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Scaling laws for high-order-harmonic generation with midinfrared laser pulses
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We derive an analytic expression for the wavelength scaling of the high-order-harmonic generation (HHG) yield
induced by midinfrared driving laser fields. It is based on a quasiclassical description of the returning electron
wave packet, which is shown to be largely independent of atomic properties. The accuracy of this analytic
expression is confirmed by comparison with results of numerical solutions of the time-dependent Schrödinger
equation for wavelengths in the range of 1.4 μm ≤ λ ≤ 4 μm. We verify the wavelength scaling of the HHG
yield found numerically for midinfrared laser fields in a recent paper by Le et al. [Phys. Rev. Lett. 113, 033001
(2014)].
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I. INTRODUCTION

Significant progress in the development of intense laser
sources having midinfrared (IR) and even far-IR laser wave-
lengths has stimulated a growing interest in strong-field
processes in the deep tunneling regime [1–3]. Since the
energetics of this strong-field process is governed by the
ponderomotive energy Up of a tunnel-ionized electron in a
laser field (where Up ∝ λ2 ), increasing the laser wavelength
λ opens the way for producing higher-energy photons and
electrons in strong-field reactions. For high-order-harmonic
generation (HHG), such long-wavelength laser sources allow
experimentalists to utilize higher-pressure gas targets and to
extend phase-matching conditions into the x-ray regime, thus
enabling the production of a nearly continuous spectrum of
high-order harmonics having extremely short wavelengths
[4–9]. As the wavelength increases, these beneficial macro-
scopic features of the target medium for phase matching
compete with the negative feature of the microscopic single-
atom HHG yield, which decreases rapidly [1,10]. Therefore,
the dependence (or scaling) of the single-atom HHG yield as
a function of laser wavelength has become crucially important
for the generation of attosecond [4,11] and even, possibly,
zeptosecond pulses [12]. Consequently, different schemes for
achieving a more favorable λ dependence of the single-atom
HHG yield have been suggested [13,14].

The HHG process depends nonlinearly on many parame-
ters. Determining the λ scaling of HHG as a function of any
one of these parameters (e.g., laser intensity, ponderomotive
energy, harmonic energies, laser pulse duration, etc.) requires
that all other parameters remain fixed. Depending on which
parameters are kept fixed, different scaling laws can be
obtained. Thus, for example, if the laser intensity and the
interval of harmonic energies are fixed, the energy radiated per
unit time into this interval (an integrated HHG yield) scales
as λ−μ, where 5 � μ � 6 [1,10,15–18]. If the ponderomotive
energy Up is kept fixed instead of the intensity, the HHG yield
decreases exponentially with λ [19]. In contrast to these two

cases, however, if harmonic energies are not fixed, the HHG
yield for a fixed intensity may even increase with increasing
wavelength λ due to atomic structure effects [20].

Systematic study of the wavelength dependence of the HHG
yield began with investigations of the fine-scale oscillations
in the λ dependence of integrated harmonic yields [15–18].
These oscillations modulate the smooth λ dependence ∝ λ−μ

predicted earlier in Ref. [1]. Quasiclassical analyses find that
these oscillations originate from the interference of high-order
quantum orbits [15,17], whereas a rigorous quantum analysis
finds that these oscillations are a manifestation of threshold
phenomena in the HHG yield at the closing of multiphoton
ionization channels [16,18]. As shown in Ref. [18], the
positions of the maxima of these oscillations depend on the
shape of the atomic potential: For a short-range potential they
coincide with the positions of multiphoton thresholds [16],
whereas the corresponding peaks for a Coulomb potential
occur in the middle between two neighboring multiphoton
thresholds [18]. (Similar features have been found in strong-
field ionization of an electron in a Coulomb potential [21]).

Another kind of wavelength scaling for the HHG process
has been studied in Refs. [22,23] based on an improved version
of the strong-field approximation [24]. Instead of the integrated
HHG yield analyzed previously in Refs. [15–18], Refs. [22,23]
analyzed the HHG conversion efficiency (CE) for a given
harmonic frequency �, which is proportional to the HHG yield
integrated over the energy interval [�(� − ω),�(� + ω)],
where ω = 2πc/λ is the frequency of the driving field. In
the tunneling regime, Refs. [22,23] show that the CE scales
as λ−5 at the HHG plateau cutoff for a fixed cutoff energy,
as λ−9 at the cutoff when the cutoff energy is not fixed, and
as λ−6 over the plateau region for a fixed harmonic energy.

An analysis of the λ dependence of the HHG yield within
the framework of the strong-field approximation and quantum
orbit theory was reported in Ref. [25]. Within this approach,
the partial HHG yield associated with long orbits was found
to scale as λ−4.1 for a fixed absolute harmonic energy, whereas
the yield associated with short orbits decreases more rapidly

1050-2947/2015/92(2)/023409(8) 023409-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevLett.113.033001
http://dx.doi.org/10.1103/PhysRevA.92.023409


M. V. FROLOV et al. PHYSICAL REVIEW A 92, 023409 (2015)

with increasing wavelength as λ−8.5. Although these partial
λ scalings of the short- and long-trajectory contributions to
HHG strongly differ from each other, the overall trend of the
decreasing HHG yield with increasing λ for fixed harmonic
energy obtained in Ref. [25] agrees with earlier results.

Recently, interest in the λ scaling of the HHG yield has
revived within the context of the universality properties of
the returning electron wave packet (EWP) in HHG produced
by midinfrared laser pulses [26]. Within the quantitative
rescattering theory (QRS), which is based on the phenomeno-
logical factorization of the HHG yield in terms of the EWP
and the field-free photorecombination cross section [27–29]
[as confirmed by numerical solutions of the time-dependent
Schrödinger equation (TDSE)], several scaling properties have
been suggested in Ref. [26] for the EWP considered as a
function of the electron energy E, the Up-scaled energy
Ẽ = E/Up, and the carrier wavelength λ of the laser pulse:

(i) for fixed E, the EWP and the spectral density of harmonic
radiation scale as λ−4.2;

(ii) for fixed Ẽ, the EWP scales as λ−1.2;
(iii) as a function of Ẽ, the EWP in the long-wavelength

limit scales as Ẽ1.5;
(iv) over the interval 1.5 � Ẽ � 3.17, the EWP scales

approximately as e1.2Ẽ .
In this paper, we present an analytic description of the λ

dependence of the HHG yield based on an analysis of the
(near-) universal properties of the returning EWP [30,31].
Our results confirm the main conclusions concerning the λ

scaling of HHG represented in Ref. [26]. In Sec. II we brie-
fly review the relationship between the HHG yield and the
spectral distribution of the returning EWP that, upon radiative
recombination, controls the spectral distribution of the emitted
harmonic radiation. A detailed analysis of the universal scaling
properties of the EWP is given in Sec. III. In Sec. IV we
compare our analytic results for the EWP with TDSE results
for both hydrogen (H) and helium (He) atoms, compare our
analytic λ-scaling result for the HHG yield with TDSE results
for H, and discuss the validity of QRS results [26] for the λ

scaling of both the EWP and the HHG yields. In Sec. V we
summarize our results.

II. DEFINITION OF THE HHG YIELD

The scaling of the yield of high-harmonic radiation as a
function of the wavelength λ of the driving infrared laser
depends on the precise definition of the HHG yield. In accord
with Refs. [1,15–18], we analyze the integrated harmonic yield
�Y , which is defined as the energy radiated per unit time by
the target atom (subjected to a laser pulse of duration T ) into
a fixed harmonic energy range [E1; E2],

�Y = 1

T

∫ E2

E1

ρ(E�)dE�, (1)

where ρ(E�) is the spectral density of the emitted radiation.
When the duration of the driving pulses is kept fixed in terms
of the number of optical cycles as assumed in the following,
T scales linearly with λ. Consequently, the prefactor T −1 in
Eq. (1) introduces one inverse power of λ to the overall scaling
of �Y . Note that Ref. [26] states that for λ � 3 μm there is a

slower decrease in the HHG yield with increasing λ than found
for λ � 2 μm in earlier investigations [1,15,16,18]. This was
shown in Ref. [32] to be due to the use in Ref. [26] of a different
definition of the HHG yield from that in Eq. (1). (Specifically,
the authors of Ref. [26] considered a nonintegrated HHG yield
Y for a fixed harmonic energy). Using the definition (1) for
�Y , the wavelength scaling results of Ref. [26] for the HHG
yield agree with previous wavelength scaling results (see Ref.
[32] for details).

For the analytic investigation of the scaling, we make use
of the approximate factorization of ρ(E�) [27–29],

ρ(E�) = w(E,F )σ (r)(E), (2)

in terms of the field-free photorecombination cross section
σ (r) for an electron with energy E and the spectral distribution
of the returning EWP w(E,F ) with E = E� − Ip. This
factorization is supported by comparison with numerical
solutions of the TDSE and represents the key ingredient for the
QRS theory. Since σ (r)(E) is independent of the parameters
characterizing the laser field, the factor σ (r) in Eq. (2) does not
contribute to the λ scaling. Specifically, for comparison with
our numerical TDSE calculations we will employ the cross
section for recombination into the ground state of hydrogen,

σ (r)(E) = 32πα3 e−4q−1arctan(q)

q2(q2 + 1)2(1 − e−2π/q)
, (3)

where q = pa0/�, α = e2/(�c), and p = √
2mE.

The remaining λ dependence of �Y therefore originates
exclusively from the EWP, which we analyze in detail in the
next section.

III. ANALYTIC LOW-FREQUENCY RESULTS FOR THE
EWP AND THE HHG YIELD

Analytical approximations to w(E,F ) have been presented
in Refs. [30,31]. They are based upon a quantum-mechanical
treatment of an exactly solvable model for an electron in both a
short-range potential and a strong laser field [33] and form the
starting point of the present investigation of the λ scaling for
short low-frequency midinfrared pulses. The analytic model
results are extended to the case of HHG by neutral atoms,
and the accuracy of the extended results is confirmed by
comparison with HHG results obtained by a numerical solution
of the TDSE.

A. Definition of the phase-averaged EWP

We consider an atom with an ionization potential Ip

exposed to an intense linearly polarized laser pulse with
electric field F(t) = ẑF (t), where F (t) has a peak value F0,
carrier frequency ω or wavelength λ = 2πc/ω, and duration
T . Within the classical three-step scenario for HHG, the
EWP can be expressed in terms of a coherent superposition
of contributions from returning closed classical orbits j of
electrons escaping from and recombining with the atoms
as [31]

w(E,F ) =
∑
j,k

sjk
√

wjwk cos(ϕj − ϕk), (4)
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where the phase ϕj for the j th closed orbit is a rapidly varying
function of the path index j (see Eq. (55) for ϕj in Ref. [31])
and where sj,k = 1 for j = k. In our analysis of the λ scaling
of HHG, we neglect the fine-scale interference features of
HHG spectra. Thus, we average Eq. (4) over the phase ϕj ,
which is equivalent to the substitution cos(ϕj − ϕk) → δj,k .
The phase-averaged EWP is then given by a sum of partial
EWPs wj ,

w(E,F ) =
∑

j

wj . (5)

The weight wj with which each classical orbit contributes is
given by [20]

wj = πE�

2�ω2
IjWj , (6)

where Ij and Wj are the ionization and propagation factors,
respectively.

B. λ scaling of the partial EWPs w j

Within the single-active-electron approximation, the ion-
ization factor Ij in Eq. (6) can be approximated in terms of the
quasiclassical static tunneling ionization rate �st of an initially
bound state ψκlml

(r) by [34]

Ij = 4γ̃ 2
j �st(F̃j )

πκvat
, γ̃j =

√
2mIp ω

|e|F̃j

, (7)

�st(F̃j ) = Ip

�
(2l + 1)C2

κl

(
2Fat

F̃j

)2ν−1

e−2Fat(κa0)3/(3F̃j ), (8)

where F̃j = |F (t (j )
i )|, and vat = e2/� and Fat = m2e5/�

4 are
the atomic units of velocity and field strength. The asymptotic
behavior of ψκlml

(r) for large r underlying Eq. (7) is given by

ψκlml
(r)|κr�1 = Cκl

√
κr−1(κr)νe−κrYlml

(r̂), (9)

where Cκl is a dimensionless asymptotic coefficient, l

is the electron’s angular momentum, κ = √
2mIp/�, ν =

Z/(κa0), Z is the charge of the atomic core, and a0 =
�

2/(me2) is the Bohr radius. In what follows, we consider
only initial states (9) with ml = 0 since the contributions
to the HHG yield from magnetic sublevels with ml �= 0 are
strongly suppressed in the low-frequency limit [35]. The
overall λ scaling of the ionization factor (7) is obviously
Ij ∝ ω2 ∝ λ−2.

The propagation factorWj is expressed in terms of the Airy
function Ai(x) [31],

Wj = p

m

Ai2(ξj )

(vat�tj )3ζ
2/3
j

, ξj = E − E
(j )
max

ζ
1/3
j Eat

, (10)

E(j )
max = Ecl

max

(
t

(j )
i ,t (j )

r

) − F
(
t

(j )
r

)
F

(
t

(j )
i

)Ip, (11)

ζj = −F 2
(
t

(j )
r

)
2F 2

at

(
1 − F

(
t

(j )
r

)
F

(
t

(j )
i

) + Ḟ
(
t

(j )
r

)
F

(
t

(j )
r

)�tj

)
, (12)

where �tj = t
(j )
r − t

(j )
i is the time interval between tunnel

ionization and recombination of the j th trajectory and Eat =
e2/a0 is the atomic unit of energy. The explicit form (10) of the

propagation factor Wj for the j th orbit was obtained assuming
that the kinetic energy E at the instant of recombination t

(j )
r is

not too far from the maximum energy E
(j )
max gained in the

laser field, where max{E(j )
max} determines the cutoff of the

harmonic spectrum. The magnitude of E
(j )
max is controlled by

the maximum classical kinetic energy of a free electron (having
zero initial velocity at the time t

(j )
i and returning to the same

spatial point at the time t
(j )
r ) gained in the laser field [31],

Ecl
max

(
t

(j )
i ,t (j )

r

) = e2

2mc2

[
A

(
t (j )
r

) − A
(
t

(j )
i

)]2
, (13)

where A(t) is the vector potential of the laser pulse F (t) =
−∂A(t)/(c ∂t). The pair of times {t (j )

i ,t
(j )
f } satisfies the coupled

system of two classical equations,

A
(
t

(j )
i

) − 1

t
(j )
r − t

(j )
i

∫ t
(j )
r

t
(j )
i

A(t)dt = 0, (14a)

1

c

A
(
t

(j )
r

) − A(t (j )
i )

t
(j )
r − t

(j )
i

+ F
(
t (j )
r

) = 0. (14b)

We emphasize that the index j in the present analysis
enumerates all closed electron trajectories occurring during
the laser pulse [i.e., the real solutions of the classical equations
(14)], whereas in Ref. [31] only those trajectories were
included for which the ionization (t (j )

i ) and recombination
(t (j )

r ) times occur during neighboring [j th and (j + 1)th]
half-cycles of the laser pulse. For this reason, the latter results
are relevant only in the high-energy region of short-pulse HHG
spectra.

If the vector potential A(t) depends on the time only through
the combination ωt [so that the substitution t → ω−1 t̃ removes
the ω dependence from the time dependence of A(t)], then the
system of Eqs. (14) shows explicitly that the times t

(j )
i and

t
(j )
r are linear functions of ω−1. Moreover, these times do not

depend on the peak value of the laser field. Indeed, converting
the system of Eqs. (14) to dimensionless variables by dividing
the vector potential by A0 = cF0/ω, the electric field by
F0, and the time by ω−1, the resulting dimensionless system
depends only on the shape of the laser pulse. In most cases, the
vector potential can be well approximated by a function of ωt

(excluding, e.g., the case of a chirped pulse). Approximating
the time dependence of A(t) by such a function, the λ scaling
of the energy Ecl

max coincides with that of the ponderomotive
energy Up = e2F 2

0 /(4mω2) ∝ λ2,

Ecl
max

(
t

(j )
i ,t (j )

r

) = εjUp ∝ λ2, (15)

where the prefactor εj depends neither on the carrier frequency
nor on the peak value F0. Thus, Ecl

max increases quadratically
with increasing laser wavelength λ. The λ scaling of the
propagation factor follows now from the asymptotic expansion
of the Airy function in Eq. (10) for large negative arguments,

ξj = E − E
(j )
max

ζ
1/3
j Eat

< −1. (16)

Equation (16) implies that the difference between the energy E

of the recombining electron, and its maximum value E
(j )
max
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is large on the energy scale given by ∼ (F/Fat)2/3Eat [see
Eq. (12)]. For moderate driving laser field strengths corre-
sponding to intensities �1014 W/cm2, Eq. (16) is already
satisfied for energy differences as small as a few eV.

Employing the asymptotic expression of the Airy function
and averaging it over its rapid oscillations,

Ai2(−x) ≈ sin2
(

2
3x3/2 + π

4

)
π

√
x

≈ 1

2π
√

x
, (17)

the expression (10) can be simplified to

Wj ≈ p ω3

2πm(vat�τj )3ζ
1/2
j

√
Eat

E
(j )
max − E

, (18)

where �τj = ω(t (j )
r − t

(j )
i ) is independent of the carrier

frequency ω (since t
(j )
i,r ∝ ω−1 ). [Note that contributions

for which E� > (Ip + E
(j )
max) are exponentially suppressed.]

In the low-frequency limit, E
(j )
max ≈ Ecl

max(t (j )
i ,t

(j )
r ) ∝ Up � Ip

so that, using the definition (15), Eq. (18) can be approxi-
mated by

Wj ≈ Cjω
3

√
Ẽ

εj − Ẽ
θ (−ξj − 1), (19)

where Ẽ = E/Up is the Up-scaled return energy and Cj =
(πv2

at�τ 3
j

√
2ζj )−1. In Eq. (19) we have multiplied Eq. (18) by a

Heaviside cutoff function θ (x) to restrict nonzero contributions
Wj to values of the arguments of the Airy functions well
separated from the region near −1 where the asymptotic
expansion (17) breaks down and Eq. (18) becomes singular. In
the low-frequency limit Ẽ < εj , Wj scales as Wj ∝ ω4 since
Ẽ ∝ ω2, whereas for fixed Ẽ no obvious universal scaling
emerges.

Combining now Eqs. (6), (7), and (19) leads to an
approximate analytic expression for the weight of the wave
packet wj for the j th trajectory,

wj ≈ θ
(
εjUp − E − ζ

1/3
j Eat

)
Djω(Ẽ + Ip/Up)

√
Ẽ

εj − Ẽ
,

(20)
with

Dj = Cj

2

(
F0

F̃j

)2
�κ

mvat
�st(F̃j ). (21)

From Eq. (20), two frequency scalings can be obtained for
the averaged EWP in the low-frequency limit (cf. Ref. [26]):
(i) for a fixed electron energy E and (ii) for a fixed Up-scaled
energy Ẽ. Since Ẽ ∝ ω2, the first case corresponds to the limit
Ẽ 
 εj for which we can approximate Eq. (20) by

wj ≈ ωDj (E + Ip)
√

E

U
3/2
p

√
εj

∝ ω4(E + Ip)
√

E. (22)

Consequently, the phase-averaged wave packet (5) scales as

w(E,F ) = Dω4(E + Ip)
√

E ∝ λ−4, (23)

where the factor,

D = 8m3/2

|e|3F 3
0

∑
j

Dj√
εj

(24)

depends only on the shape and intensity of the laser pulse but
not on λ. Because of the λ independence of the recombination
cross section, the same scaling holds for the spectral density
of the harmonic radiation in Eq. (2),

ρ(E�) = Dω4(E + Ip)
√

Eσ (E) ∝ λ−4. (25)

Considering now the second case, i.e., a fixed Ẽ, Eq. (20)
implies, to leading order, a linear scaling of the weight of the
wave packet with ω, wj ∼ ω ∼ λ−1. Unlike the first case, the
prefactor is not universal but depends on the properties of the
path distribution,

w(E,F ) = ω(Ẽ + Ip/Up)
√

Ẽ

×
∑

j

Dj θ
(
εjUp − E − ζ

1/3
j Eat

)
√

εj − Ẽ

. (26)

For large ponderomotive energies compared to the initial
binding energy Ip/Up 
 1, the averaged wave packet (26)
scales with the scaled energy Ẽ, to leading order, as w(E,F ) ∝
Ẽ3/2.

C. λ scaling of the HHG yield �Y
In accordance with Eqs. (1) and (2), the ω-scaling law

for the EWP allows one to predict the wavelength scaling
law for the HHG yield. Indeed, according to Eq. (23), the
phase-averaged EWP scales as λ−4, whereas T −1 ∝ λ−1 for a
fixed number of cycles in a pulse. Thus the analytical scaling
law for �Y is

�Y ∝ λ−5. (27)

In Sec. IV we show that our analytically derived scaling law
(27) agrees well with TDSE results for λ � 4 μm.

IV. COMPARISONS OF ANALYTIC SCALING LAWS WITH
TDSE AND QRS RESULTS

In order to check the accuracy of our approximate analytic
results for the EWP and the resulting λ scaling (27) of the
harmonic yield �Y , we compare the analytic predictions in
Eqs. (23) and (26) for the scaling of the phase-averaged EWP
w(E,F ) with corresponding results from full TDSE calcula-
tions for both H and He atoms. For the TDSE calculations
of harmonic spectra, we adopt the same method as was used
recently to investigate below-threshold harmonic generation
[36]. Essentially, the HHG spectrum is evaluated by computing
the Fourier transform of the electron’s acceleration, which is
recorded at each instant during the evolution of the electron
wave packet. The details of our numerical solution of the TDSE
can be found in Refs. [37–39]. In brief, we expand the wave
function �(r,t) in spherical harmonics, and the radial wave
functions are discretized using the finite difference method.
The wave function �(r,t) is propagated in real time using
the split-operator method with a time step of 0.01 a.u. The
maximum radial grid point is taken up to 6000 a.u. with a
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grid spacing of 0.1 a.u. An absorption function is applied near
the end of the radial box to avoid reflections at the box edge.
The maximum angular momentum Lmax is taken to be 500
in order to obtain converged HHG spectra at even the longest
wavelength (λ = 4 μm) considered in the present paper. All
other parameters are carefully chosen to make sure that all
results are fully converged.

To compare our analytically derived scaling laws with
QRS results [26] discussed in the Introduction, the TDSE
was solved for the same laser pulse as in Ref. [26], i.e.,
for a trapezoidal pulse with a two-cycle flattop of intensity
I = 1014 W/cm2 and half-cycle ramps for turn on and turn off.
We note that the oscillations of the HHG results were smoothed
in Ref. [26] by using Bezier interpolation whereas we present
our TDSE results for the actual HHG spectra calculated. The
TDSE quantum prediction for the wave packet wQM (E,F ) is
determined from the numerical result for the harmonic spectral
density ρ(E�) using Eq. (2),

wQM (E,F ) = ρQM (E�)

σ (r)(E)
. (28)

(Note that wQM can alternatively be directly estimated from the
quantum phase-space distribution of the returning wave packet
[40] without involving the recombination cross section).

In Fig. 1 we compare our Up-scaled expression (26) for the
averaged quasiclassical EWP w(E,F ) with wQM for both H
and He atoms. To remove the linear dependence of the result
(26) on the carrier frequency, we normalize the calculated
EWPs for different wavelengths by the factor ω and plot
them on the Ẽ ≡ E/Up scale. As shown in Fig. 1(a) for the
H atom, our averaged EWP analytic result (26) agrees well
with the TDSE results, and the shape of the ratio w(E,F )/ω
is essentially independent of the carrier wavelength. The
dashed-dotted (red) line in Fig. 1(b), also for the H atom,
corresponds to the limit (23), whose smooth dependence on the
scaled electron energy Ẽ contrasts with the spikelike feature
(εj − Ẽ)−1/2 predicted by Eq. (26) whenever Ẽ approaches
the maximum value εj for a given closed orbit j .

In Fig. 1(b), five such threshold energies can be observed for
which a spike occurs: ε1 ≈ 0.09, ε2 ≈ 0.65, ε3 ≈ 1.54, ε4 ≈
2.40, and ε5 ≈ 3.17. (Note that values for the threshold
energies ε3–ε5 have been reported in Ref. [41], taking into
account quantum corrections). These threshold energies are
related to the maxima of the return energies (in units of Up)
that the active electron gains by moving in the laser field
along the 1 � j � 5 closed classical trajectories. These closed
trajectories may be single-return trajectories, which start at the
maximum magnitude of the electric field |F (tj )| of the j th
half-cycle of the laser pulse and finish near the end of the next
(neighboring) (j + 1)th half-cycle as well as multiple-return
trajectories for which the excursion time is larger than the
period T = 2π/ω of the laser pulse. In particular, for the
EWP in Fig. 1(b), ε5 is related to the single-return trajectory
on the flattop of the pulse intensity, ε1 and ε3 correspond
to double-return trajectories, and ε2 and ε4 correspond to
triple-return trajectories. Note that the spikelike behaviors
of the EWP (or the HHG yield) become more pronounced
as the laser wavelength increases. They have been observed
previously in both numerical and analytical HHG calculations
[12,31]. The present analysis shows that between the two

FIG. 1. (Color online) Comparison of different theoretical results
for the scaled EWP w(E,F )/ω (arb. units) as a function of the
scaled electron energy Ẽ ≡ E/Up . (a) Comparison of TDSE results
wQM (E,F ) for the H atom with the analytic results for three different
carrier wavelengths. Filled areas are the TDSE results for λ = 3 μm
(orange filled area), λ = 3.4 μm (red filled area), and λ = 3.8 μm
(blue filled area) with each for the case of a trapezoidal pulse with a
two-cycle flattop of intensity I = 1014 W/cm2 and half-cycle ramps
for turn on and turn off. Black lines: analytic results for w(E,F )/ω,
where w(E,F ) is given by Eq. (26). (b) For the case of λ = 3.8 μm,
comparison of the TDSE (blue filled area) and analytic results for
the H atom using Eq. (26) (black curve with spikes) with the
smooth dependence ∝

√
Ẽ(Ẽ + Ip/Up) [cf. Eq. (23)] indicated by the

dashed-dotted (red) line. Arrows mark the positions of the threshold
energies εj , 1 � j � 5 (see text for details). In each case the relative
TDSE results are multiplied by a single constant for comparison with
the analytic results. (c) Comparison of scaled EWPs w(E,F )/ω for
the H and He atoms. Blue filled area: TDSE results for the H atom
for a laser field with intensity I = 1014 W/cm2 and λ = 3.8 μm;
red filled area: TDSE results for the He atom for a laser field with
intensity I = 2 × 1014 W/cm2 and λ = 3.2 μm; black line: analytic
result (26) for the EWP calculated for the He atom in a laser field
with I = 2 × 1014 W/cm2 and λ = 3.2 μm.

023409-5



M. V. FROLOV et al. PHYSICAL REVIEW A 92, 023409 (2015)

λ (nm)

Δ
Y

(a
.u

.)

1500 2000 2500 3000 3500 4000

10-18

10-17

10-16

10-15

FIG. 2. (Color online) Comparison of TDSE results (symbols)
for the HHG yield �Y defined in Eq. (1) with scaled functions
∝ λ−μ (χ 2-fitted solid lines) for two different ranges of the harmonic
energies in Eq. (1). Circles: � ∈ [20,50] (eV), μ = 5.1; squares:
� ∈ [40,70] (eV), μ = 5.3. Results are for the H atom in a two-cycle
pulse with I = 1 × 1014 W/cm2 (as in Ref. [26]).

threshold energies ε3 and ε5 (i.e., for 1.5 � Ẽ � 3.17 ), the
EWP can be well approximated by

w(E,F ) ∝ Ẽ1.5√
ε5 − Ẽ

, (29)

where we have neglected the correction term Ip/Up in
comparison with Ẽ in Eq. (26). The result (29) differs from
that in Ref. [26] in which a scaling e1.2Ẽ is proposed for this
region. We also observe in Fig. 1(b) that the smooth curve
[cf. Eq. (23)] representing the limit Ẽ 
 εj approximates the
dependence of the EWP on the scaled energy Ẽ quite well
with the exception of the regions of spikelike behavior. Since
harmonic energies may be of the same order of magnitude as
Ip, we have kept the term ∼Ip

√
E in Eq. (23). Our calculations

show that this term can be neglected for Ip/Up 
 10−1, which
corresponds to λ � 5 μm for an intensity of I = 1014 W/cm2

and for hydrogen. [Note that Ip/Up ≈ 10−1 for the data in
Fig. 1(b).] Thus, the scaling w(E,F )/ω ∝ Ẽ1.5 provides a
good approximation only in the deep low-frequency regime
for harmonics with energies E� � Ip.

In Fig. 1(c) we compare the scaled EWPs for the H and
He atoms. The HHG spectrum for He was calculated in the
single-active-electron approximation using the potential,

V (r) = −1

r

(
1 +

[
1 + 27

16
r

]
e−27/8r

)
. (30)

This potential supports a ground s state with binding energy
0.904 a.u., which is close to the recommended value 0.903 a.u.
Our comparison shows that, in the long-wavelength limit, the
scaled EWP is universal in terms of the scaled energy E/Up

[26].
In Fig. 2 we present TDSE results for the harmonic yield

�Y of the H atom as defined in Eq. (1) for wavelengths up
to λ = 4 μm. The TDSE numerical results show that with in-
creasing λ, �Y decreases slightly faster than the λ−5 behavior
predicted by our analytical result (27). Specifically, fits to the
TDSE data of a wavelength dependence ∝ λ−μ for two ranges
of the harmonic energies � ∈ [20,50] and � ∈ [40,70] (eV)
find that μ = 5.1 and μ = 5.3, respectively, as shown by
the two curves in Fig. 2. Possible sources for these minor

discrepancies include residual numerical uncertainties in the
TDSE calculation, which become increasingly challenging as
λ increases. Likewise, the quasiclassical approximation and
the restriction to leading terms in the asymptotic expansion
underlying our analytic result may contribute to this deviation.

V. SUMMARY

In this paper, we have derived simple analytic expressions
[Eqs. (23) and (26)] for the returning EWP in the low-
frequency (or long-wavelength) limit that allows one to predict
the λ scaling (27) of the harmonic yield. A major simplification
in our derivations was achieved by neglecting all interference
effects in HHG spectra. Hence, our results for the EWP cannot
be used to describe the fine-structure features of HHG spectra.
Nevertheless, these analytic formulas for the EWP describe
well the shapes of the HHG spectra (averaged over their rapid
oscillations) as we have demonstrated in Fig. 1 by their nearly
perfect matching with TDSE results for both H and He atoms.
Moreover, although the result (26) for the (phase-averaged)
EWP does not include interference effects, it remains sensitive
to different closed classical electron trajectories, which are
responsible for the spikelike behaviors of the HHG spectra as
shown in Fig. 1(b). Equation (26) shows explicitly that the
shape of the EWP depends on the shape of the laser pulse,
which governs the magnitudes of the Up-scaled threshold
energies εj . These energies mark the positions of the spikes in
the HHG spectra which are related to the maximum energies
εjUp that the active electron can gain by moving along the
j th closed trajectory. Neglecting the spikelike features, the
EWP can be further simplified and is well represented by
Eq. (23). This result for the EWP shows explicitly that,
in the deep tunneling regime (Ip 
 Up ) and for electron
energies in the interval Ip 
 E 
 3.17Up, the energy scaling
of the EWP is given by E1.5, independent of the target and
the pulse shape. This fact analytically justifies the result of
Ref. [26], which was obtained based on numerical analysis
of TDSE results. However, our analytic result (26) predicts a
dependence of the EWP on Ẽ in the interval 1.5 < Ẽ < 3.17
[see Eq. (29)] different from the empirical result ∝ e1.2Ẽ

suggested in Ref. [26].
For fixed absolute values of the electron energy E, the EWP

is shown to scale as λ−4. This result is close to the result found
numerically in Ref. [26], i.e., λ−4.2. For a fixed Up-scaled
energy Ẽ, our results show that the EWP scales as λ−1, which is
also close to the result of Ref. [26], i.e., λ−1.2. Employing these
results we have shown both analytically and numerically that
the λ-scaling results for the HHG yield found in prior works
[1,10,15–18] remain valid also in the midinfrared region as
confirmed by the excellent agreement of our analytical results
with TDSE calculations of HHG spectra for wavelengths λ �
4 μm (see Fig. 2).
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Gordon, and F. X. Kärtner, Scaling of high harmonic generation
conversion efficiency, J. Phys. B 44, 045601 (2011).
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