenta le are mixed.
In this case, we have identified two very striking scenarios,
which occur for energetically close levels [Figs. 13(e) and
13(f)]. Because the interchannel fringes are very thick in these
cases, the shape of the electron-momentum distributions will
be mainly determined by the prefactors and their phases. For
instance, the clear diagonal suppression for Fig. 13(e) can
be explained by the phase of the second ionization prefactors,
which flips at every nodal line. The interfering channels involve
excitation to 3d and 4p. For a p state there is one node at
p2‖ = 0, while for a d state there are two. This means that,
from the top to the bottom of the panel, the phase of the p state
will flip once, while that of the d state will flip twice. Hence,
in the second quadrant the channels interfere constructively,
while in the third quadrant destructive interference occurs.
The same line of argument can be employed for the first
and fourth quadrant, but in this case the interference pattern
will be reversed. This shows a case where we have entirely
prefactor dependent antidiagonal enhancement. In Fig. 13(f)
the phase of the 4s prefactor will not flip in the momentum
region of interest, while that of the 3d prefactor will flip twice.
Hence, this will preserve the fourfold symmetry. Furthermore,
interference between the channels will not be significant,
as d states populate mainly the two diagonals and s states
lead to distribution localized along the axes. This leads to
a momentum distribution with peaks at the axes and the
two diagonals. This distribution is, for practical purposes,
fourfold symmetric, unless event interference is considered
[see Fig. 12(f)].

To summarize the interchannel fringes, prefactors and a
relative phase can cause a range of interference effects. The
prefactors can cause an inversion, which leads to diagonal
and antidiagonal enhancement being swapped. They can also
apply a phase shift, such that a different phase between the two
channels is needed for diagonal and antidiagonal enhancement.
Interchannel interference effects are not washed out by more
complex superpositions, as can be seen by directly comparing
Figs. 10(a) and 10(c).

VI. DISCUSSION AND CONCLUSIONS

In this work we have performed an in-depth, semianalytical
study of quantum interference in recollision excitation with
subsequent ionization (RESI) using the strong-field approxi-
mation (SFA). Our analysis includes interference of symmetry-
related features such as electron indistinguishability, and of
different excitation channels. Overall, we have found that
the electron momentum distributions are greatly influenced
by both types of interference. The main effect of quantum
interference is to break their fourfold symmetry in the p1‖p2‖
plane, while the symmetry with regard to the diagonals is
retained. This fourfold symmetry has been encountered in
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previous RESI studies employing the strong-field approxima-
tion [25,26,31] or related methods [27].

We have shown, by considering a coherent sum of
symmetry-related events, that interference effects previously
thought to be washed out from integration over perpendicular
momenta are present in the correlated electron-momentum
distributions. These effects affect the RESI distributions
already for a single channel of excitation, via enhancement and
suppression near the diagonals p1‖ = ±p2‖. We provide fully
analytical expressions and estimates for diagonal, antidiago-
nal, and hyperbolic interference patterns. Similar fringes can
be seen, but have not been explained, in [36], in which RESI has
been modeled using a strong-field quantum-electrodynamical
method (see Fig. 7 therein).

We have also found that interchannel interference will play
an important role in RESI, in agreement with the results of
[32]. We go, however, beyond such studies and show that
the shape of the electron-momentum distributions will be
determined by a complex interplay of interchannel and event
interference, and the geometry of the excited bound states.
This will mainly occur near the diagonal and antidiagonal in
the parallel-momentum plane. This means that it will mainly
affect channels involving excitation to p or d states, while
the influence on those with s-state excitation will be much
less critical. In particular, for the parameter range of interest,
the contributions from all channels used in this work are
comparable.

We also analyze this interference in more detail using
two-channel coherent superpositions. In this case, diagonal
or antidiagonal enhancement may occur due to interchannel
fringes and/or geometry-dependent prefactors. The fringes
have hyperbolic shape, and their width is inversely propor-
tional to the energy difference between the two channels in-
volved. The prefactors will determine the region in momentum
space to be occupied. In particular the nodes of the ionization
prefactor Vp2e of the second electron will cause phase shifts,
which will influence interchannel interference in specific
momentum ranges. This enhancement can be manipulated
using a relative phase. In this context, one should notice
that by appropriate choice of channels and relative phase one
may obtain anticorrelated distributions without resorting to
bound-state depletion. This latter feature has been employed
in [32] in order to suppress the signal in the first and third
quadrants of the parallel-momentum plane.

Interestingly, depending on how interference occurs, the
RESI distributions may exhibit diagonal enhancement (cor-
relation), antidiagonal enhancement (anticorrelation), or be
spread in the four quadrants of the p1‖p2‖ plane. In contrast, for
electron-impact ionization, the probability density is located
only in the first and third quadrants and interference effects
get washed out by transverse momentum integration. This
sheds some light on experimental findings where different
atoms give either diagonal or antidiagonal enhancement [21].

Diagonal enhancement is normally attributed to electron-
impact ionization. However, for low, below-threshold inten-
sities, this could also be related to RESI. Indeed, all possible
results found experimentally [18,20,21] are achievable if we
can find the correct superposition of channels. Furthermore,
there exist theoretical studies for which anticorrelation has
been obtained without excitation [37]. This suggests that the
ability to manipulate diagonal and antidiagonal enhancement
with a phase opens up the possibility of control over the RESI
process, which could lead to various applications.

Finally, we would like to comment on quantum-classical
correspondence in RESI. There has been considerable debate
in the literature whether NSDI in general and RESI in
particular is a classical or quantum mechanical phenomenon.
On the one hand, our results show that quantum interference
has a striking influence on the shapes and localization of the
electron-momentum distributions. Hence, classic-trajectory
methods must be viewed with care. On the other hand, highly
excited states may give rise to a quasicontinuum, which would
allow the existence of a quasiclassical wave packet. This would
justify the success of classical models. For molecules, a larger
density of states and enhanced ionization may increase their
predictive power [28,38,39].

Furthermore, the SFA considers discrete states and neglects
broadening and distortion caused by the field. It could well
be that these effects lead to a strong overlap and thus the
creation of a quasicontinuum, washing out phase information.
However, recent studies of the RESI dynamics in phase space
have revealed a highly confined region that can be associated
with trapping in an excited state [40]. This would justify using
discrete bound states and neglecting depletion, and would
render interference important. Another feature which has not
been included is the influence of the Coulomb potential, which
changes the topology of the electron trajectories [41,42]. For a
detailed discussion on the advantages and drawbacks of clas-
sical and quantum-mechanical approaches in the modeling of
RESI see our review article [9]. The present work contributes
to this discussion by shedding additional light on the role of
interference in this context.
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