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Instanton theory for bosons in a disordered speckle potential
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We study the tail of the spectrum for noninteracting bosons in a blue-detuned random speckle potential.
Using an instanton approach, we derive the asymptotic behavior of the density of states in d dimensions. The
leading corrections resulting from fluctuations around the saddle-point solution are obtained by means of the
Gel’fand-Yaglom method generalized to functional determinants with zero modes. We find a good agreement
with the results of numerical simulations in one dimension. The effect of weak repulsive interactions in the
Lifshitz tail is also discussed.
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I. INTRODUCTION

The effect of disorder on quantum systems has attracted
considerable interest in condensed-matter physics during
the last several decades. In recent years, it was realized
that ultracold atomic gases in optical speckle potentials
may serve as quantum simulators for diverse phenomena
in disordered quantum systems [1–3]. Contrary to the ex-
periments in condensed-matter physics, the optical speckles
allow one to create a controllable random potential acting
on ultracold atoms [3,4]. Many interesting features of Bose-
Einstein condensates (BECs) in disordered speckle potentials
have been addressed from both the experimental and the
theoretical sides [5–9]. These include inhibition of transport
properties [6,7,10], fragmentation effects [5,11,12], frequency
shifts [5,13], damping of collective excitations [5,12,13], and
Anderson localization [14–24]. Also, the superfluid-insulator
transition [25–34] and the transport of coherent matter waves
have been recently investigated from the theoretical point of
view for speckles in higher dimensions [35–40].

When a coherent laser light is scattered from a rough
surface the partial waves passing through the different parts
of the surface acquire random phase shifts. The interference
of these randomly phased waves produces a speckle pattern
which consists of the regions or grains of light intensity with
random magnitude, size, and position. The local intensity of
the speckles, I (x) = |E(x)|2, is determined by the electric
field E(x). To a very good approximation, the electric field
E(x) can be viewed as a complex Gaussian variable with finite
correlation length ξ giving the typical size of the light intensity
grains in the speckle pattern. The distribution of intensity I (x)
across the speckle pattern follows a negative-exponential (or
Rayleigh) law [13,41],

P [I ] = exp [−I/I0]/I0, (1)

where I0 = 〈I 〉 is the mean intensity, while the most probable
intensity is zero. The speckle pattern shined on a sample of
atoms creates a random potential felt by the atoms provided
that the wavelength of the laser light is slightly detuned from
the atomic resonance. The potential is proportional to the local
light intensity, V (x) = αI (x), so that the noninteracting atoms
in the speckle potential can be described by the Schrödinger

equation [
− �

2

2m0
∇2 + αI (x)

]
ψ(x) = Eψ(x), (2)

where m0 is the mass of atoms and ψ(x) is the single-particle
wave function. The constant α is proportional to the inverse of
the detuning � between the laser and the atomic resonance.
The detuning can be either positive (blue detuning) or negative
(red detuning) [38]. The blue-detuned case corresponds to a
disordered potential consisting of a series of barriers bounded
from below. The red-detuned speckle produces a potential
bounded from above and made of potential wells.

The precise single-particle spectrum of the speckle potential
is unknown even in the one-dimensional (1D) case despite the
intense research activity in this field. It is widely believed
that the density of states (DOS) of blue-detuned repulsive
speckles is characterized by a usual Lifshitz tail for potentials
bounded from below [42]. However, many exact results known
for 1D random potentials [42,43] cannot be directly applied to
the speckle potential since it is correlated and non-Gaussian.
In the previous paper [44] we investigated analytically and
numerically the 1D single-particle spectrum for the both
red-detuned and blue-detuned speckle potentials. Since the
speckle pattern is characterized, besides the mean intensity
I0, by the correlation length ξ , this introduces a new energy
scale Eξ = �

2/2m0ξ
2. We have shown that for dimensional

reasons, the single-particle properties are determined by the
dimensionless parameter s = 2m0ξ

2αI0/�
2 for the both red-

and blue-detuned speckle potentials. We identified different
Lifshitz regimes controlled by the dimensionless parameter s,
which vary from the semiclassical limit |s| � 1 deep to the
quantum limit |s| � 1 [44].

In the present paper we improve our results for the blue-
detuned speckle in 1D and extend them to higher dimensions.
We apply the field-theoretic description developed by Luck
and Nieuwenhuizen [45] for studying the Lifshitz tails in the
random potentials bounded from below. We generalize this
approach to the blue-detuned speckle potential which is not
only bounded from below but also has a finite correlation
length. We argue that well below the corresponding energy
scale Eξ the Lifshitz tail does not depend on the precise form
of the electric field correlations since the DOS is determined
by the states localized in the regions with very small intensity
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whose size is much larger than ξ . In this regime the instanton
approach proposed in Ref. [45] for the potential bounded from
below predicts a form of the DOS tail,

ν(E) = Ad (E) exp {−vdFd [ln (I0/E)](Eξ/E)d/2}, (3)

where vd is a constant which depends on the dimension and
Fd and Ad are some functions of the energy.

The paper is organized as follows. In Sec. II we derive
the replicated action for a particle in a blue-detuned speckle
potential. The saddle-point solution of the classical equation in
d dimensions is discussed in Sec. III, where the expressions for
vd and Fd are calculated. The fluctuations around the instanton
solution are investigated in Sec. IV. There, the prefactor Ad

is calculated using the Gel’fand-Yaglom (GY) method [46,47]
generalized by Tarlie and McKane (TM) [48] to functional
determinants with excluded zero modes. In order to illustrate
the power of this method, in Appendix C we reconsider the
problem of a particle in Gaussian uncorrelated disorder for
which there are some discrepancies in the existing literature.
In Sec. V we consider a weakly interacting Bose gas in a
speckle potential. The obtained results are summarized in the
Conclusion.

II. AVERAGING OVER DISORDER: REPLICATED ACTION

The DOS for a particle in a particular realization of the
electric field E(x) can be related to the imaginary part of the
one-particle Green’s function

ν(E) = − 1

π
Im G(x,x; E). (4)

To average over different realizations of disorder potential, we
employ the replica trick [49]. We introduce N replicas of the
original system and use the functional integral representation

G(x,x ′; E) = lim
N→0

∫
Dφφ1(x)φ1(x ′)e−S[φ̄], (5)

with the action

S[φ̄] = 1

2

∫
ddx

{
�

2

2m0
[∇φ̄(x)]2 + [V (x) − E]φ̄ 2(x)

}
, (6)

where φ̄(x) is an N -component scalar field. The disorder
potential is proportional to the local intensity of the speckles
pattern created by a laser, V (x) = αE∗(x)E(x), where E(x)
is the electric field and we fix α = +1 in the case of a
blue-detuned speckle. To a very good approximation, the
electric field is a random complex Gaussian field with zero
mean and variance,

〈E∗(x)E(y)〉 = G(x − y), (7)

where the function G(x − y) has the width of ξ and its precise
form depends on the experimental setup [18,36]. Then the
average of the disorder potential can be expressed as an
exponential of the sum of loop diagrams:

exp − ddx E∗(x)E(x)φ̄2(x)

= exp − 1
1!

+
1
2!

− 1
3!

+ ... .

[ [

(8)

In Eq. (8) the lines stand for the correlator (7) and thus have
two distinct ends corresponding to E∗ and E . Two lines can be
connected only by ends of different types and the correspond-
ing vertex carries a factor of 1

2 φ̄2(x) = 1
2

∑N
n=1 φ2

n(x). The
loop diagram with j vertices in Eq. (8) has the combinatorial
factor of (j − 1)!, which gives the number of possibilities to
construct a loop from j lines with distinct ends. Summing up
the all diagrams for an arbitrary function G(x) and field φ̄(x) is
a formidable task. However, there are several cases when one
can solve this problem at least partially. For a special class of
correlation functions G(x) which are solutions to a Poisson-
like equation (A4) the sum of the diagrams can be rewritten as
a ratio of functional determinants (see Appendix A). The sum-
mation of the diagrams can be also performed within a vari-
ational method with Gaussian correlators and trial functions
(see Appendix B). These approximations can be used to show
that the low-energy tail of the DOS does not depend on the
precise form of the electric field correlator for E � Eξ and it is
completely determined by Eξ and I0. This is in contrast to the
Gaussian unbounded potential [49], where the presence of cor-
relations changes the low-energy Lifshitz tail of the DOS [50].
For E � Eξ we can approximate the electric field correlator by

G(x − y) = I0ξ
dδd

ξ (x − y),

where we have defined the regularized δ function of width ξ

such that

lim
ξ→0

δd
ξ (x − y) = δd (x − y) and δd

ξ (0) = 1

ξd
.

As a result, the loop diagram with j insertions of φ̄2(x) can
be expressed as

(−1)j

j !

2
2

2

2

2
2

=
∫

ddx

ξd

(−1)j

j2j
(I0ξ

d )j φ̄2j (x). (9)

By using the relation

∞∑
j=1

(−1)j

j2j
(I0ξ

d )j φ̄2j (x) = − ln

[
1 + 1

2
(I0ξ

d )φ̄2(x)

]
,

we can sum up all the diagrams. The averaged replicated
action then reads

Sav =
∫

ddx

{
�

2

4m0
[∇φ̄(x)]2 − 1

2
Eφ̄2(x)

+ 1

ξd
ln

[
1 + 1

2
(I0ξ

d )φ̄2(x)

]}
. (10)

III. SADDLE-POINT SOLUTION

The field theory (10) has a trivial vacuum state φ̄ = 0.
However, a perturbative expansion around it does not
contribute to the DOS at any finite order since the Green’s
function remains real in this approximation. Following
Ref. [45,49] we assume that the functional integral (5) is
dominated by a spherically symmetric saddle-point field
configuration. The integration over fluctuations around this
instanton solution brings a finite imaginary part to the Green’s
function G, leading to a finite DOS.
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It is convenient to express the action (10) in terms of the
rescaled quantities φ̄(x) = √

2 ¯̃φ(x/ξ )/
√

Eξξd , x̃ = x/ξ , and
Ẽ = E/Eξ . By omitting the tildes on φ̄ and x we arrive at

Sav =
∫

ddx{[∇xφ̄(x)]2 − Ẽφ̄2(x) + ln[1 + sφ̄2(x)]}.
(11)

The variational principle gives the following classical equation
of motion:

∇2φ̄ + Ẽφ̄ = φ̄

s−1 + φ̄2
. (12)

Any solution to Eq. (12) has the form

φ̄cl(x) = n̄φ0(x), (13)

where n̄ is a constant vector of unit length (n̄2 = 1) with an
arbitrary direction in replica space, e.g., n̄ = (11,02, . . . ,0N ).
Equation (12) then reads

∇2φ0 + Ẽφ0 = φ0

s−1 + φ2
0

. (14)

It is instructive to compare this equation with the correspond-
ing saddle-point equation (C3) in the case of δ-correlated
Gaussian disorder (see [49] and Appendix C). At variance with
the Gaussian disorder, one cannot eliminate the explicit energy
dependence in Eq. (14) by any variable transformation. In the
limit E → 0, the classical solution of Eq. (14) approaches the
form

φ0(x) ≈
√

ad ln (s/Ẽ)/ẼLd (x
√

Ẽ) (15)

in the region 0 � x
√

Ẽ � μd and essentially vanishes
elsewhere. The functions L1(t) = cos t , L2(t) = J0(t), and
L3(t) = sin t/t are the spherical Bessel functions in d dimen-
sions, μd is the first zero of Ld (μ1 = π/2, μ2 = 2.404 83,
μ3 = π ), and the constants are ad = 1,3.710 38,π2 in d =
1,2,3, respectively [45]. Substituting this approximative solu-
tion for the saddle point into the action (11) leads immediately
to the DOS tail of the form [3,44,45]

ν(E) = Ad exp
[−vd (Eξ/E)

d
2 ln (I0/E)

]
, (16)

with vd = μd
dπ

d/2/
(d/2 + 1). The derivation of the saddle-
point solution can be simplified in 1D. The basic idea is to
treat Eq. (11) as the classical action

Scl =
∫

dx{[∇xφ0(x)]2 − U(φ0)}, (17)

of a particle moving in the potential U(φ0) = Ẽφ0
2(x) −

ln [1 + sφ0
2(x)] with space coordinate φ0 and time x. Since

the system is conservative the energy of the particle

E0 = φ̇0
2 + U(φ0) (18)

is constant along any trajectory. The saddle-point solution
corresponds to the particle trajectory at E0 = 0. By using a
simple variable transformation, the action (17) can be rewritten
as

Scl = 2
∫ z0

0
dz

√
z−1 ln(1 + sz) − Ẽ, (19)

where z0 corresponds to zero of the expression under the
root. For Ẽ → 0 the asymptotic behavior of Eq. (19) is
Scl ≈ π

√
1/Ẽ ln (s/Ẽ), in agreement with the DOS (16)

in 1D.

IV. FLUCTUATIONS AROUND THE SADDLE POINT

In this section we extend the instanton approach in order
to calculate the dependence of the prefactor Ad upon E. To
this end we expand the action (10) around the saddle point
φ̄ = φ̄cl + φ̄′ to second order in the fluctuation fields. The
instanton contribution to the Green’s function is then given by

G(x,x ′; E) ∼
∫

Dφ′ φcl1(x)φcl1(x ′)

× exp

[
−1

2

∫
ddxφ′

αMαβφ′
β

]
. (20)

Assuming the saddle-point solution of the form (13), the
operator Mαβ can be diagonalized using the longitudinal and
transverse projector operators in the replica space as

Mαβ = MLnαnβ + MT(δαβ − nαnβ). (21)

The transverse and longitudinal operators can be written in the
form

MT,L = −∇2 + UT,L + m2, (22)

where we have defined the mass m2 = s − Ẽ such that the
potentials

UT (r) = s

1 + sφ0
2 − s, (23)

UL(r) = s

1 + sφ0
2 − s − 2s2φ0

2

(1 + sφ0
2)2

, (24)

vanish at infinity. Note that the transverse projector operator
has (N − 1) zero modes corresponding to invariance under
O(N ) rotations in the replica space while the longitudinal
operator has d zero modes corresponding to translational
invariance. In order to obtain a finite result from the Gaussian
integration in Eq. (20), the zero modes of the operators MT

and ML have to be separated and integrated out exactly without
using the Gaussian approximation. To that end one can perform
transformation to collective coordinates x0 and n̄ [49,51]. This
yields

G(x,x ′; E) ∼
∫

ddx0dn̄J tφ0(x − x0)φ0(x ′ − x0)

×
∫

Dφ̄′ exp

[
−1

2

∫
ddxφ′

αM ′
αβφ′

β

]
, (25)

where J t is the Jacobian of the transformation to the collective
coordinates x0 and n̄ and the prime in M ′

αβ means that the zero
modes have been omitted. The Jacobian calculated to leading
order in the energy Ẽ by expanding the model in the fields
around the minimum is given by [52]

J t ∼
[∫

ddx(∇φ̄0)2

]d/2[∫
ddxφ̄2

0

](N−1)/2

. (26)
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FIG. 1. (Color online) One-dimensional potential wells UT (blue
dashed line) and UL (red solid line) for s = 0.5 and E = 0.01.

The functional integral in Eq. (25) contributes with∫
Dφ̄′ exp

[
−1

2

∫
dxφ′

αM ′
αβφ′

β

]

= det ′M̃L
−1/2 · det ′M̃T

−(N−1)/2
, (27)

where det ′ stands for the product of all nonzero eigenvalues
including the continuous part of the spectrum. The operators
MT and ML given by Eq. (22) are Schrödinger-like operators.
Their spectrum turns out to be very sensitive to the precise
form of the saddle-point solution of Eq. (14), which is not
known analytically even in 1D. Unfortunately, the dependence
of the eigenvalues on the energy parameter Ẽ cannot be
easily extracted using simple scaling arguments as in the
case of Gaussian uncorrelated disorder (see Appendix C).
Nevertheless, there are methods which allow one to calculate
the functional determinants with excluded zero modes even
without knowing precisely the spectrum.

A. One-dimensional case

We start with the 1D case. The potentials UT and UL,
corresponding to the operators MT and ML obtained from
numerical solution of the saddle-point equation in d = 1,
are shown in Fig. 1. In the low-energy limit E → 0, we
find that the potentials UT and UL approach asymptotically
a square potential well of width π

√
1/Ẽ and depth s ∓

Ẽ(1/ ln s

Ẽ
), respectively. The operator MT has one zero mode

corresponding to the lowest symmetric state. The operator ML

has the only zero energy state corresponding to the lowest
antisymmetric state, while its lowest symmetric state has a
negative eigenvalue, which gives a nonzero contribution to the
imaginary part of the Green’s function.

When the spectrum of the Schrödinger operator is known
analytically, the zero mode can be explicitly excluded from
the product of eigenvalues. Therefore, the determinant can be
calculated simply as an infinite product of nonzero eigenval-
ues. This is illustrated in Appendix C 1 for the fluctuation
operators MT and ML arising in the Gaussian disorder model
[49]. For the blue-detuned speckle the determinants of MT

and ML cannot be calculated simply as a product of nonzero
eigenvalues because the spectrum cannot be found analytically.
Fortunately, GY [46,47] derived long ago a general formula

which allows one to calculate the functional determinant of
a Schrödinger-like operator at least in 1D without knowing
any of its eigenvalues. The GY method can be applied to an
operator of the form

M = − d2

dx2
+ U (x) + m2, (28)

which is defined on x ∈ [−L,L] for the wave functions
satisfying the boundary conditions u(−L) = u(L) = 0. The
limit L → ∞ can be taken at the end of the calculation. Since
the well-defined object is rather a ratio of two determinants
than a single functional determinant itself, it is convenient
to introduce a free operator Mfree = − d2

dx2 + m2. The GY
theorem [46] states that

detM
detMfree

= u(L)

ufree(L)
, (29)

where u(x) and ufree(x) are the solutions of the Cauchy
problems

Mu(x) = 0 and Mfreeufree(x) = 0, (30)

with the initial conditions

u(−L) = ufree(−L) = 0, u′(−L) = u′
free(−L) = 1. (31)

Due to the presence of eigenfunctions with zero eigenvalue,
whose contributions to the determinant have to be excluded, the
GY formula (29) has to be slightly modified for the operators
MT and ML. A simple regularization consists of introducing
an infinitesimal shift of the spectrum by a small shift of the
mass m. Then the original determinant with the excluded zero
mode can be derived by differentiating with respect to the
mass. This method is illustrated for the operators MT and ML

of the Gaussian disorder model in Appendix C 2.
In the case of the speckle potential, it turns out to be more

convenient to use another regularization approach which has
been recently proposed by TM in Ref. [48]. It is based on
the GY method generalized to arbitrary boundary conditions
by Forman in Ref. [53]. The basic idea is to regularize
the determinant by modifying the boundary conditions. This
changes the zero eigenvalue to a nonzero one, which can be
estimated to lowest order in the difference between the original
and regularized boundary conditions. Assuming that the zero
mode of the operator M is given by v0(x) the ratio of the two
determinants with excluded zero mode can be written as

det′ M
detMfree

= − 〈v0|v0〉
v′

0(−L)v′
0(L)

u′
free(−L)

ufree(L)
, (32)

where we defined the scalar product

〈v0|v0〉 :=
∫ L

−L

dx v2
0(x). (33)

The TM formula is very useful because the zero mode of the
operator MT is given by the classical solution φ0(x), while for
the operator ML the zero mode is simply given by its derivative
φ′

0(x). This is true not only in the case of the 1D speckle
potential but also for the problem with uncorrelated Gaussian
disorder where the TM formula is shown to reproduce the
correct result of Cardy (see Appendix C 3). By inserting
the zero mode solutions in Eq. (32), the ratio of the two
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determinants MT and ML of Eq. (27) in 1D can be rewritten
as

det′ MT

det′ ML

= lim
L→∞

〈φ0|φ0〉
〈φ′

0|φ′
0〉

φ′′
0 (−L)φ′′

0 (L)

φ′
0(−L)φ′

0(L)
, (34)

because the contribution from the free operator cancels out.
Moreover, in 1D, the derivatives of the classical solution can be
easily obtained from the first-order differential equation (18)
derived from the analogy with the particle in a conservative
potential. Although the function φ0(x) is known only numer-
ically, the limit of Eq. (34) can be calculated analytically by
using that this solution is regular at infinity. We find the exact
relation

det′ MT

det′ ML

= −〈φ0|φ0〉
〈φ′

0|φ′
0〉

(s − Ẽ). (35)

When we substitute this result in the DOS (25) the ratio of two
scalar products in Eq. (35) cancel exactly the Jacobian (26).
Using the saddle-point solution (15) in the asymptotic limit
E → 0, we obtain

A1 ∼ ln (s/Ẽ)

Ẽ3/2
s1/2. (36)

By collecting all contributions, we find the tail of the DOS in
1D

ν = A

ξI0

(
I0

E

)3/2

ln

(
I0

E

)
exp

[
−πs−1/2

√
I0

E
f1

(
I0

E

)]
,

(37)

where A is a numerical constant and

f1(y) = 2

π

∫ z0

0
dz
√

z−1 ln(1 + yz) − 1, (38)

whose asymptotics for large y is f1(y) = ln y. In order to check
this formula, we have fitted the low-energy tail of the DOS
in 1D speckle potential computed numerically in Ref. [44].
The result is shown in Fig. 2. In Ref. [44] the spectrum was
computed using the exact Hamiltonian diagonalization on a
discretized grid for a system of length L = 600ξ and averaged
over about 1000 disorder realizations. The small difference

FIG. 2. (Color online) The one-particle DOS for a blue-detuned
speckle potential computed numerically for s = 1 (red squares) and
s = 0.1 (blue circles). The solid and dashed lines are the best fit of
the tails by Eq. (37).

between numerical and analytical results in Fig. 2 is expected
to be due to finite-size effects [21].

B. Higher dimensions

The GY method can be extended to determinants of the
Schrödinger-like operators in d dimensions in the case of
radially symmetric potentials [54]. Due to the radial symmetry
of the operators, their eigenfunctions can be decomposed into
a product of radial parts and hyperspherical harmonics,

�(r,ϑ) = 1

r
d−1

2

ψ�(r)Y�(ϑ). (39)

The radial parts ψ�(r) are then solutions to the radial equations

M
(�)
T ,Lψ�(r) :=

[
− d2

dr2
+
(
� + d−3

2

)(
� + d−1

2

)
r2

+UT,L(r) + m2

]
ψ�(r) = λψ�(r). (40)

The radial eigenfunctions ψ�(r) come with a degeneracy factor
of

deg(�; d) = (2� + d − 2)(� + d − 3)!

�!(d − 2)!
. (41)

The determinant of a radially separable operator can be
calculated by combining the determinants for each partial wave
� with the weights given by the degeneracy factor (41) as

ln
det′ MT,L

det Mfree
=

∞∑
�=0

deg(�; d) ln
det′ M (�)

T ,L

det M (�)
free

, (42)

where the free operators have been defined as

M
(�)
free = − d2

dr2
+
(
� + d−3

2

)(
� + d−1

2

)
r2

+ m2. (43)

In order to compute the determinants of the partial operators
in Eq. (42) one can use the GY method for those determinants
that have no zero modes and the MT method for those that
have them. The only partial operators which have zero modes
are M

(0)
T and M

(1)
L . All other determinants can be computed

using the GY formula

det M (�)
T ,L

det M (�)
free

= lim
R→∞

u(�)(R)

u
(�)
free(R)

, (44)

where u(�) and u
(�)
free are the solution of the following Cauchy

problems:

M (�)u(�)(r) = 0, u(�) ∼ r�+ (d−1)
2 , r → 0, (45)

M
(�)
freeu

(�)
free(r) = 0, u

(�)
free ∼ r�+ (d−1)

2 , r → 0. (46)

The determinants of the operators M
(0)
T and M

(1)
L with excluded

zero modes are given by the generalization of Eq. (32) which
reads

det′ M
detMfree

= − lim
R→∞

〈v0|v0〉
v′

0(R)ufree(R)
. (47)

Here we have used that the zero modes v0(r) of the operators
M

(0)
T and M

(1)
L and the solution ufree(r) of the Cauchy problem
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(46) have the same behavior at r → 0. It turns out that the sum
over � in Eq. (42) diverges for d � 2 as 1/�. This divergence
is a general property of functional determinants in d � 2 [55]
that was not discussed in the most works on the instanton
approach to the DOS of disordered systems [49,50,56,57]. This
divergence reflects the fact that the field theory (11) has to be
renormalized [58], which is beyond the scope of the present
paper. To make the theory finite, we introduce the UV cutoff �

and separate the divergencies from the sum over � in Eq. (42).
Following Ref. [54] we use the diagrammatic representation
of the determinants MT,L explained in Appendix A and given
by Eq. (A2) with V (r) = UT,L(r). For 2 � d < 4 the only
divergent diagram is A1, which is linear in V . For d = 4
one has also subtract the diagram A2, which is quadratic
in V . Subtracting the divergent diagram from the partial
determinants, we obtain

ln
det′ MT,L

det Mfree
= A1 +

∞∑
�=0

deg(�; d)

[
ln

det′ M (�)
T ,L

det M (�)
free

]
∅(V )

,

(48)

where the symbol [· · · ]∅(V ) means that the parts of order V

have been subtracted. The sum over � in Eq. (48) becomes
finite because the UV divergences have been accumulated in
the regularized Feynman diagram A1. The explicit form of the
terms which have to be subtracted for a general potential V (x)
is given by the expansion [54]

ln
detM(�)

detM(�)
free

=
∫ ∞

0
drrV (r)Kν(mr)Iν(mr)

−
∫ ∞

0
drrV (r)K2

ν (mr)
∫ r

0
dr ′ r ′

×V (r ′)I 2
ν (mr ′) + O(V 3), (49)

where Iν and Kν are the Bessel function with ν ≡ l + d
2 − 1.

Thus, one can compute the regularized ratio of the functional
determinants (48) by solving numerically the Cauchy problems
(45) and (46) and using the GY and MT formulas (44) and (47).
We have found that after subtracting the diverging term given
by the first line in Eq. (49) the sum over � in Eq. (48) converges
asymptotically as 1/�3 in d = 2 and as 1/�2 in d = 3. As an
example, this sum is shown as a function of Ẽ for d = 2 and
s = 0.5 in Fig. 3. The total ratio of the determinants, however,
is dominated by the exponential of

AT
1 − AL

1 =
∫

q

1

q2 + m2

∫
ddx[UT (x) − UL(x)]. (50)

Neglecting a power-law correction resulting from the Jacobian
(26), we arrive at

Ad (E) ∼ exp

{
γd

[
I0/E

ln(I0/E)

](d−1)/2
}

, (51)

with UV cutoff-dependent coefficients γ2 = 1.89 ln(�/s) and
γ3 = 14.81�.

Ẽ

ln
(d

et
M

T
/

d
et

M
L
)
−

A
T 1

+
A

L 1

FIG. 3. (Color online) The logarithm of the ratio of determinants
MT and ML with subtracted diagrams A

T,L
1 computed numerically for

s = 0.5 and d = 2 as a function of Ẽ using Eq. (48). The solid blue
line is a fit by 3.181 56/

√
Ẽ + 2.821 11 ln Ẽ + 10.5708. (Inset) The

logarithm of the ratio of partial determinants for d = 2, Ẽ = 0.0005,
and s = 0.5 as a function of �. The solid blue line is the asymptotic
behavior 162 085/(� + 21.4092)3.

V. WEAKLY INTERACTING BOSE GAS
IN SPECKLE POTENTIAL

We now consider the effect of weak repulsive interaction
on the bosons in the Lifshitz tail. We restrict our consideration
to the 3D system in the dilute regime. The corresponding
Hamiltonian has the well-known form [59]

H =
∫

d3xψ†(x)

[
− �

2

2m0
∇2 + V (x) − μ

]
ψ(x)

+ g

2

∫
ddx(ψ†(x)ψ(x))2, (52)

where ψ(x) is the secondary quantized wave function, V (x) is
the random potential, and μ is the the chemical potential. The
positive coupling constant is given by g = 4π�

2as/m0, where
a is the scattering length and we assume a low concentration
of bosons n, such that na3

s � 1. The aim is to find how the
bosons fill the random potential when we add the particles one
by one. In particular, we are interested in the dependence of
the chemical potential on the density of bosons. It is instructive
to compare the case of a bounded-from-below potential with
the random uncorrelated Gaussian potential studied by one of
us in Ref. [59].

In the case of Gaussian disorder the asymptotic behavior of
the DOS for large negative energy E is dominated by the opti-
mal wells of width R with the energy E0(R) = −�

2/(2m0R
2),

which decreases with shrinking of R. The density of optimal
wells, which can be found from the corresponding instanton
solution, is nw(R) ∼ e−L/R/R3, where L = �

4/(m2
0γ

2) is the
so-called Larkin length related to the strength of disorder
γ [59]. In the presence of weak repulsive interactions, the
positive repulsion energy per particle grows with decreasing
R as Er (R) = 3gN (R)/(4πR3), where N (R) = n/nw(R) is
the typical number of bosons in optimal wells. Since the
both energies E0(R) and Er (R) have opposite behavior with
respect to decreasing R, one has to optimize the total energy
in order to find the size of the optimal well renormalized
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by interactions. This yields with the logarithmic precision
R(n) = L/ ln(nc/n). Then the relation between the chemical
potential and the density is given by [59]

μ(n) = − �
2

2m0R2(n)
≈ −E

2

(
ln

nc

n

)2

, (53)

where E = �
2/(m0L2) and nc = (3L2as)−1.

In the case of the speckle potential both the energy
corresponding to the optimal well E0(R) = �

2/(2m0R
2) and

the positive repulsion energy decay with growing the size of the
typical well. Thus, there is no competition between the disorder
and interactions so that we have no need for optimization of the
total energy. Neglecting the kinetic energy and using Eq. (16)
to estimate the density of the optimal wells, we obtain with the
logarithmic precision

μ(n) ≈ Eξ

(
v3 ln

I0

Eξ

)2/3 (
ln

n0

n

)−2/3

, (54)

where n0 = (6ξ 2as)−1 and v3 = 4π4/3. The asymptotic be-
havior (54) holds for n � n0 and Eξ � I0 and is an agreement
with Ref. [60].

VI. CONCLUSION

We have studied the low-energy behavior of the DOS for
noninteracting bosons in a d-dimensional blue-detuned laser
speckle potential. We have shown that for E � Eξ the precise
form of the electric field correlator does not affect the asymp-
totic behavior. Using an instanton approach we have found
the saddle-point solution which gives the leading exponential
behavior. Integrating out the Gaussian fluctuation around this
solution we have expressed the prefactor in the form of a
ratio of two functional determinants. In one dimension we
calculated the ratio of functional determinants exactly using
the generalized GY method, which allows one to take into
account not only the discrete part of the spectrum of fluctuation
operators but also the continuous one. The resulting DOS is
fairly in agreement with numerical simulations of Ref. [44]. In
higher dimensions the corresponding ratio diverges, which has
been overlooked in most of the previous work on the instanton
approach to the DOS of disordered systems. Using the partial
wave decomposition we can separate the UV divergences to
a regularized one-loop Feynman diagram and obtain a finite
result for the DOS tail in d > 1. In Appendix C 4 we show
that this method gives a correct result for the case of Gaussian
uncorrelated disorder. It would be interesting to check these
results by numerical simulations in 2D and 3D. We also
discussed the effect of weak repulsion interactions in the
DOS tail. In contrast to the Gaussian unbounded disorder,
the interactions and disorder do not compete and the optimal
wells are not renormalized by interactions, which leads to a
different dependence of the chemical potential on the boson
density.
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APPENDIX A: FUNCTIONAL DETERMINANT
REPRESENTATION

The diagrams in Eq. (A2) cannot be summed up for an
arbitrary distribution of the electric fields including those that
appear in real experiments. In this Appendix we show that the
sum can be performed for a special choice of the Gaussian
distribution of the electric fields with zero mean and variance,

G(x) = I0
2d/2



(
1 − d

2

)(x

ξ

)1− d
2

Kd/2−1

(
x

ξ

)
, (A1)

where Kν(x) is the modified Bessel function. A similar
correlator appears in the problem of the Bragg glass stud-
ied in Ref. [61]. For d = 1 the variance (A1) reduces to
G(x) = I0 e−|x|/ξ . This is particularly interesting because the
asymptotic behavior of the DOS does not depend on the
precise form of correlations in disorder but it is determined
by the lower energy states which spread over distances larger
than the disorder correlation length ξ . Therefore, in order to
study the lowest-order corrections to the asymptotic tail due to
presence of correlations, one can use Eq. (A1) as a reasonable
approximation for the variance of the electric field.

The starting point is the following diagrammatic represen-
tation of the ratio of two functional determinants:

ln

{
det[−∇2 + V (x) + m2]

det(−∇2 + m2)

}

=
∞∑

n=1

(−1)n+1

n
An= − 1

2
+

1
3

− ... .

(A2)

In the diagrams shown in Eq. (A2) the dots correspond to the
potential V (x) and the lines stand for the Green’s function

C0(x) = md−2

(2π )d/2

Kd/2−1(m|x|)
(m|x|)d/2−1

, (A3)

which satisfies the equation

[−∇2 + m2]C0(x) = δ(x). (A4)

If we separate the combinatorial factors from the diagrams in
Eq. (8), we obtain the same series as in Eq. (A2). Thus, one can
formally rewrite the sum of the diagrams in Eq. (8) as a ratio of
two functional determinants with the mass m = 1/ξ and the
potential V (x) = 1

2I0φ̄
2(x)/C0(0), resulting from a random

Gaussian electric field with zero mean and variance G(x) =
I0C0(x)/C0(0). Note that divergency of C0(0) when d � 2
reflects the fact that the functional determinants in Eq. (A2)
require a renormalization for d � 2. Here we restrict ourselves
to the case d = 1 and obtain

S(E) =
∫

dx

{
�

2

4m2
0

[∇φ̄(x)]2 − 1

2
Eφ̄2(x)

}

+ ln

{
det[−∇2 + (I0/ξ )φ̄2(x) + 1/ξ 2]

det(−∇2 + 1/ξ 2)

}
. (A5)
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In the limit ξ → 0 we can neglect the ∇2 operator in the
determinants of Eq. (A5) and recover Eq. (10) using that
ln det = Tr ln. The corresponding saddle-point equation,

�
2

2m2
0

∇2φ̄(x) + Eφ̄(x)

= δ

δφ̄(x)
ln det[−∇2 + (I0/ξ )φ̄2(x) + 1/ξ 2], (A6)

has the form of a gap equation known in relativistic quantum
field theory [55].

APPENDIX B: VARIATIONAL METHOD WITH
GAUSSIAN TRIAL FUNCTIONS

One can also sum up all diagrams in Eq. (8) for a particular
class of functions φ̄(x) that can be used to find variationally an
approximative instanton solution by means of the trial function
method. Let us assume that the 1D electric field correlator has
the form

G(x − y) = I0ξδξ (x − y), with δξ (x) = 1

ξ
e−πx2/ξ 2

.

(B1)

For the trial function we consider φ(x) = n̄φ0(x), with n̄2 = 1,
and

φ0(x) =
√

Ce−πx2/2a2
. (B2)

By substituting the trial function into the potential part of
the action (8), we find that the diagram with n electric field
correlators reads

2

2
2

2

2
2

= (n − 1)! I n
0 Cn

∫
dx1 · · · dxn exp

[
−πx2

1

a2

− π (x1 − x2)2

ξ 2
· · · − π (xn−1 − xn)2

ξ 2

− πx2
n

a2
− π (xn − x1)2

ξ 2

]
. (B3)

Upon making the variable rescaling xi → ξxi/π , the integral
in Eq. (B3) can be rewritten as

ξn

πn

∫
dx1 · · · dxn exp

⎡
⎣− n∑

i,j=1

xiAij xj

⎤
⎦= ξn

πn/2
[det An]−1/2,

(B4)

where we have introduced the matrix

An =

⎛
⎜⎜⎜⎜⎜⎝

2 + ε2 −1 0 · · · 0 −1
−1 2 + ε2 −1 · · · 0 0
0 −1 2 + ε2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 + ε2 −1

−1 0 0 · · · −1 2 + ε2

⎞
⎟⎟⎟⎟⎟⎠,

with ε = ξ/a. The determinant of An can then be calculated,
and we get

det An =
n−1∑
m=0

∏m
i=0(n2 − i2)

2m(2m + 1)!!(m + 1)!
ε2+2m

= 4 sinh2
[
narcsinh

ε

2

]
. (B5)

Therefore, the action evaluated using the trial function (B2)
can be written as

S(E) =
∫

dx

[
�

2

4m0
[φ′′

0 (x)]2 − 1

2
Eφ2

0(x)

]

−
∞∑

n=1

(−1)n

2n

(I0ξC)n

(
√

π )n
1

sinh
[
narcsinh ε

2

] . (B6)

When E ∼ 1/a2 � Eξ = 1/(2ξ 2) we can approximate
sinh [narcsinh ε

2 ] ≈ nε/2. As a result the second line of
Eq. (B6) is simplified to −Li2[−I0ξC/

√
π ]/ε. This expression

can be also derived by applying the trial function method
directly to the action (10). This means that the action (10)
obtained in the limit of uncorrelated speckle potential properly
describes the DOS in the presence of correlations for E � Eξ .
For these low-lying states the finite-range correlations play no
role because the typical width of the wave functions a is much
larger than the correlation length of disorder ξ .

APPENDIX C: THE LIFSHITZ TAIL FOR A PARTICLE
IN GAUSSIAN UNCORRELATED DISORDER

In order to illustrate the power of the GY and MT
methods, we reconsider here the problem of a particle in
uncorrelated Gaussian disorder. There existed a disagreement
in the literature on the preexponential factor in the asymptotic
behavior of the DOS in the tail of the band [49,57,62]. The two
points that have not been sufficiently discussed in these works
are the contribution of the continuous part of the spectrum
to the functional determinants and divergence of functional
determinants in d � 2 [63]. The replicated action of the system
is given by [49]

Sav =
∫

ddx

{
1

2
[∇φ̄(x)]2 − 1

2
Eφ̄2(x) − 1

6
(γ /4)2[φ̄(x)]2

}
(C1)

and we look for the asymptotic behavior of the DOS in the
limit E → −∞. The saddle-point solution to the action (C1)
has the form

φ̄cl = (−E)1/2

γ
f (

√−Ex)n̄, (C2)

where f satisfies the dimensionless equation of motion

∇2f − f = −f 3

24
. (C3)

The action (C1) evaluated at the saddle point behaves as Scl ∼
(−E)2−d/2/γ 2. By repeating the calculations (25)–(27), we
find the DOS tail

ν(E) ∼ (−E)1/2−d2/4+3d/4

√
det′ MT

det′ ML
e−Scl , (C4)
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where the regularized determinants of the fluctuation operators
need to be calculated. The transverse and longitudinal oper-
ators derived by expansion around the saddle-point solution
have the form

MT = −∇2 − E
[
1 − 1

24f (
√−Ex)2

]
, (C5)

ML = −∇2 − E
[
1 − 1

8f (
√−Ex)2

]
, (C6)

where the energy E is assumed to be large and negative.

1. Brute-force method in d = 1

The 1D case is interesting for testing the GY method
because the ratio of determinants of the operators (C5) and
(C6) can also be calculated directly from the product of their
eigenvalues. The saddle-point solution of Eq. (C3) is

f (x) = 4
√

3sech(x) (C7)

and the operators (C5) and (C6) can be rewritten in the form
of Pöschl-Teller operators [47,55],

Mm,j = − ∂2

∂x2
+ |E|[m2 − j (j + 1)sech2(

√−Ex)], (C8)

where j takes integer values. The operators (C5) and (C6)
correspond to the case MT = M1,1 and ML = M1,2. The
spectrum of the Pöschl-Teller operator Mm,j contains a
discrete part which has j bound states ε� = |E|(m2 − �2)
(� = 1, . . . ,j ) and the continuous part ε(k) = |E|(k2 + m2),
with the DOS

νj (k) = L

2π
− 1

π

j∑
�=1

�

�2 + k2
, (C9)

which has been regularized by putting the system in a box of
size L. This yields

ln
detMm,j

detMm,0
=

j∑
�=1

ln [|E|(m2 − �2)]

+
∫ ∞

−∞
dkνj (k) ln [|E|(k2 + m2)], (C10)

where the free particle contribution L/2π has been canceled.
From this formula the functional determinants of the operators
(C5) and (C6) can be determined straightforwardly. The
operator MT = M1,1 has just one discrete zero eigenvalue.
Excluding this zero mode, the only contribution comes
from the continuous spectrum given by the second line in
Eq. (C10),

det ′MT

det Mfree
= 1

4|E| , (C11)

where Mfree := Mm,0. The operator ML = M1,2 has two
discrete eigenvalues: a negative eigenvalue (� = 2), giving a
finite imaginary part of the Green’s function (4), and a zero
eigenvalue (� = 1). The negative mode and the continuous

spectrum contribute with

det ′ML

det Mfree
= − 1

12|E| . (C12)

We obtain

lim
N→0

det ′ML
−1/2 det ′MT

−(N−1)/2 = i
√

3, (C13)

which is independent of E.

2. Regularized Gel’fand-Yaglom formula

The same result can also be obtained using the GY method
(29). The solution um,j of the corresponding Cauchy problem
(30) and (31) for the Pöschl-Teller operators Mm,j (C8) can
be found analytically. For the sake of compactness, we show
here the formula for |E| = 1,

um,j (L) = 1

(1 + j − m)

× −P m
j (Y )Qm

j (−Y ) + P m
j (−Y )Qm

j (Y )

P m
j+1(−Y )Qm

j (−Y ) − P m
j (−Y )Qm

j+1(−Y )
,

(C14)

where we defined Y := tanh L and P m
j (x) and Qm

j (x) are the
Legendre functions. The solution (C14) for the free operator
Mfree = Mm,0 reduces to

um,0(L) = sinh [2mL]

m
. (C15)

The ratio of the two determinants is then given by

detMm,j

detMm,0
= lim

L→∞
um,j (L)

um,0(L)
. (C16)

In order to exclude the zero modes, we apply a shift of the
mass m → √

m2 + δm2, which gives

det(Mm,j + δm2)

det(Mm,0 + δm2)
∼ δm2 det ′Mm,j

detMm,0
, δm2 → 0.

Restoring the dependence on E we obtain

det ′M1,j

detM1,0
= (−1)j+1 1

2j (j + 1)|E| , (C17)

in agreement with Eqs. (C11) and (C12) for j = 1 and j = 2,
respectively.

3. McKane-Tarlie formula

We now apply the MT method. First, we need the
zero modes of the operators MT = M1,1 and ML = M1,2.
They are given by v1,1(x) = |E|f (

√−Ex) and v1,2(x) =
|E|3/2f ′(

√−Ex), respectively. Then, according to Eq. (34),
the ratio of the determinants with excluded zero modes is given
by

det′ MT

det′ ML

= lim
L→∞

〈v1,1|v1,1〉
〈v1,2|v1,2〉

v′
1,2(−L)v′

1,2(L)

v′
1,1(−L)v′

1,1(L)
= −3,

(C18)
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where we used

〈v1,1|v1,1〉 = 2|E|3/2, (C19)

〈v1,2|v1,2〉 = 2

3
|E|5/2, (C20)

v′
1,2(−∞)

v′
1,1(−∞)

= −v′
1,2(∞)

v′
1,1(∞)

= √−E. (C21)

4. Gel’fand-Yaglom method generalized
to radial operators for d > 1

The radial parts of the eigenfunctions of the operators (C5)
and (C6) satisfy Eq. (40) with the mass m = |E| and the
potentials

UT (r) = −|E|
24

f (
√−Er)2, (C22)

UL(r) = −|E|
8

f (
√−Er)2. (C23)

Scaling analysis shows that the solutions of the corresponding
Cauchy problems (45) and (46) have the form

u(�) = |E|g(�)(|E|1/2r), (C24)

u
(�)
free = |E|g(�)

free(|E|1/2r). (C25)

There is no zero modes for � > 1 and we can apply the GY
formula (44). The ratio of the partial determinants for � > 1 is
given by

lim
R→∞

g(�)(|E|1/2R)/g(�)
free(|E|1/2R), (C26)

which does not depend on E. Thus, all the ratios of the partial
determinants with � > 1 do not contribute to the E dependance
of the full ratio of the functional determinants.

The operators M
(0)
T and M

(1)
L have a zero eigenvalue, so that

to exclude it we apply the MT method. The corresponding
ratios of the partial determinants can be calculated using
Eq. (47). The scaling behavior of the zero mode eigenfunction
v0(r) is again given by

v0(r) = |E|g0(|E|1/2r). (C27)

This yields

〈v0|v0〉 ∼ |E|3/2, (C28)

lim
R→∞

v′
0(R)ufree(R) = |E|5/2 lim

R→∞
g′

0(R)gfree(R), (C29)

where the last limit is expected to be finite. Thus, the
logarithms of the determinant ratios are given (up to an energy
independent constants) by

ln
det ′MT

det Mfree
= deg(0; d) ln

det′ M (0)
T

det M (0)
free

∼ ln |E|−1 (C30)

and

ln
det ′ML

det Mfree
= deg(1; d) ln

det′ M (1)
L

det M (1)
free

∼ d ln |E|−1. (C31)

Above we assumed that the ratios of the determinants are finite
and the sum over � is converging. However, we know that this
sum diverges for d = 2 and d = 3. We have to subtract from
each ratio of the partial determinants the term resulting from
the partial wave decomposition of the diverging diagram A1.
After that the regularized diagram A1 has to be added to the
action as shown in Eq. (48). The terms needed to be subtracted
are given by Eq. (49) and read∫ ∞

0
drrUT,L(r)Kν(|E|1/2r)Iν(|E|1/2r), (C32)

where ν ≡ l + d
2 − 1 and UT,L are given by Eqs. (C22) and

(C23). It is easy to see that the terms (C32) do not depend on
E. The bare diagram A1 can be written as

A
T,L
1 =

∫
ddxUT,L(|x|) lim

y→x
C0(x − y), (C33)

where C0(x) is given by Eq. (A3). The expression (C33)
diverges and has to be regularized, e.g., by the UV cutoff
� as

A
T,L
1 =

∫
|q|<�

1

q2 + m2

∫
ddx UT,L(|x|), (C34)

where the last integral behaves as (−E)1−d/2. Combining
Eqs. (C30), (C31), and (C34), we obtain√

det ′MT

det ′ML

∼ i|E| d−1
2 e(AT

1 −AL
1 )/2, (C35)

where the factor i comes from the negative eigenvalue of
the partial operator M

(0)
L . Inserting Eq. (C35) into Eq. (C4)

gives the DOS tail for E → −∞. Additionally to the term
(−E)2−d/2 resulting from the action evaluated at the saddle
point the exponential now contains the term (−E)1−d/2 with
a nonuniversal coefficient, which depends on the UV cutoff.
Fortunately, we already know how to renormalize the field
theory (C1), which is nothing but φ4 theory. It easy to recognize
in the first integral in Eq. (C34) the one-loop diagram which
shifts the mass m2 = |E|. The diagram (C34) is compensated
by the counterterm coming from the mass shift. Thus, in terms
of the renormalized energy ER = E − E0, where E0 is some
nonuniversal energy scale depending of the UV cutoff, the
DOS tail has the form

ν(ER) ∼ (−ER)d(5−d)/4e−const(−ER )2−d/2/γ 2
. (C36)
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