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Detailed investigation of low-energy positronium-hydrogen scattering
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We investigate the four-body Coulomb process of low-energy elastic positronium-hydrogen (Ps-H) scattering
below the Ps(n = 2) excitation threshold using scattering wave functions that include Hylleraas-type correlation
terms. Using the complex Kohn variational method, we compute phase shifts through the 1,3H wave and obtain
highly accurate 1,3S- and 1,3P -wave phase shifts. The complex Kohn variational results compare well to a number of
other calculations for this system. We present elastic differential, elastic integrated, and momentum transfer cross
sections, and for the singlet, resonances through the 1F wave. The differential cross section exhibits interesting
features, including a change from slightly backward peaked to forward peaked scattering as the energy of the
incident positronium increases and rich structure due to multiple resonances near the Ps(n = 2) threshold. We
also give a detailed analysis of the scattering lengths and effective ranges using multiple effective range theories.
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I. INTRODUCTION

Positronium (Ps) scattering from atoms and molecules
is an area of current experimental and theoretical interest.
The development of energy-tunable ortho-Ps beams [1–5]
has enabled measurements to be made of Ps scattering from
the inert gases He, Ne, Ar, Kr, and Xe [4–11] and the
molecules H2, N2, O2, CO2, H2O, and SF6 [4,6,8,9,11–13].
Cross sections for Ps scattering from H have not been
measured due to the difficulty of creating an atomic H beam,
although the binding energy of positronium hydride (PsH) has
been measured in the reaction of a positron with methane,
e+ + CH4 → CH3

+ + PsH [14]. The low-energy region is of
particular interest, because in this energy range, positron and
electron correlations are important. We present our work of the
application of the S-matrix complex Kohn variational method
to elastic Ps(1s)-H(1s) scattering for the energy range up to the
excitation threshold of Ps(n = 2) at 3

16 a.u. (5.102 eV) [15–20].
Ps-H scattering is a fundamental four-body Coulomb

process. The Kohn and inverse Kohn variational methods
have previously been applied to Ps-H collisions by Van Reeth
and Humberston [21,22], who computed 1,3S and 1,3P phase
shifts. We extend their 1,3S and 1,3P variational calculations
in multiple ways. In addition to the Kohn and inverse Kohn
variational methods, we implement the generalized Kohn
method, and the complex Kohn methods for the S and T

matrices. The complex Kohn methods for the S and T matrices
are known to suffer from far fewer anomalous singularities
than the Kohn, inverse Kohn, and generalized Kohn variational
methods [23–25]. Another extension that we consider is to
use the procedure by Todd [26] to systematically remove
short-range terms that cause linear dependence. This enables
us to compute the phase shifts with more short-range Hylleraas
terms than the earlier Kohn and inverse Kohn variational
calculations [21,22]. We add the asymptotic expansion of
Drake and Yan [27,28] to improve the accuracy of matrix
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elements containing only short-range terms. We significantly
increase the number of integration points for matrix elements
that involve the long-range terms, along with implementing
a procedure to accelerate the convergence of these integrals
(introduction and subsequent removal of exponential terms
to the Gauss-Laguerre quadratures). We also extend the
calculations to the next four partial waves through to the H

wave, which enables us to calculate the elastic differential,
elastic integrated, and momentum transfer cross sections.

We present in this paper results we generally obtain using
the S-matrix complex Kohn variational method for Ps-H
scattering. We confirm the previously calculated resonances
for the first four partial waves and compare the resonance
parameters to those of the earlier Kohn and inverse Kohn [22],
close coupling (CC) [29], and complex rotation calcula-
tions [30–33]. In addition, we compute the scattering lengths
and effective ranges using multiple effective range theories.

We use the short-range part of the full scattering wave
function to compute the binding energy of PsH. The binding
energy of PsH, Eb, has been calculated using various methods.
Ho [34] performed a variational calculation with a Hylleraas-
type basis set, and Yan and Ho [30] later did a more extensive
calculation. Mitroy [35] used the stochastic variational method
(SVM) with 1800 explicitly correlated Gaussians (ECGs), and
Bubin and Adamowicz [36] found the most accurate value to
date using 5000 ECGs in a variational calculation.

There have been a number of calculations for Ps-H
scattering. A much earlier Kohn variational calculation was
performed by Page [37] for the Ps-H scattering lengths. Drach-
man and Houston [38,39] used a stabilization method with an
effective range theory (ERT) expansion. At low energies, diffu-
sion Monte Carlo (DMC) [40], the SVM [41,42], CC [29,43–
48], static exchange [49,50], Kohn variational [21,22,37],
and inverse Kohn variational [21,22] methods have been
applied. The SVM with stabilization techniques was used to
compute low-energy phase shifts and scattering lengths for
Ps-H collisions [41,42].

Massey and Mohr [51] considered Ps-H inelastic scattering
using the first Born approximation and computed the elastic
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cross section by making use of the Born-Oppenheimer (BO)
approximation [51–56]. More recently, McAlinden et al. [57]
applied the first Born approximation to compute the total cross
section for Ps(1s)-H(1s) scattering. Blackwood et al. [47]
performed an elaborate CC calculation for Ps scattering from
H, which took into account excitation and ionization of both the
projectile and target. They considered two different coupling
schemes. The first one, which they refer to as 9Ps9H, included
9 eigen- and pseudostates of Ps and also of H. The second
scheme, which they refer to as 14Ps14H, was used for S-wave
scattering only and included 14 eigen- and pseudostates of
Ps and also of H. Good agreement was obtained between the
CC [47] and the SVM [42] for the 1,3S-wave scattering lengths
and phase shifts. In another paper, Blackwood et al. [48]
considered the importance of including the H− channel in
a 22Ps1H coupling scheme, comparing with the previous
22Ps1H calculations of Campbell et al. [44]. Walters et al. [29]
extended the earlier CC calculations [47] to include the e+-H−
channel [48] and compared their results for the S wave with
the Kohn variational results [21]. A recent calculation of Ps-H
scattering by Zhang and Yan [58] used the confined variational
method (CVM) to calculate phase shifts for two momenta for
both 1S and 3S. This method provides accurate results but has
the drawback of being very computationally expensive.

The Kohn variational method gives rigorous upper bounds
on the scattering lengths and, except for Schwartz singularities,
empirical lower bounds on the phase shifts. This means that the
wave function can be systematically improved to the converged
results. The Kohn and inverse Kohn variational methods are
known to yield accurate results and have provided benchmark
results [21,22] with which results from other calculations can
be compared.

We express phase shifts in radians and use atomic units
throughout unless we state otherwise. For conversions to
electron volts (eV) we use the conversion factor 1 a.u. =
27.21138505(60) eV [59].

II. THEORY

A. The positronium-hydrogen system and trial
scattering wave functions

We investigate low-energy elastic scattering of ground-state
Ps with ground-state H, Ps(1s) + H(1s), for incident energies
up to the excitation threshold of Ps(n = 2). Previous work on
Ps-H scattering used the Kohn and inverse Kohn variational
methods [21,22]. Van Reeth and Humberston [60] used the
complex Kohn variational method for e+-He scattering. While
we generally present results in Sec. IV that we obtain using
the S-matrix complex Kohn variational method, in this section
we present a general wave function that can be used in the
Kohn variational method and a number of its variants, as we
describe in Sec. II B.

For S-wave Ps(1s)-H(1s) elastic scattering, the flexible
scattering wave function is given by

�
±,t
0 = S̃0 + L

±,t
0 C̃0 +

N(ω)∑
i=1

c±
i0φ̄i01, (1)

where the superscript t indicates that this is a trial wave func-
tion. The plus sign indicates the spatially symmetric singlet

FIG. 1. Positronium-hydrogen coordinate system.

case, and the minus sign indicates the spatially antisymmetric
triplet case. The total orbital angular momentum of the system
is equal to the orbital angular momentum � of the incoming
Ps(1s). We choose for the z component of the total orbital
angular momentum to be zero because of axial symmetry
of the scattering system [61]. For a trial wave function of
total orbital momentum equal to �, there are � + 1 types of
short-range terms of different symmetries [62–68]. However,
for partial waves � > 0, we consider a trial wave function of
the form

�
±,t
� = S̃� + L

±,t
� C̃� +

N(ω)∑
i=1

c±
i�φ̄i�1 +

2N(ω)∑
i=N(ω)+1

d±
i� φ̄i�2, (2)

where we neglect mixed symmetry terms for � � 2 as we
discuss later in this section. The scattering wave functions
contain both the long-range terms S̃� and C̃� and the short-
range terms φ̄i�k . The long-range terms of Eqs. (1) and (2) are
given by [

S̃�

C̃�

]
= u

[
S̄�

C̄�

]
=

[
u00 u01

u10 u11

][
S̄�

C̄�

]
, (3)

where

S̄� = 1 ± P23√
2

Y�0(θρ,ϕρ)	Ps(1s)(r12)	H(1s)(r3)
√

2κ j�(κρ) (4)

and

C̄� = −1 ± P23√
2

Y�0(θρ,ϕρ)	Ps(1s)(r12)

×	H(1s)(r3)
√

2κ n�(κρ)f�(ρ). (5)

Figure 1 gives the coordinate system for Ps-H. The vector
ρ = 1

2 (r1 + r2) is the position vector of the center of mass of
the Ps atom with respect to the proton, j�(κρ) and n�(κρ) are
the spherical Bessel and Neumann functions, respectively, and
Y�m(θρ,ϕρ) is the spherical harmonic, for which we use m = 0.
P23 is the exchange operator for the two indistinguishable
electrons, κ is the momentum of the incoming Ps(1s) atom, and
	Ps(1s)(r12) and 	H(1s)(r3) are the ground-state wave functions
of Ps and H, respectively. The shielding factor f�(ρ) removes
the singularity of the spherical Neumann function at the origin.
We choose it to have the form

f�(ρ) =
[

1 − e−μρ

(
1 + μ

2
ρ

)]m�

. (6)
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TABLE I. Nonlinear parameters α, β, γ , μ, integer power m�

in the shielding function, ω, and the number of terms N ′(ω) of
each symmetry in the wave function for each partial wave. Numbers
marked with a star indicate the restriction in the r3 power described
in Sec. III C.

Partial wave ω N ′(ω) α β γ μ m�

1S 7 1505 0.568 0.580 1.093 0.9 1
3S 7 1633 0.323 0.334 0.975 0.9 1
1P 7 1000 0.397 0.376 0.962 0.9 3
3P 7 1000 0.310 0.311 0.995 0.9 3
1D (κ < 0.3) 6 916 0.359 0.368 0.976 0.7 7
1D (κ � 0.3) 6 913 0.600 0.368 0.976 0.7 7
3D (κ < 0.3) 6 919 0.356 0.365 0.976 0.7 7
3D (κ � 0.3) 6 913 0.600 0.365 0.976 0.7 7
1F (κ < 0.4) 5 385� 0.359 0.368 0.976 0.7 7
1F (κ � 0.4) 5 462 0.500 0.600 1.100 0.7 7
3F (κ < 0.4) 5 385� 0.356 0.365 0.976 0.7 7
3F (κ � 0.4) 5 462 0.600 0.365 0.976 0.7 7
1G (κ < 0.45) 5 462 0.359 0.368 0.976 0.7 9
1G (κ � 0.45) 5 462 0.500 0.600 1.100 0.7 9
3G (κ < 0.45) 5 462 0.356 0.365 0.976 0.7 9
3G (κ � 0.45) 5 462 0.600 0.365 0.976 0.7 9
1H (κ < 0.5) 5 462 0.359 0.368 0.976 0.7 11
1H (κ � 0.5) 5 462 0.500 0.600 1.100 0.7 11
3H (κ < 0.45) 5 462 0.356 0.365 0.976 0.7 11
3H (κ � 0.45) 5 462 0.600 0.365 0.976 0.7 11

Table I shows the values of the nonlinear parameter μ and the
integer power m� that we use for each partial wave. The value
of m� is greater than or equal to (2� + 1), and if m� = (2� + 1),
then the first two terms of n�(κρ)f�(ρ) in a series expansion
about ρ = 0 has the same ρ dependency as the first two terms
of j�(κρ) in its series.

We consider the Kohn variational method and a number of
its variants, and u and L±

� take different forms depending on
which one:

generalized Kohn, L
±,t
� = K

′±,t
� = tan

(
δ

±,t
� − τ

)
,

u =
[

cos τ sin τ

− sin τ cos τ

]
, (7a)

generalized T -matrix complex Kohn,

L
±,t
� = T ′±

� = K
′±,t
�

/(
1 − iK

′±,t
�

)
,

u =
[

cos τ sin τ

− sin τ + i cos τ cos τ + i sin τ

]
, (7b)

generalized S-matrix complex Kohn,

L
±,t
� = −S ′±

� = −(
1 + iK

′±,t
�

)/(
1 − iK

′±,t
�

)
,

u =
[−i cos τ − sin τ −i sin τ + cos τ

i cos τ − sin τ i sin τ + cos τ

]
. (7c)

For the case of τ = 0, these give the Kohn, the T -matrix and S-
matrix complex Kohn variational methods, respectively. τ = π

2
in Eq. (7a) gives the inverse Kohn. The generalized Kohn u
matrix is identical to the matrix of order (2 × 2) given in
Eq. (2) of both Refs. [24,25]. We use the definition of the T

and S matrices given by Bransden [56]. The u matrix for the
Kohn in Eq. (7) is identical to that of Lucchese [23], but the u

matrices for the inverse Kohn, T -matrix complex Kohn, and
S-matrix complex Kohn are slightly different.

The short-range terms are highly correlated Hylleraas-type
functions, including all interparticle distances, given by

φ̄i�k = (1 ± P23)Y�0(θk,φk)e−(αr1+βr2+γ r3)

× r�
k r

ki

1 r
li
2 r

mi

12 r
ni

3 r
pi

13r
qi

23. (8)

The variable ω is a non-negative integer that determines the
maximum number of terms in the basis set. For a chosen value
of ω, the integer powers of ri and rij are constructed in such a
way that

ki + li + mi + ni + pi + qi � ω, (9)

with all ki,li ,mi,ni,qi and pi � 0 [22]. The first set of
short-range terms in Eq. (2), which we refer to as the first
symmetry, has k = 1 for i = 1 to N (ω). The second symmetry
set of terms exists for � > 0, with k = 2 and i = N (ω) + 1 to
2N (ω). These short-range terms represent the orbital angular
momentum as being placed mainly on either the positron
(r1) or on the electron in the Ps atom (r2, and r3 with
exchange). Van Reeth and Humberston [22] discussed the slow
convergence of their 3P phase shifts and suggested having a
trial wave function in which the orbital angular momentum is
placed mainly on the electron of the H atom (r3, and r2 with
exchange) and on the Ps atom (ρ, and ρ ′ with exchange).
We implement their suggestion for the singlet and triplet
P waves [20]. For ω = 6 we find that the phase shifts we
obtain with the alternative form of the trial wave function are
comparable to the phase shifts we obtain, and present in this
paper, using the trial wave function Eq. (2) with � = 1 [20].
In Sec. III we discuss numerical techniques that help us to
achieve well converged 1,3P -wave phase shifts.

For the D wave and higher partial waves, we do not
include short-range terms of mixed symmetry [62]. These,
however, have been included for the three-body system of
e+-H for the D wave in earlier work given in Refs. [63–67].
Van Reeth and Humberston [67] found that these mixed
symmetry terms contributed less than 1.5% to the K-matrix
elements for e+-H scattering, but this result now appears
to be in error. A preliminary investigation for e+-H [19,69]
with a corrected code has shown that these mixed symmetry
terms can be important for that system. This investigation
found that including the mixed symmetry terms changes the
phase shifts by less than 1% at κ = 0.1, and near the Ps
formation threshold, by about 10%. Fortunately, in the earlier
D-wave e+-H scattering calculation [66], the inclusion of
the virtual Ps terms represented sufficiently well the required
spatial configuration so that it compensated for the lack of
convergence due to the error in the previous inclusion of the
mixed symmetry terms. The final numerical results used in
Ref. [66] are within 1% to 2% of the phase shifts of the
preliminary calculation [69] that correctly includes the mixed
symmetry terms and for which the virtual Ps terms have been
found to make no significant contribution. Van Reeth and
Humberston [19,69] have included the mixed symmetry terms
for 1,3D-wave e−-H scattering. Their calculations revealed that
for the 1D wave, the inclusion of the mixed symmetry terms
has little effect on the phase shifts at very low energies but has
a more appreciable effect at higher energy. Interestingly, the
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investigation found that the mixed symmetry terms change the
3D-wave e−-H phase shifts less than 1% over the energy range
considered. As discussed in Sec. IV for Ps-H scattering, the D

wave contributes only a small amount to the elastic integrated
cross sections away from the 1D resonance. Therefore, due to
the complexity of including the mixed symmetry terms for the
four-body system, we do not explicitly include these terms for
Ps-H scattering for the D wave or for any partial wave � � 2.
For � � 1 we use the trial wave function we give in Eq. (2).

The Hamiltonian for the Ps-H system is

H = −1

2
∇2

r1
− 1

2
∇2

r2
− 1

2
∇2

r3

+ 1

r1
− 1

r2
− 1

r3
− 1

r12
− 1

r13
+ 1

r23
, (10)

which, using Jacobi coordinates for the kinetic energy operator,
can be expressed as

H = −1

4
∇2

ρ − 1

2
∇2

r3
− ∇2

r12

+ 1

r1
− 1

r2
− 1

r3
− 1

r12
− 1

r13
+ 1

r23
. (11)

B. Derivation of the Kohn variational method
and variants of the method

The derivation we present here for the Kohn variational
method and its variants follows a similar procedure given in
Refs. [23–25,61,68]. The functional for the full scattering wave
function in Eqs. (1) and (2) is (dropping the � subscript and
the ± superscript for brevity)

I [�t ] = (�t,L�t ) =
∫

�tL�t dτ, (12)

with

L = 2(H − E). (13)

The total energy of the system E is given by

E = EH + EPs + 1
4κ2 = EH + EPs + Eκ , (14)

where EH and EPs are the ground-state energies of H and Ps,
respectively, and Eκ is the kinetic energy of the incoming Ps
atom. The complex conjugate of �t that premultiplies L�t

is not taken for a consistent derivation of the complex Kohn
variational methods [23,25].

We assume the trial wave function �t is a small variation
of the exact wave function �, or

�t = � + δ�. (15)

It can be shown that the variation in the functional I , δI =
I [�t ] − I [�] = I [�t ], is given by

δI = (Lt − L) det u + I [δ�]. (16)

Here Lt represents the scattering parameters given by Eq. (7)
for the trial wave functions given by Eqs. (1) and (2), and
L represents the corresponding parameters [given by Eq. (7)
without the “t”] for the exact wave function. Neglecting the
second-order term in δ�, I [δ�], and realizing that I [�] = 0,
we obtain a functional for the variational Lv of

Lv = Lt − I [�t ]/ det u. (17)

Using the stationary property of the functional, we take the
derivative of Lv with respect to the linear parameters and set
the derivatives to zero, i.e., for the S wave,

∂Lv

∂Lt
= 0 and

∂Lv

∂ci

= 0, where i = 1, . . . ,N(ω).

(18)

Equation (18) yields the matrix equation for the S wave of⎡
⎢⎢⎢⎣

(C̃,LC̃) (C̃,Lφ̄101) · · · (C̃,Lφ̄N01)
(φ̄101,LC̃) (φ̄101,Lφ̄101) · · · (φ̄101,Lφ̄N01)

...
...

. . .
...

(φ̄N01,LC̃) (φ̄N01,Lφ̄101) · · · (φ̄N01,Lφ̄N01)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

Lt

c1
...

cN

⎤
⎥⎥⎦

= −

⎡
⎢⎢⎢⎣

(C̃,LS̃)
(φ̄101,LS̃)

...
(φ̄N01,LS̃)

⎤
⎥⎥⎥⎦. (19)

This matrix equation can be rewritten as AX = −B, as can
the corresponding matrix equations for � > 0. For higher
partial waves, the matrix equation looks the same but includes
the second symmetry short-range terms and corresponding
coefficients. Finally, for arbitrary �, we solve for Lv ,

Lv = − 1

det u
[BtrX + (S̃,LS̃)] (20)

to obtain the phase shifts by using the relation [23]

K� = tan δ� = (u01 + u11L�)(u00 + u10L�)−1, (21)

reintroducing the subscript �.

C. PsH bound state

As done earlier by Van Reeth and Humberston [21,22], we
use the short-range correlation part of the 1S-wave scattering
wave function to compute the binding energy Eb of the 1S PsH
system. This gives us some confidence of the reliability of
using these short-range terms for the Ps-H scattering problem.
The wave function we use for the bound state is

�+
B.S. =

N(ω)∑
i=1

c+
i0φ̄

+
i01, (22)

where φ̄+
i01 is given in Eq. (8) with � = 0.

D. Born-Oppenheimer approximation

Using the first term S̃� in the wave function, Eqs. (1)
and (2), for the Kohn variational method S̄�, gives the Born-
Oppenheimer (BO) approximation to tan δ�, namely

tan δBO
� = −(S̄�,LS̄�). (23)

E. Effective range theories

The scattering length [55] is defined as

a±
� = − lim

κ→0

tan δ±
�

κ2�+1
. (24)
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We consider the approximation with very small κ of

a±
� ≈ − tan δ±

�

κ2�+1
. (25)

To avoid confusion with the Bohr radius a0, we denote the
S-wave scattering length a�=0 as a.

For short-range interactions, the 1,3S-wave effective range
theory (ERT) expansion is given by [70,71]

κ cot δ±
0 = − 1

a± + 1

2
r±

0 κ2, (26)

where r±
0 is the effective range. This ERT expansion has been

used in the literature [21,29,42,47] to compute the scattering
length and effective range for Ps-H scattering. For the van der
Waals (vdW) interaction, which is the dominant long-range
interaction between Ps and H [21,72,73], the scattering length
is only defined for the S and P waves, and the effective range
is defined for only the S wave [74]. An S-wave ERT expansion
for the van der Waals interaction is given in Ref. [75], which
for Ps-H scattering where the mass of Ps is two, has the form

κ cot δ±
0 = − 1

a± + 1

2
r±

0 κ2 − 4πC6

15(a±)2
κ3 − 16C6

15a± κ4 ln (κ).

(27)
We use the van der Waals coefficient of C6 = 34.78473 a.u.,
as given by Martin and Fraser [76].

Gao [77] has developed a quantum defect theory (QDT)
for an attractive r−6 potential, obtaining an equation relating
the tangent of the phase shifts to elements of a Z matrix (see
Ref. [77]) and an analytic function of energy K0

� [78],

tan δ� = [
Zff − K0

� Zgf

]−1[
K0

� Zgg − Zfg

]
. (28)

K0
� can be expanded in powers of the energy [78] of the

incoming Ps atom as

K0
� (Eκ ) = K0

� (0) + K0
�

′
(0)Eκ + · · · . (29)

We retain the first two terms in the expansion and determine
the coefficients K0

� (0) and K0
�

′
(0) by fitting the phase shifts

to Eq. (29). We compute the 1,3S and 1,3P scattering lengths
and 1,3S-wave effective ranges using the expressions given by
Gao [78], which relates these quantities to the coefficients.

We also obtain an estimate of r+
0 by using the following

equation from Ref. [47]:

r+
0 = a+√

4Eb − 1

2a+Eb

. (30)

In this equation we use our result of Eb and of a+ that we
obtain using Eq. (26) for the range κ = 0.001–0.009.

III. NUMERICS

We present briefly the numerical techniques below. Details
can be found in Ref. [20].

A. Short-range–short-range integrations

For the 1S PsH bound state and 1,3S Ps(1s)-H(1s) elas-
tic scattering calculations, we use the efficient asymptotic
expansion method presented by Drake and Yan [27] for the

evaluation of correlated integrals of the form

I (j1,j2,j3,j12,j23,j31; ᾱ,β̄,γ̄ )

=
∫

dr1dr2dr3r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−(ᾱr1+β̄r2+γ̄ r3) . (31)

These integrals arise from evaluation of the matrix elements
(φ̄i�k,Lφ̄j�k), (φ̄i�k,H φ̄j�k), and (φ̄i�k,φ̄j�k), where H is the
full Hamiltonian given in Eqs. (10) and (11). The relationship
between ᾱ and α can be seen by considering these matrix
elements, as can that of β̄, β, γ̄ , γ , and the ri and rij exponents.
We also use the recursion relations of Pachucki et al. [79] to
confirm the calculations of the short-range integrals for the S

wave and P wave.
For � > 0, the short-range integrals have the form of

I (�′
1m

′
1,�

′
2m

′
2,�

′
3m

′
3; j1,j2,j3,j12,j23,j31; ᾱ,β̄,γ̄ )

=
∫

dr1dr2dr3r
j1
1 r

j2
2 r

j3
3 r

j12
12 r

j23
23 r

j31
31 e−(ᾱr1+β̄r2+γ̄ r3)Y ∗

�′
1m

′
1
(r1)

×Y ∗
�′

2m
′
2
(r2)Y ∗

�′
3m

′
3
(r3)Y�1m1 (r1)Y�2m2 (r2)Y�3m3 (r3) . (32)

We solve these integrals using two different procedures. We
use the procedure given by Van Reeth [61] for � � 2. In this
procedure we rotate and then integrate over external angles,
reducing these integrals down to the form of Eq. (31), which
we solve using the asymptotic expansion method [27]. This
procedure requires separate derivations and codes for each
partial wave. The other procedure we use is from Yan and
Drake [28] and works for arbitrary �, requiring only a single
codebase. We present results using this procedure for only
� > 2 due to its increased computational cost.

B. Long-range integrations

We evaluate the long-range–long-range and short-range–
long-range matrix elements in the matrix equation AX = −B
using the Gauss-Laguerre, Gauss-Legendre, and Chebyshev-
Gauss quadratures. Due to cusps in the r2 and r3 integrands,
we split these integrations into Gauss-Legendre quadratures
before each cusp and Gauss-Laguerre after each cusp.
Reference [68] discusses a similar type of cusp. Previous
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FIG. 2. (Color online) Breakdown in convergence of the 1S phase
shifts with respect to number of short-range terms for different τ

values for the generalized Kohn variational method.
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TABLE II. PsH total energy E and binding energy Eb comparisons. The values marked with a star are the reported values, and the other
values are obtained by using the conversion factor given in Ref. [59].

Method Terms E (a.u.) Eb (eV)

Current work (ω = 7) 1505 −0.789 189 725 1.066 406 705
Variational Hylleraas (ω = 6) [21] 721 −0.789 156 1.065 5�

Variational Hylleraas [34] 396 −0.788 945� 1.059 75
Variational Hylleraas (ω → ∞) [30] – −0.789 1967 147� 1.066 596 896
CC 14Ps14H [47] – −0.786 5 0.994�

CC 14Ps14H + H− [29] – −0.787 9 1.03�

ECGs with SVM [35] 1800 −0.789 196 740� 1.066 597 58
ECGs variational [36] 5000 −0.789 196 765 251� 1.066 598 271 959

calculations [21,22] treated these cusps as unimportant by
25 a.u., while we have extended it to 100 a.u. before we
consider them unimportant. We find that this improves the
convergence of the matrix elements.

To further improve the convergence of the short-range–
long-range matrix elements, we note that the biggest source
of difficulty comes from the Gauss-Laguerre quadratures in
the r1, r2, and r3 integrations—especially r1. We increase
the number of integration points to more than seven times
as many as in previous work [21,22] to better represent
the integrands. We use a visual representation of the matrix
elements to determine convergence using the Developer’s
Image Library [80]. The brute force approach of increasing the
integration points can increase the computational time greatly,
so we take another approach to further increase the accuracy.
Specifically, the tails of the integrands are negligible, and the
integrand closer to the origin is not represented adequately. To
resolve this, for each of the Gauss-Laguerre quadratures, we
introduce an extra e−λri , where i = 1,2,3, and remove it with
eλri after the quadrature, bringing the abscissae closer to the
origin without increasing the number of integration points. We
choose λ = 1.

C. Selection of short-range terms

We use a method from Todd [26] to help remove short-range
terms that contribute to linear dependence. This is a variation
of the procedure from Lüchow and Kleindienst [81]. They use
multiple blocks, while we optimize with a single block. They
also use a criteria of �E to determine when to discard terms.
Instead, we compare the lowest eigenvalues from the separate
calculations using the upper and lower triangular matrices

in LAPACK’s dsygv routine [82], discarding terms when
they cause the difference to be greater than a predetermined
threshold.

We observe that using the terms selected by Todd’s
procedure allows us to use more short-range terms from the
complete set before linear dependence occurs. The phase
shifts are calculated using this set of short-range terms for
the generalized Kohn variational method for multiple τ values
in Eq. (7a). We further truncate this basis set where the phase
shifts for the generalized Kohn variational method for different
τ values begin to noticeably diverge, as seen in Fig. 2, or when
there is a significant jump in the phase shifts at high ω. This
method with an appropriate choice of nonlinear parameters
normally gives a reliable set of short-range terms, which we
use to obtain the S-matrix complex Kohn results given in
Sec. IV. For 1S only, we also determine the truncation of the
basis set by performing variations of μ [Eq. (6)] [20]. For � = 3
at low κ , we use a restricted set of short-range terms where we
eliminate terms with powers of r3 � 2 if ω � 3, improving the
convergence ratios defined in Eq. (36) and giving more stable
results [20,21].

We denote the number of short-range terms of a particular
symmetry after we perform the possible truncations by N ′(ω),
where N ′(ω) � N (ω). The N (ω) of the wave functions given
by Eqs. (1), (2), and (22) are replaced by N ′(ω). When we
perform convergence checks via extrapolations, we arrange
the set of N ′(ω) terms in the original ordering.

D. Fittings

As with the previous Kohn and inverse Kohn calcula-
tions [22], we fit our computed phase shifts near the resonances

TABLE III. 1S phase shifts for Ps-H scattering. δ+
0 are the current S-matrix complex Kohn phase shifts, and % Diff+ is the percent difference

between the complex Kohn ω = 7 and ω → ∞ results.

κ (a.u.) δ+
0 (ω = 7) δ+

0 (ω → ∞) % Diff+ δ+
0 (Kohn) [21] δ+

0 (CC 14Ps14H + H−) [29] δ+
0 (CVM) [58]

0.1 −0.427 −0.426 0.223% −0.427 −0.428 −0.42629
0.2 −0.820 −0.819 0.010% −0.820 −0.825 −0.81973
0.3 −1.161 −1.161 0.040% −1.161 −1.167 –
0.4 −1.446 −1.446 0.022% −1.446 −1.453 –
0.5 −1.678 −1.677 0.031% −1.677 −1.685 –
0.6 −1.858 −1.857 0.040% −1.857 −1.867 –
0.7 −1.964 −1.963 0.045% −1.964 −1.992 –
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TABLE IV. 3S phase shifts for Ps-H scattering. δ−
0 are the current S-matrix complex Kohn phase shifts, and % Diff− is the percent difference

between the current complex Kohn ω = 7 and ω → ∞ results.

κ (a.u.) δ−
0 (ω = 7) δ−

0 (ω → ∞) % Diff− δ−
0 (Kohn) [21] δ−

0 (CC 14Ps14H) [47] δ−
0 (CVM) [58]

0.1 −0.215 −0.214 0.120% −0.215 −0.206 −0.21461
0.2 −0.431 −0.431 0.063% −0.432 −0.414 −0.43145
0.3 −0.645 −0.645 0.094% −0.645 −0.624 –
0.4 −0.850 −0.849 0.130% −0.850 −0.838 –
0.5 −1.041 −1.040 0.166% −1.040 −1.037 –
0.6 −1.217 −1.214 0.273% −1.215 −1.213 –
0.7 −1.375 −1.372 0.250% −1.373 −1.367 –

for 1S and 1P to the resonance formula

δ(Eκ ) = A + BEκ + CE2
κ + arctan

[ 1�

2(1ER − Eκ )

]

+ arctan

[ 2�

2(2ER − Eκ )

]
(33)

to extract out the positions (1ER and 2ER) and widths (1� and
2�) of the two resonances. This formula includes the Breit-
Wigner resonance terms [22,83–85] for the two resonances
and allows for a slowly varying polynomial background. We
evaluate the resonance parameters for one resonance each for
1D and 1F , so we perform these fits without the second arctan
term. We fit the data from the Kohn, inverse Kohn, generalized
Kohn, T -matrix complex Kohn, and S-matrix complex Kohn
variational methods to determine the resonance parameters
using the MATLAB [86] nonlinear fitting routine nlinfit
with all eight possible weightings.

The Kohn variational method and variants of the method
do not give rigorous lower bounds to the phase shifts, but
they are found to give empirical bounds away from Schwartz
singularities. We extrapolate the S-matrix complex Kohn
phase shifts in Tables III–VI according to the empirical
formula [21,68]

tan δ±
� (ω) = tan δ±

� (ω → ∞) + c

ωp
, (34)

where c and p depend on each extrapolation. For the 1,3S,
1,3P , and 1D phase shifts, we use these extrapolated values to
estimate the convergence of the phase shifts and the error in the
final results, which we report in Sec. IV B. We use a similar
procedure to extrapolate the 1,3S- and 1,3P -wave scattering

lengths by fitting to the empirical formula [21]

a±
� (ω) = a±

� (ω → ∞) + d

ωq
, (35)

where d and q depend on each extrapolation. The percent
difference between the scattering length at ω = 7 and the
extrapolated scattering length is considered the error in
Tables XI and XII. We see no convergence pattern for the
effective range.

For � � 2 we experience difficulty in extrapolating phase
shifts using Eq. (34). To determine whether the phase shifts
are converging with respect to ω, we compute a convergence
ratio defined as

R′(ω) = δ±
� (ω) − δ±

� (ω − 1)

δ±
� (ω − 1) − δ±

� (ω − 2)
, (36)

where R′(ω) depends on � and whether we are considering
the singlet or triplet. This is similar to the inverse of the ratio
for the energy eigenvalues given in Ref. [30]. We find that if
R′(ω) � 0.5, we can typically obtain extrapolated phase shifts
with some degree of reliability. In contrast, if R′(ω) � 1, there
is no convergence pattern and thus we would not be confident
with extrapolated phase shifts.

E. Nonlinear parameters and terms in the scattering
wave functions

Table I shows the number of terms for each short-range
symmetry N ′(ω) used for each partial wave. The wave function
for the S wave uses a total of N ′(ω) short-range terms, and the
wave function for the higher partial waves use a total of 2N ′(ω)
short-range terms, as given by Eqs. (1) and (2) with the N (ω)
replaced by N ′(ω). For the first three partial waves, we use
Todd’s procedure described in Sec. III C. This table also gives

TABLE V. 1,3P phase shifts for Ps-H scattering. δ±
1 are the current S-matrix complex Kohn phase shifts, and % Diff± is the percent

difference between the current complex Kohn ω = 7 and ω → ∞ results. Powers of 10 are denoted by exponents.

κ (a.u.) δ+
1 (ω = 7) δ+

1 (ω → ∞) % Diff+ δ+
1 (CC 9Ps9H + H−) [29] δ−

1 (ω = 7) δ−
1 (ω → ∞) % Diff− δ−

1 (CC 9Ps9H) [47]

0.1 0.226−1 0.227−1 0.465% 0.221−1 −0.178−2 −0.172−2 3.176% −0.953−3

0.2 0.191 0.192 0.306% 0.183 −0.167−1 −0.165−1 0.993% −0.122−1

0.3 0.609 0.611 0.314% 0.580 −0.552−1 −0.540−1 0.749% −0.456−1

0.4 0.994 0.996 0.205% 0.956 −0.115 −0.114 0.698% −0.104
0.5 1.140 1.142 0.140% 1.106 −0.183 −0.182 0.749% −0.178
0.6 1.162 1.163 0.137% 1.134 −0.248 −0.246 0.896% −0.247
0.7 1.152 1.154 0.181% 1.133 −0.292 −0.288 1.230% −0.295
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TABLE VI. 1,3D phase shifts for Ps-H scattering. δ±
2 are the current S-matrix complex Kohn phase shifts, and % Diff+ is the percent

difference between the current complex Kohn ω = 6 and ω → ∞ results. Powers of 10 are denoted by exponents.

κ (a.u.) δ+
2 (ω = 6) δ+

2 (ω → ∞) % Diff+ δ+
2 (CC 9Ps9H + H−) [29] δ−

2 (ω = 6) δ−
2 (CC 9Ps9H) [47]

0.1 1.36−4 – – 2.02−4 5.81−5 8.48−5

0.2 2.99−3 3.18−3 6.27% 3.49−3 7.12−4 1.15−3

0.3 1.60−2 1.62−2 1.54% 1.73−2 1.10−3 2.84−3

0.4 4.98−2 5.04−2 1.33% 5.22−2 −1.80−3 2.37−3

0.5 1.13−1 1.14−1 1.52% 1.16−1 −1.07−2 −4.66−3

0.6 2.06−1 2.09−1 1.67% 2.08−1 −2.54−2 −1.85−2

0.7 3.28−1 3.33−1 1.67% 3.24−1 −4.28−2 −3.27−2

the value of ω, the parameters α, β, and γ in Eq. (8), and the
parameters μ and m� in Eq. (6) used for each partial wave.

For � � 2, where we have neglected the mixed symmetry
terms, we find that the phase shifts are more sensitive to the
choice of nonlinear parameters α, β, and γ than for the 1,3S

and 1,3P waves. We also find that for � � 2, the triplet is more
sensitive than the singlet. The optimum choice of these of
nonlinear parameters appears to be κ dependent. For � � 2 we
use two different sets of these nonlinear parameters.

IV. RESULTS

A. Bound state results

We use the 1S PsH bound state results as a measure of
the reliability of the short-range part of the wave function to
describe 1S Ps-H scattering at small distances. The Rayleigh-
Ritz variational method provides a true upper bound on the
total energy, which converges well with respect to ω. We report
the results of the total and binding energies we obtain with the
same set of nonlinear parameters α, β, and γ and the same
number of terms N ′(7) that we use in the scattering calculation
and which we give in Table I. Table II compares the energies
for the 1S PsH bound state that we obtain with ω = 7 (1505
terms) with the results from other groups.

Our calculation yields a better value for the binding energy
than the earlier variational calculations of Refs. [21,22] but
not as good as the variational calculation of Ref. [30], which
also used Hylleraas-type functions. While we do not obtain
the best value of the binding energy, the result we obtain
for this quantity compares favorably with the most elaborate
calculation in the literature, which used 5000 ECGs [36]. Our
calculation of the binding energy gives us some confidence in
the reliability of the short-range part of the scattering wave
function to describe the 1S Ps-H scattering system.

B. Phase shifts and cross sections

In Tables III and IV we show the 1,3S phase shifts using the
S-matrix complex Kohn variational method. After removing
any obvious Schwartz singularities, the results from the Kohn,
inverse Kohn, generalized Kohn, T -matrix complex Kohn,
and S-matrix complex Kohn variational methods agree to the
accuracy given. We use Eq. (34) and the phase shifts for ω = 4
to 7 to compute extrapolated phase shifts for ω → ∞. By
computing the percentage difference between the extrapolated
phase shifts and the computed phase shifts at ω = 7, we
estimate that the 1S phase shifts have converged to better than
about 0.22% for the range κ = 0.1 to 0.7 and that the 3S phase

shifts have converged to better than 0.27% for the same range
of κ .

In these tables we compare the S-matrix complex Kohn
results with the earlier variational results [21,22] and with the
elaborate CC results of Refs. [29,47]. The current ω = 7 results
are in excellent agreement with the earlier Kohn and inverse
Kohn ω = 6 variational results indicating that the earlier
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FIG. 3. (Color online) Comparison of 1S (a) and 3S (b) S-matrix
complex Kohn phase shifts with results from other groups. Each inset
shows a magnified portion of the data. Results are ordered according
to year of publication. References marked with an asterisk have values
extracted from figures in their work. Solid curves denote this work;

CC [29]; Kohn [21]; CC [47]; DMC∗ [40]; SVM 2002∗ [42];

SVM 2001∗ [41]; two channel/static exchange with model
exchange [87]; six-state CC [46]; five-state CC [45]; coupled

pseudostate [44]; three-state CC [43]; static exchange [50];

stabilization [39]; stabilization [38]; static exchange [49]; static
exchange [88].
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FIG. 4. (Color online) Phase shifts for Ps-H scattering: (a) S

wave, (b) P wave, and (c) D wave. Insets in (a) and (c) show a
zoomed in view of the low-energy regions. Current singlet and triplet
S-matrix complex Kohn phase shifts are the solid blue (dark gray)
and black, respectively. The singlet CC phase shifts [29] are given
by ×, and the triplet CC phase shifts [47] are given by +. The
CVM 1S- and 3S-wave phase shifts [58] are blue (dark gray) and
black circles, respectively. Vertical dashed lines denote the complex
rotation resonance positions [30–32].

S-wave results were well converged. The slight difference in
phase shifts between the previous Kohn or inverse Kohn and
the present complex Kohn calculation can be attributed to at
least the following factors. Using Todd’s procedure (described
in Sec. III C) allows us to use more terms (see Table I) than
the earlier Kohn and inverse Kohn calculations [21,22], which
used 721 terms. Using the asymptotic expansion also allows
us to use more short-range terms. The increase in the number
of short-range terms slightly increases the phase shifts, but we
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FIG. 5. (Color online) F -wave phase shifts for Ps-H scattering.
Singlet phase shifts are given in blue (dark gray), and triplet phase
shifts are black. This figure compares the complex Kohn phase shifts
with the BO approximation phase shifts.

also use more integration points in these calculations, which
can also change the phase shifts.

The complex Kohn results are in good agreement with the
CC results of the Walters’ group [29,47]. For the singlet,
the complex Kohn phase shifts are slightly larger than the
CC results. In general, because of the empirical bounds on
the complex Kohn results and, in practice on the CC [47],
the complex Kohn results could be slightly more accurate than
the CC. However, for the triplet, the Kohn results are slightly
more negative than the CC results.

The recent CVM S-wave results from Zhang and Yan [58]
agree extremely well with the complex Kohn results, even for
the triplet. In Fig. 3 we compare the 1,3S phase shifts we obtain
from the complex Kohn variational method with results from
various other calculations. Figure 4(a) compares the complex
Kohn phase shifts over the energy range up to the Ps(n = 2)
threshold with the CC and CVM results. The inset in this
figure shows the small discrepancy with the CC phase shifts,
but excellent agreement between the three sets of results is
evident.
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FIG. 6. (Color online) Elastic integrated cross sections. The sin-
glet and triplet cross sections are weighted by 1/4 and 3/4,
respectively. CC data is from Ref. [29]. We extract the CC data using
the CurveSnap program [89].
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TABLE VII. 1S resonance parameters for Ps-H scattering.

Method 1ER (eV) 1� (eV) 2ER (eV) 2� (eV)

Current work: Average ± standard deviation 4.0065 ± 0.0001 0.0955 ± 0.0001 5.0272 ± 0.0029 0.0608 ± 0.0007
Current work: S-matrix complex Kohn 4.0065 0.0955 5.0278 0.0608
Complex rotation (Yan and Ho 1999) [30] 4.0058 ± 0.0005 0.0952 ± 0.0011 4.9479 ± 0.0014 0.0585 ± 0.0027
Stabilization (Yan and Ho 2003) [101] 4.007 0.0969 4.953 0.0574
Kohn variational (Van Reeth and Humberston 2004) [22] 4.0072 ± 0.0020 0.0956 ± 0.010 5.0267 ± 0.0020 0.0597 ± 0.0010
CC (Walters et al. 2004) [29] 4.149 0.103 4.877 0.0164

Tables V and VI give the 1,3P and 1,3D phase shifts that
we determine using the S-matrix complex Kohn variational
method. The small percentage differences with the extrapo-
lated values for the 1,3P waves indicate that the complex Kohn
phase shifts are well converged. The complex Kohn 1P phase
shifts are above the CC results, whereas the complex Kohn 3P

phase shifts are generally slightly below. Figure 4(b) shows
that the complex Kohn and CC results agree relatively well.
From Table VI the 3D phase shifts are positive for lower κ but
become negative for higher κ . It is noted in Ref. [47] that this
behavior shows that the interaction is repulsive for low κ and
attractive for higher κ .

We have difficulty performing extrapolations on the 1,3D

phase shifts. For 1D, the κ = 0.1 extrapolation is not reliable,
and the percentage difference is correspondingly large, even
though the convergence ratio R′(6) given by Eq. (36) is less
than 1. As seen in Table VI, for κ = 0.2, the percentage
difference between the 1D extrapolated phase shift and the ω =
6 phase shift is about 6%, whereas in the range κ = 0.3–0.7,
the percentage difference is less than 2%. The percentage
difference for 3D is larger than for 1D, and thus there is less
confidence in the 3D extrapolated phase shifts (which we do
not include in Table VI). The larger percentage difference for
the triplet than the singlet could be a reflection that the mixed
symmetry terms are more important for the triplet than for
the singlet. If this is the case, this would be an interesting
finding, since for e−-H scattering, the mixed symmetry terms
were found to be more important for the singlet than for the
triplet [69]. Inclusion of the mixed symmetry terms for Ps-H
scattering for � � 2 should be investigated.

The ω = 5 and ω = 6 phase shifts differ by no more than
10% for 1D. For 3D this difference is up to 24% for κ = 0.3 but
much less for other κ values, down to about 4% for κ = 0.7.
The percentage difference between the 3D-wave ω = 6 and
extrapolated phase shifts for κ = 0.1 is very large, ≈140%,
but this difference for the range 0.2–0.7 is less than 25%,
except for κ = 0.4, where the percentage difference is larger

at 40%. We note that between κ = 0.3 and 0.4 the complex
Kohn 3D phase shifts change from positive to negative.

The S-matrix complex Kohn 1,3D phase shifts are generally
below the corresponding CC phase shifts, as can be seen in
Table VI and Fig. 4(c). However, the extrapolated 1D phase
shifts are slightly larger than the CC phase shifts at both
κ = 0.6 and 0.7. Figure 4(c) shows that the overall shape
of the complex Kohn phase shift curves is similar to the
CC. However, the percentage difference between the CC and
complex Kohn 1D phase shifts is about 39% at low κ and
decreases to less than 1% for higher κ (not including the
resonance region of κ > 0.7 or Eκ > 3.3 eV). The larger
discrepancy comes with the 3D phase shifts, which have a
percentage difference between the CC and the complex Kohn
of over 30%, often much larger, through the entire energy
range. We note that the percentage differences with the CC
results for 3P are also large at lower κ values. For 3P with
κ � 0.01, where there are no mixed symmetry terms to neglect,
we do not face the convergence and extrapolation difficulties
we have for 3D.

The 3D phase shifts are small, and their contribution to
the elastic integrated cross section is correspondingly small.
Before the resonance region (κ � 0.7 or Eκ < 3.3 eV), the
1D and 3D partial waves contribute up to 6.6% and 0.53%
to the elastic integrated cross section, respectively. In the full
energy range we consider, including the resonance region,
the 3D wave contributes a maximum of 1.34%. We notice no
appreciable difference to the elastic integrated cross section
when the complex Kohn 1,3D phase shifts are replaced by
the CC 1,3D phase shifts (less than 0.084%). The triplet D-,
F -, G-, and H -wave phase shifts are more sensitive to the
nonlinear parameters α, β, and γ than the singlet, but in
general, the triplet contribution to the elastic differential and
integrated cross sections are less than the corresponding singlet
contribution.

Figure 5 shows the F -wave complex Kohn phase shifts
compared to the BO phase shifts that we compute. As for the

TABLE VIII. 1P resonance parameters for Ps-H scattering.

Method 1ER (eV) 1� (eV) 2ER (eV) 2� (eV)

Current work: Average ± standard deviation 4.2856 ± 0.0001 0.0445 ± 0.0001 5.0577 ± 0.0004 0.0459 ± 0.0005
Current work: S-matrix complex Kohn 4.2856 0.0445 5.0579 0.0459
Complex rotation (Yan and Ho 1998) [31] 4.2850 ± 0.0014 0.0435 ± 0.0027 5.0540 ± 0.0027 0.0585 ± 0.0054
Stabilization (Yan and Ho 2003) [101] 4.287 0.0446 5.062 0.0563
Kohn (Van Reeth and Humberston 2004) [22] 4.29 ± 0.01 0.042 ± 0.005 – –
CC (Walters et al. 2004) [29] 4.475 0.0827 4.905 0.0043
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TABLE IX. 1D resonance parameters for Ps-H scattering.

Method 1ER (eV) 1� (eV)

Current work: Average ± standard deviation 4.720 ± 0.001 0.0908 ± 0.0010
Current work: S-matrix complex Kohn 4.720 0.0909
Complex rotation (Ho and Yan 1998) [32] 4.710 ± 0.0027 0.0925 ± 0.0054
Stabilization (Yan and Ho 2003) [101] 4.714 0.0969
CC (Walters et al. 2004) [29] 4.899 0.0872

3D, there is a sign change from positive to negative for the
3F phase shifts, but this change occurs at a higher energy of
approximately 3.2 eV. The 1F wave has a resonance above
the Ps(n = 2) threshold, but the beginning of the resonance is
evident in Fig. 5. The difference between the 1F phase shifts
for ω = 4 and 5 is less than 10% for κ � 0.5 (1.7 eV). The
corresponding difference for the 3F phase shifts is greater than
50%, however the triplet contributes much less to the elastic
integrated cross section.

The BO approximation phase shifts do not agree well with
the complex Kohn phase shifts, being much lower. We also
find little agreement between the BO phase shifts and the
complex Kohn phase shifts for the 1,3G wave and 1,3H wave.
In computing the elastic integrated cross sections, we would
not be comfortable using the BO phase shifts for � > 5.

We perform complex Kohn calculations on all first six
partial waves, but we do more elaborate calculations for the
first three partial waves, as shown by the short-range terms
used in Sec. III E. The 3D, 1,3F , 1,3G, and 1,3H partial waves
are not fully converged, but for each of these, the phase shifts
and elastic partial cross sections become very small, so they do
not contribute much to the elastic integrated cross section. For
the G and H waves we obtain a convergence ratio R′(5) > 1 for
κ � 0.3 and κ � 0.35, respectively, due to the very small phase
shifts (on the order of �10−5) and probably the neglect of the
mixed symmetry terms. The convergence ratios are less than
1 at higher κ , where there is a more significant contribution to
the elastic differential cross section. The maximum H -wave
contribution to the elastic integrated cross section is 0.009%
and much less at energies before the Ps(n = 2) threshold.

Assuming that the initial spin state of the H(1s) target is
unpolarized and that the spin final states are not determined,
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FIG. 7. (Color online) Singlet elastic partial wave cross sections
and summed singlet elastic integrated cross section.

the spin-weighted cross sections (elastic differential, elastic
integrated, and momentum transfer) comprise 1/4 of the
singlet and 3/4 of the triplet corresponding cross sections
[47,50,90]. We include partial waves with � � 5 for each of
the cross sections. In Fig. 6 we show the complex Kohn spin-
weighted singlet, spin-weighted triplet, and the spin-weighted
integrated cross sections for elastic scattering and which we
compare with the corresponding spin-weighted CC results.
There is good agreement between the complex Kohn and CC
spin-weighted integrated elastic cross section for much of the
energy range, but there is a clear shift in the positions of
the resonances, which can also be seen in Tables VII–IX.
There is also some noticeable discrepancy at low Eκ , which is
especially noticeable near the maximum and minimum.

It is interesting to note in Fig. 6 that the triplet elastic
integrated cross section is nearly featureless, decreasing mono-
tonically. The singlet cross section not only has resonance
features but also exhibits a minimum at 0.25 eV and a
maximum at 0.74 eV. The source of this minimum can be seen
in Fig. 7 as a mixing of the 1S and 1P partial cross sections,
and the maximum is due primarily to the 1P .

The elastic differential cross section, calculated using the
expression in Ref. [55], is shown in Figs. 8–10. The percent
difference by including the H wave in the differential cross
section compared to including through the G wave is a
maximum of 3.8% at higher Eκ but only an average of
0.26% throughout the full Eκ and θ ranges, indicating that
the differential cross section is relatively well converged.
Figure 8 shows that the differential cross section is essentially
isotropic at very low incident energy and becomes slightly
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FIG. 8. (Color online) The elastic differential cross section for
Ps-H scattering vs scattering angle θ at selected incident Ps momenta
(energy).
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FIG. 9. (Color online) The elastic differential cross section for
Ps-H scattering vs energy of the incident Ps at selected angles.

more backward peaked as the energy is increased up to about
0.46 eV (κ = 0.26). However, around this energy, there is
an abrupt change in the differential cross section. Backward
scattering is reduced, and there is a rapid rise in the forward
direction, reaching a maximum around 1 eV (κ = 0.38). There
is little change in the behavior of the differential cross section
going from κ = 0.6 (2.4 eV) to κ = 0.7 (3.3 eV). Also of
interest is the angular dependence of the resonances shown in
Figs. 9 and 10, for which we find that the main contribution
is also forward peaked with some presence at large angles
and little contribution at π/2. Interestingly, the structures
discussed above are seen to arise principally from the singlet
contribution.

The momentum transfer cross section σm can be useful
in plasma applications [91,92]. These cross sections have
been measured for Ps scattering with multiple atomic and
molecular targets [93–95] and calculated for Ps scattering by
inert gases [96]. Equations for σm are given in Refs. [55,97].
In Fig. 11 we compare σm with σel, both of which we compute
using the S-matrix complex Kohn phase shifts. For energies
close to zero, σm ≈ σel ≈ 32.45 πa2

0 . The elastic differential
cross section is isotropic at zero energy and almost isotropic at
very low energy (see Ref. [96] and Figs. 8 and 10). After
zero energy, the momentum transfer cross section differs

from the elastic integrated cross section. For the energy
range 0 < Eκ � 0.46 eV, σm > σel, which indicates that the
scattering is larger in the backward direction, as seen in Fig. 9.
Above approximately 0.46 eV, the scattering becomes forward
peaked, and σm < σel.

C. Resonances

The 1S and 1P partial waves each have two resonances
below the Ps(n = 2) threshold, and the 1D has one resonance
before. There is a resonance just above the threshold for 1F ,
with the onset of the resonance obvious below the threshold.
Drachman [98] concluded that these Rydberg resonances
correspond to the quasibound state of e+ with the H− ion.
Figure 4(a) shows the two 1S Rydberg resonances below the
Ps(n = 2) threshold. The first resonance was first calculated
by Hazi and Taylor using a stabilization method [99]. Their
properties have been computed accurately by Yan and Ho using
the complex rotation method [30] and by Walters’ group using
the CC approach [29].

We fit the phase shifts in the resonance region to Eq. (33)
for 1S and 1P . We perform the 1D and 1F resonance fits without
the second arctan term, since we consider only one resonance
for each of these partial waves. In Tables VII–X we compare
the S-matrix complex Kohn resonance parameters with results
from other calculations. We also give in these tables the average
positions and widths we obtain using the Kohn variational
method and a number of its variants (inverse Kohn, generalized
Kohn, complex Kohn for the T matrix, and complex Kohn for
the S matrix) after we remove the Schwartz singularities. We
determine the standard deviation and use that for the errors.

The resonance parameters of the present S-matrix complex
Kohn calculations agree well with those of the earlier Kohn and
inverse Kohn calculations [22]. Also, the resonance parameters
we obtain using the S-matrix complex Kohn phase shifts
generally agree well with those obtained in the complex
rotation calculations [30–33]. We see that there is more
discrepancy between the complex Kohn and complex rotation
calculations [30,31] of the second 1S- and 1P -wave resonances
than of the first. The resonance parameters we obtain using
the S-matrix complex Kohn variational method are generally
comparable to the CC results [29]. The 1F resonance lies
above the Ps(n = 2) threshold, but we are able to fit the onset
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FIG. 11. (Color online) Comparison of cross sections. The com-
plex Kohn integrated elastic cross section σel is given by the black
curve. The complex Kohn momentum transfer cross section σm is
given by the light blue (light gray) curve.

of the resonance shortly before the threshold. The resonance
parameters for 1D and 1F are particularly sensitive to the choice
of nonlinear parameters α, β, and γ , and the estimation of the
errors of these resonance parameters does not include this
sensitivity.

We observe no triplet resonances for any of these partial
waves, which is consistent with the discussion by Campbell
et al. [44], who explained this result. However, we note that
Ray [100] obtained a triplet resonance in a three-state CC
approximation.

Van Reeth and Humberston [22] found that for this system,
a stabilization plot for 1S predicted the first resonance position
relatively well, but they could not obtain a resonance position
as accurately as when they performed a scattering calculation.
We use the same stabilization technique for the 1S, 1P , and
1D partial waves and see a similar result to this previous
work for 1S. For 1P and 1D, if only the first symmetry is
used, the eigenvalue positions do not line up well with the
resonance positions determined from the full calculations in
Tables VIII and IX. If both the first and second symmetries
are used pairwise, the eigenvalues agree with the resonance
positions from these tables. This seems to indicate that the
mixed symmetry terms with shared angular momentum will
probably not contribute much for 1D. This analysis cannot be
done with the triplet states, as they have no resonances.

D. Effective range theories

Prior work in the literature for 1S Ps-H scattering [21,42,47]
uses the ERT expansion for short-range interactions as given in
Eq. (26) as well as the approximation to the scattering length

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
κ2 (a.u.)

−0.4

−0.2

0.0

0.2

0.4

κ
co

tδ
± 0

(a
.u

.)

Singlet
Triplet
κ = 0.1− 0.5 Fit
κ = 0.001− 0.009 Fit

0.00 0.01 0.02 0.03 0.04 0.05
−0.47
−0.46
−0.45
−0.44
−0.43
−0.42

FIG. 12. (Color online) 1S (upper lines) and 3S (lower lines) phase
shifts, plotted as κ cot δ±

0 versus κ2. The inset shows a magnified
portion of the 3S data for low κ2 as denoted by the gray box in the
lower left.

given in Eq. (25). Table XI shows the 1,3S-wave scattering
lengths and effective ranges given by Refs. [21,29,42,47].
Some other calculations of the 1,3S scattering lengths and
effective ranges can be found in Refs. [40–42,46]. These all
agree reasonably well with each other. Additional calculations
of 1,3S-wave scattering lengths and effective ranges can also
be found in Refs. [37–39,44,45,49,102].

We also use Eq. (25) to determine the 1,3S scattering lengths
from the phase shifts of very small κ , given in Table XI. Van
Reeth and Humberston [21] fitted their phase shifts to the ERT
for short-range interactions [Eq. (26)] for a range in κ up to
0.5. They gave in their paper a plot of κ cot δ±

0 versus κ2. We
perform a similar plot, which is given in Fig. 12, but use the
complex Kohn phase shifts that we compute. As obtained in
Ref. [21], the singlet result κ cot δ+

0 lies on a relatively straight
line, but the triplet result κ cot δ−

0 curves down at low values
of κ2.

We investigate the low-energy region in more detail. We fit
the complex Kohn phase shifts to the ERT for short-range
interactions [Eq. (26)], for the range κ = 0.1–0.5, but in
addition, we fit the phase shifts to this ERT for a range of
κ = 0.001–0.009. We compare the results of the scattering
lengths and effective ranges for the two fits in Table XI. We
find that there is little difference in the 1S results and the 3S

scattering length, but there is significant difference in the 3S

effective range.
For the Eq. (30) result of r+

0 in Table XI, we use our result
of Eb that we give in Table II and and our result of a+ that
we obtain using Eq. (26) for the range κ = 0.001–0.009. This

TABLE X. 1F resonance parameters for Ps-H scattering.

Method 1ER (eV) 1� (eV)

Current work: Average ± standard deviation 5.1867 ± 0.0021 0.0125 ± 0.0003
Current work: S-matrix complex Kohn 5.1863 0.0125
Complex rotation (Ho and Yan 2000) [33] 5.1661 ± 0.0014 0.0174 ± 0.0027
CC (Walters et al. 2004) [29] 5.200 0.0095
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TABLE XI. 1,3S scattering lengths and effective ranges.

Model κ a+ r+
0 a− r−

0

Approx. to def. [Eq. (25)] 0.001 4.331 ± 0.012 – 2.137 ± 0.008 –
ERT short [Eq. (26)] 0.1–0.5 4.308 ± 0.003 2.275 2.162 ± 0.003 1.343
ERT short [Eq. (26)] 0.001–0.009 4.331 ± 0.012 2.197 2.137 ± 0.008 2.035
ERT vdW [Eq. (27)] 0.001–0.009 4.331 ± 0.012 2.221 2.137 ± 0.008 2.139
QDT [Eqs. (28) and (29)] 0.002,0.003 4.331 ± 0.012 2.210 2.136 ± 0.008 2.151
Equation (30) – – 2.106 – –
Kohn (721 terms) Eq. (25) [21] – 4.334 – 2.143 –
Kohn extrapolated [21] – 4.311 2.27 2.126 1.39
Kohn Eq. (26) [21] up to 0.5 4.30 2.27 2.147 –
CC 14Ps14H [47] – 4.41 2.19 2.06 1.47
CC 14Ps14H + H− [29] – 4.327 – – –
SVM [42] – 4.34 2.39 2.22 1.29

value of r+
0 is smaller than the other values of r+

0 that we give
in Table XI.

Van Reeth and Humberston [21] added a κ3 term to the
ERT for short-range interactions because of the van der Waals
interaction. They found that for the 1S, adding this term made
no significant change in the quality of the fit. However, for the
3S they found that the addition of the κ3 term improved the fit
but that the effective range was very sensitive to the energy
range over which the fit was made.

In addition to the fits we perform using the ERT for short-
range interactions [Eq. (26)], we use the ERT of Eq. (27)
that includes terms due to the van der Waals interaction. We
find that for the range κ = 0.001–0.009, the inclusion of these
extra terms makes no difference to the 1,3S scattering lengths
and only a small difference to the effective ranges.

We also apply the QDT for the van der Waals interaction
of Gao [77] [Eq. (28)], using the equations given by Gao [78]
of the expansion of K0

� [Eq. (29)], and the expressions for the
scattering lengths and effective range. We use κ = 0.002 and
0.003 for the fit of Eq. (29) and give the results in Table XI.
The 1,3S scattering lengths we obtain using this QDT are
identical to the results we obtain from the approximation to the
definition and of that we obtain using the ERT for short-range
interactions and the ERT for the van der Waals interaction,
both for the range κ = 0.001–0.009. The 1,3S effective ranges
we obtain using the QDT agrees well with the results of
the two ERT fits [Eqs. (26) and (27)], for this smaller range
in κ .

Due to the van der Waals interaction, the 1P and 3P waves
do not have effective ranges but do have scattering lengths [74].
Table XII gives the scattering lengths using the approximation
to the definition of Eq. (25) and the QDT expressions we
evaluate using the complex Kohn phase shifts at κ = 0.01.
The scattering lengths obtained in these two different ways
agree well for both the 1P and 3P waves. The 1,3P scattering

lengths have previously been computed by Ivanov et al. using
their SVM phase shifts [42]. The results we obtain for the
1P scattering length using the S-matrix complex Kohn phase
shifts are comparable to the 1P scattering length obtained with
the SVM phase shifts. In contrast, the 3P scattering lengths we
determine differ significantly from the prior SVM results [42].
It seems that this difference can partly be attributed to the
S-matrix complex Kohn phase shifts being larger than the
SVM phase shifts.

V. CONCLUSION

We have extended the earlier Kohn and inverse Kohn
variational calculations [21,22] and have presented S-matrix
complex Kohn variational results for Ps(1s) scattering from
H(1s) below the Ps(n = 2) threshold. We have determined
highly accurate 1,3S and 1,3P phase shifts. The discrepancy
in the D-wave phase shifts, especially the 3D, between the
complex Kohn variational and CC methods needs further in-
vestigation, such as explicitly including mixed symmetry terms
into the trial wave function. Fortunately, the 3D contribution
to the elastic integrated cross section is small, and the 1D

resonance we compute with the complex Kohn phase shifts is
reasonably good, providing some confidence in the reliability
of the short-range part of the trial wave function describing the
1D Ps-H scattering system at short distances. The 1,3F , 1,3G,
and 1,3H partial waves have very small phase shifts and do
not contribute greatly to the elastic integrated or momentum
transfer cross sections.

We have presented the elastic differential, elastic integrated,
and momentum transfer cross sections using the S-matrix
complex Kohn variational phase shifts for the first six
partial waves. The elastic differential cross section is slightly
backward peaked at low energy but quickly becomes strongly
forward peaked as Eκ increases.

TABLE XII. 1,3P scattering lengths.

Model κ a+
1 a−

1

Approx. to def. [Eq. (25)] 0.01 −22.130 ± 0.173 1.4530 ± 0.1104
QDT [Eqs. (28) and (29)] 0.01, 0.02 −22.200 ± 0.173 1.4158 ± 0.1107
SVM [42] – −20.7 6.80
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We have calculated resonance positions and widths for the
1S, 1P , 1D, and 1F partial waves using the Kohn variational
method and a number of its variants, which compare favorably
with the complex rotation results of Refs. [30–33]. We have
also provided a detailed investigation of the effective ranges
and scattering lengths for 1,3S, along with the 1,3P scattering
lengths. We have presented results using multiple effective
range theories. The 1,3S scattering lengths agree well with
previous work [21,29,42,47]. When we use a κ range of 0.1
to 0.5, we obtain a 3S effective range close to those previously
reported [21,42,47], but when we use smaller κ values, we
obtain a noticeably larger result. While the complex Kohn 1P

scattering length agrees with the SVM [42], the complex Kohn
3P scattering length is much smaller.
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