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Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems
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Resonant charge transfer (RCT) between negative ions and a metallic nanosystem was investigated by means
of a high-performance ab initio three-dimensional (3D) numerical solver. During RCT, an electron was shown
to occupy succesively nanosystem eigenstates along the z, ρ, and ϕ coordinates. Electron tunneling into a
nanosystem is a reversible process, because after some time the electron propagates back to the ion. RCT
efficiency in a nanosystem was found to exhibit quantum-size effects as well as lateral ion position dependence.
This means that during ion-surface interaction, the nanosystem’s size and the ion trajectory strongly influence the
final charge state of the ion. In the case of real 3D systems (without cylindrical symmetry), the electron density
currents form quantum vortices; this result is rather nontrivial for static systems. In addition, the limits of the
adiabatic approximation (rate equation) for the RCT calculation with nanosystems are defined.
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I. INTRODUCTION

The investigation of electron transfer during the interaction
between atomic particles and solid surfaces is of fundamental
and practical importance in several branches of physics and
chemistry. For fundamental science, electron transfer is of
interest due to numerous phenomena such as scattering,
sputtering, adsorption, and molecular dissociation [1–3]. The
practical importance of electron transfer is stipulated by such
applications as semiconductor miniaturization via thin-film
deposition, reactive ion etching, catalysis, surface analysis
tools (secondary ion emission), and modification [2,4–6]. In
recent years, the electron transfer between atomic particles and
surfaces containing adsorbates and nanosystems has been stud-
ied extensively. Surface nanosystems, e.g., metal-on-oxide,
are important in many applications, such as heterogeneous
catalysis, the fabrication of new ceramic materials, and solid-
state gas sensors [7–9]. In the context of catalysis, one of the
central questions involves the influence of a nanosystem’s size
and shape on its electronic structure and on the interaction
with atoms and molecules [10].

Since the electron affinity level of atomic anions is
significantly higher than the typical Fermi energy of most
metallic surfaces, the transfer of an electron from an anion to
the surface has a single-electron nature [11]. Thus, resonant
charge transfer (RCT), i.e., energy-conserving one-electron
tunneling through the potential barrier between an atomic
particle and the surface, can be considered as a basic electron
transfer mechanism for such systems [12]. The many-body
aspects of RCT associated with the atomic structure of a
projectile are usually taken into account by the inclusion of
statistical factors [13,14]. The electron-electron interaction
inside a metal can be accounted for by adding an artificial
adsorbing complex potential [3].

The problem of RCT between an atomic particle and
bulk metal has been explored intensively during the past two
decades. The existing theory in most cases is in quantita-
tive agreement with experimental data [3,6,11,15–24]. The
calculations of RCT between an atomic particle and a solid
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body surface consider several aspects, including the following:
(i) setting the initial charge state of the atomic particle, (ii)
defining its trajectory, (iii) determining the pseudopotentials
for the atomic particle, and (iv) the surface.

The influence of the initial charge state of the particle was
studied in several experiments, and no memory effect of the
initial charge state was found for typical atom/ion-surface
combinations [15,16,26]. That is, regardless of the initial
atomic particle charge state, only the RCT on the outgoing part
of the trajectory is considered. In some studies, time-reversal
symmetry is used to investigate the problem of electron loss
by a neutral atom on the ongoing trajectory, instead of the
problem of electron capture by a positive ion on the outgoing
trajectory [19]. In many publications, the classical approach is
used for atomic particle trajectory [17], in which a projectile
moves along a straight line and the distance of closest approach
is a parameter. However, there are also studies in which
realistic trajectories are used, which take into account the ion
interaction with image charge and where the distance of the
closest approach depends on the projectile energy and the
angle of incidence [6,11,25]. It should be noted that while the
correct definition of the distance of closest approach is very
important for the RCT calculation, the benefit from using a
realistic trajectory is not evident (e.g., in Ref. [26], the benefit
from using a realistic ionic trajectory does not exceed 10%).

The vast number of theoretical studies in this field consider
the interaction of a one-active-electron atom or ion (e.g.,
H0/H−, Li0/Li+, Na+, K+), which can be modeled by
analytical potential [27], with bulk metal. The analytical
one-dimensional (1D) potentials have been constructed for
two types of bulk metal surfaces: free-electron metals (the
“jellium” model) [28] and metals with a projected band gap
[29]. These potentials are called “1D” because they depend
only on the distance to the surface. For the free-electron
metals, tunneling along the surface normal is energetically
favorable, and an atomic electron propagates indefinitely deep
into the metal. In this case, there is no possibility for the
reverse electron transition to the atom [30]. For a metal with
a projected band gap, the electron motion along the surface
normal is blocked [6,20], and the atomic electron decays via
surface and image states [31,32]. In this case, the electron

1050-2947/2015/92(2)/022710(16) 022710-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.022710


I. K. GAINULLIN AND M. A. SONKIN PHYSICAL REVIEW A 92, 022710 (2015)

propagates mainly parallel to the surface, and RCT efficiency
is less than that in the case of a free-electron metal. Note that
1D potentials cannot describe some experimental data, e.g.,
the azimuthal dependence of RCT probability [3,12]. In this
case, it is necessary to use a realistic 3D potential, as was done
in Refs. [33–35].

In the case of grazing scattering trajectories, the theory
should take into account the frame transformation between the
atomic particle and the surface [26], which can be illustrated
by a shift of the Fermi spheres [36]. In this case, the electron
translation factor is usually added into the wave function or rate
equation [3,33]. The key result of these studies is the parallel
velocity effect—RCT efficiency has a bell-shaped dependence
on the velocity component parallel to the surface [3,12,26,37].

In many studies, the electron transfer probability is
calculated by means of the rate equation, which can be
applied under adiabatic conditions (adiabatic approximation)
[12,15,17,19,38]. The core of the rate equation is that the
electron transition rate at each moment is proportional to the
atomic particle level width Г. Under the adiabatic approxima-
tion, the atomic particle level width depends on the distance to
the surface, but not on the projectile velocity. This is why the
so-called “static problem” or fixed-ion approximation, when
the atomic particle is fixed in front of the surface, has been
widely investigated [11,17,19,39]. The main achievements for
the static problem are the level width dependence on the ion-
surface distance, the atomic level broadening [12,37,40–42],
and the avoided crossing of the atomic particle electron’s
energy level with the discrete electron’s energy levels inside
the bulk metal [6,11,17,34,35].

The RCT between atomic particles and nanosystems is of
interest, but this process has not been explored as thoroughly as
RCT with bulk metals. In a metallic nanosystem, the electron
energy is quantized and its motion is restricted as in the
metals with a projected band gap [40,42,43]. Consequently,
RCT efficiency is strongly affected by the nanosystem’s
energy level configuration, which depends on the nanosystem
size. This leads to the quantum-size effect (or cluster-size
effect), which consists of the nonmonotone dependence of
the RCT efficiency on the nanosystem’s size. In addition to the
theoretical predictions [40,42,44–47], there are experimental
observations of this effect [48,49]. In addition, there are some
studies devoted to the RCT’s lateral dependence [34,50].

An important issue in theoretical or numerical studies of
RCT involves a numerical model and the dimension of the cal-
culation domain. Most of the described studies were performed
for 2D systems (3D with cylindrical or spherical symmetry).
Three-dimensional RCT calculations were first mentioned
in 2000 [51], but the reported system size (107 points) was
too small to solve real 3D RCT problems. In addition, 3D
calculations were reported in 2009, but their details and
complexity are omitted [21]. The 3D RCT calculations with
bulk metal using the Anderson-Newns model were reported in
[34,35]. To the best of our knowledge, 3D calculations of RCT
with nanosystems have not been explored in detail.

In this article, the RCT between an H− ion and a thin Al
island film in a fixed-ion approximation is investigated by
means of an original high-performance ab initio 3D numerical
solver [52]. Although the static problem is not realistic, it has a
large fundamental impact because this model problem allows

us to investigate the basic RCT features. The thin disk has been
chosen as a geometrical model of the island film. In Ref. [53],
it was shown that under electron irradiation, Al island films are
formed on the Al2O3 surface. The island’s geometrical form
is close to circular; moreover, the average circle size depends
on the irradiation dose. The described system and its model
have been investigated previously by means of 2D calculations
methods [38–40,43,45]. Therefore, in addition to the results
of 3D calculations, we will discuss their differences with
previous 2D calculations for the cylindrically symmetrical
problem (the H− ion is located on the island film symmetry
axis). Section II describes the problem and the numerical
method. Section III contains the eigenproblem analysis for
the island film. Section IV is devoted to the RCT resulting
from the 3D calculations for the cylindrically symmetrical
problem, and Sec. V addresses the results obtained for the
asymmetrical problem. In Sec. VI, the results of a dynamical
study are given. Finally, Sec. VII contains concluding remarks.
For convenience, the atomic system of units (with me = e =
� = 1; 1 a.u. of distance is equal to 0.53 Å, 1 a.u. of time
is equal to 2.419 × 10−17 s, and 1 a.u. of velocity is equal to
2.188 × 108 cm/s) is used in this article.

II. THE PROBLEM FORMULATION AND
THE NUMERICAL METHOD

A. The problem formulation

The problem of the study is shown in Fig. 1. The H− ion
is fixed in front of a thin island film at the distance Z to the
film surface and at the distance X to the film symmetry axis. A
disk of thickness D and radius R is selected as a geometrical
model of the island film. The problem is solved in Cartesian
coordinates x, y, and z, but the cylindrical coordinates z, ρ,
and ϕ are also shown in order to interpret the RCT results.
For most examples in this study, the film thickness was set to
15 a.u., the film radius was set to 50 a.u., and the distance to the
film was set to 12 a.u. The choice of parameters is stipulated
by the values used in previous studies.

At the initial moment, the electron is located on the
affinity level of the H− ion, and RCT begins due to the
influence of the H− and Al film potentials. The H− potential
VH− (r) = −(1 + 1/r) exp(−2r) − (αH/r4) exp(−r2

0 /r2) is the
interaction potential between an electron and an atomic core (r
is the radial electron-atom distance in atomic units, αH = 2.25,
and r2

0 = 2.547) [54,55]. The interaction potential between an
electron and a thin Al island film Ve-surf is calculated as the
conjunction of the conduction-band bottom (U0 = 15.9 eV)
with a classical self-image potential of the electron −1/4 z (the
so-called “Jennings” potential):

VJ (z) =
{ 1−exp(λz)

4z
if z < 0,

−U0
1+A exp(−Bz) if z � 0,

(1)

where B = U0/A, A = −1 + 2U0/λ, and the parameters U0

and λ are defined for certain metals, including Al [28].
To construct the potential of a thin film with two borders,
the following conversion is used: Ve-film(z) = VJ (|z − T/2|).
Finally, the superposition of Jennings potentials along nor-
mal and polar coordinates is used in order to obtain the
two-dimensional potential Ve-surf(z,ρ). When the island film
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FIG. 1. Illustration of the problem. Left: in the Cartesian coordinates, the atomic particle is fixed in front of the thin island film. D is the
film’s thickness, R is the film’s radius, Z is the distance between the atomic particle and the nearest film’s surface, and X is the distance
between the atomic particle and the island film’s symmetry axis. Dashed arrows labeled ρ and ϕ correspond to the cylindrical coordinates.
Right: example of potential slice (X = 0, y = 0) for the system with D = 15 a.u., Z = 12 a.u., and X = 0.

radius is extremely large, the potential becomes identical to
the potential of a film of the same thickness. The slice of total
system potential is shown in the lower part of Fig. 1.

B. Numerical method

The RCT calculation is based on the numerical solution
of the time-dependent Schrödinger equation (TDSE). In this
research, we use an original high-performance ab initio 3D
numerical TDSE solver, which utilizes graphical processing
units. Details on the TDSE solver’s parallel implementa-
tion, verification, performance, and scalability are given in
Ref. [52]. Here we describe only the numerical scheme.

To solve the TDSE in Cartesian coordinates, we use the
explicit propagation scheme, which is also known as the
“leapfrog” scheme. It is the second-order differencing (SOD)
scheme [56].

Consider the TDSE in the form

i
dψ(�r,t)

dt
= H (t)ψ(�r,t), (2)

with the Hamiltonian

H = −∇2

2
− U (�r,t), (3)

where U (�r,t) = VH− (�r) + Ve-surf(�r) is the time-dependent
potential.

The time-evolution scheme appears as

φn+1 = −2iτ [Hφn] + φn−1, (4)

with initial conditions

φ0 = ψ0 + i

2

[
H

(
τ

2

)
ψ0

]
,

(5)

φ1 = ψ0 − i

2

[
H

(
τ

2

)
ψ0

]
,

where φ is a spatial discretization of the electron wave
function, ψ0 is an initial state (normalized ground-state wave
function), and τ is a time step.

To prevent the time oscillations of the wave function due
to reflections from the borders, the absorbing image potential
V (�r) is used, which modifies the time-evolution scheme in the
following way:

φn+1 = −2iτe−iτV [Hφn] + e−2iτV φn−1. (6)

Because “leapfrog” is only an SOD scheme, the important
question is its accuracy. The verification shows that the
integration error after 106 time steps does not exceed 1%
(precision of about 10−8 per time step), which is satisfactory
for the problems under study.

C. Extraction of the RCT characteristics and analysis
of the calculation results

The main characteristics of the RCT are the energy level
(E) and level width (	). The level width characterizes the
probability of electron transfer per unit of time (	 ∼ 1/τ ,
where τ is the lifetime of the initial state). A very simplified
qualitative interpretation of the RCT process is that the initial
electron state decays by the exponential law

ψ (r, t) = ψ0(r) exp(−i Et) exp(−	t). (7)

The numerical scheme of the TDSE solver provides the
time evolution of the system’s wave function ψ(�r, t). If we
project the current wave function on the initial state of the
system ψ0(r) , we will obtain an autocorrelation function,

A(t) = 〈ψ0(r) | ψ (r, t)〉, (8)

which is a complex function. Its real and imaginary parts
oscillate in time with a frequency equal to the energy level
of an electron, and its modulus is the probability that a
system remains in the initial state. This means that |A(t)| = 1
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corresponds to a situation in which the electron occupies the
hydrogen affinity level, while |A(t)| = 0 means that the outer
H− electron has completely gone into the nanosystem.

The more sophisticated interpretation of the RCT process
deals with the Fourier transform of the autocorrelation func-
tion,

g(ω) = 1

π

∫ ∞

0
dt eiωtA(t) = 1

π

∫ ∞

0
dt eiωt 〈ψ0(r) | ψ (r, t)〉,

(9)

which is the complex function of the oscillation frequency
(electron energy). The modulus of g(ω) gives the distribution
of the energy-level occupation. In the case of nanosystems,
the ion occupation probability |A(t)| oscillates in time, even
for large propagation times |A(t)| > 0. This means that the
Fourier transform of the autocorrelation function will contain
side lobes in addition to the main peak. To suppress the side

lobes, we use the Hamming window,

g(ω) = 1

π

∫ ∞

0
dt eiωtA(t)f (ω),

(10)
f (ω) = 0.54 − 0.46 cos(2π/Tmax),

where Tmax is the propagation time. To extract the level width,
we calculate the incline of ln |A(t)| on the linearly descending
section. The numerical experiments with the test data give an
error estimation of the described procedure of about 2%.

D. Eigenenergies and eigen wave function calculation

Additional important points for the interpretation of the
RCT calculation results are the eigenenergy levels Ek and
eigen wave functions �k(�r) of the electron inside the nanosys-
tem. To calculate the eigenenergy levels, we need to solve the
time-independent Schrödinger equation (TISE),

Hψ(�r) = Ekψ(�r). (11)

The finite-difference form of the TISE in the Cartesian coordinates is as follows:

−ψl+1,m,n + ψl−1,m,n + ψl,m+1,n + ψl,m−1,n + ψl,m,n+1 + ψl,m,n−1 − 6ψl,m,n

2h2
+ Ul,m,nψl,m,n = Ekψl,m,n, (12)

where h is the discretization step along the spatial coordinates.
To solve the TISE numerically, we transform the 3D array

ψl,m,n to a 1D vector fi , where i = (l − 1) × (N × M) + (n −
1) × (M + m), and L, N , and M are the dimensions of the
ψl,m,n array. Therefore, the TISE transforms to the matrix
equation

[A] × {f } = Ek{f }, (13)

where A is a square seven-diagonal sparse matrix of size
(L × N × M) × (L × N × M).

The eigenvalues and eigenvectors of matrix A give
the eigenenergies and eigen wave functions of the TISE.
The choice of the Dirichlet boundary condition, ψ0,m,n =
ψL+1,m,n = ψl,0,n = ψl,M+1,n = ψl,m,0 = ψl,m,N+1 = 0,

or the von Neumann boundary condition, ψ0,m,n =
ψ1,m,n; ψL+1,m,n = ψL,m,n; ψl,0,n = ψl,1,n; ψl,M+1,n =
ψl,M,n; ψl,m,0 = ψl,m,1; ψl,m,N+1 = ψl,m,N , does not affect
the results significantly.

Note that for the 3D eigenproblem for the nanosystems
under study (with a linear size of about 100 a.u.), the
characteristic size of matrix A is 108 × 108, and its numerical
solution is rather resource-consuming. Because the system
under study (a thin island film) has cylindrical symmetry, the
TISE transformation to the cylindrical coordinates ρ, z, and ϕ

reduces the complexity of the problem,

−1

2

(
∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ ∂2ψ

∂z2
+ 1

ρ2

∂2ψ

∂ϕ2

)
+ U (�r) · ψ(�r)

= Ekψ(�r). (14)

Here we use the periodic boundary conditions for the
ϕ coordinate ψ0,m,n = ψL,m,n. The boundary conditions for
ρ → 0 are defined as (∂2ψ/∂ρ2)( ρ → 0) = 0, or ψl,m,0 −
ψl,m,1 = ψl,m,1 − ψl,m,2. It should be noted that if we set

ρ1 = 0.5h, the above boundary conditions are equal to the
simple “natural” condition ψl,m,0 = ψl′,m,1, where l′,m, 1 is
the point symmetrical to l,m, 1.

Numerical experiments have shown that the spatial dis-
cretization step h = 0.2 a.u., and the halo size 10 a.u. (distance
from the border of the film to the border of the calculation
domain) gives the eigenenergies of the thin island film with
a precision of about 0.1%. More details on the eigenenergy
calculations can be found in Ref. [57].

E. Visualization aspects for 3D electron distribution

For the visualization of the electron density spatial distri-
bution, we use isosurfaces of electron density for some chosen
value. This is the most suitable (albeit not perfect) form of
visualization of the 3D function in journal format (“static 2D”).
The large as well as small values chosen for the isosurface can
hide some major aspects of the electron density distribution.

To visualize the electron current density, we use the 2D
field vector plot in the x-y coordinates, where electron current
is averaged along the z coordinate.

For the electron current calculation, we use the following
formula:

�j (r,t) = 1

2i
· [ψ∗(�r,t) · �∇ψ(�r,t) − ψ(�r,t) · �∇ψ∗(�r,t)]. (15)

For the calculations of the electron current component along
certain coordinates, we use the corresponding scalar product
averaged in the calculation domain. Note that for the ϕ current
component, the modulus of the scalar product was averaged,
so this component can be treated as rotational energy around
the symmetry axis of the island film.
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FIG. 2. (Color online) 1D and 2D eigen wave functions for the
thin Al film of thickness 15 a.u. and radius 50 a.u. Upper and middle:
eigen wave functions and electron densities along z and ρ coordinates
obtained for the 1D eigenproblem. Lower: eigen wave function along
z and ρ coordinates obtained for the 2D eigenproblem.

III. EIGENENERGIES AND EIGEN WAVE FUNCTIONS
OF THE THIN ISLAND FILM

The numerical results in this section are obtained for the Al
island film of 15 a.u. thickness and 50 a.u. radius.

A. One- and two-dimensional case

Analysis of the 1D (z coordinate) and 2D (ρ-z coordinates)
eigenstates helps us to understand the specificity of the
eigenstates in the 3D case. 1D and 2D eigenstates are obtained
as the TISE solution in the 1D and 2D case, respectively.

Figure 2 contains the electron density of the selected eigen-
state for the z, ρ, and ρ-z coordinates. The choice of eigenstates

corresponds to the results described in the following sections.
The eigen wave functions and potential are also shown for the
1D problem. We see that for the 1D problem, the solution has
a harmonic character and is similar to the classic problem of
quantum mechanics. The 1D eigenstates for the z coordinate
correspond to the eigenstates inside an infinite thin film. The
interesting feature is that a significant part of the electron
density is located outside the film (−15 < z < 0 a.u.). Such
localization is typical for all of the eigenstates, not only for the
selected one. The spatial localization of the eigenstates outside
the nanosystem can be treated as an analog of the images states
in the case of metals with a projected band gap. Notably, such
localization occurs only for z, but not for the ρ coordinate.

Also, Fig. 2 shows that for the considered potential of the
Al island film, the 2D eigen wave function can be expressed
as multiplication of two 1D eigen wave functions (“z, ρ

eigen wave function”) along each coordinate, and the 2D
eigenenergy level is a sum of two 1D eigenenergies:

�n(�r) ≈ �i(z)�j (ρ), En ≈ Ez
i + E

ρ

j . (16)

To fulfill the above equation, the energy levels relative to the
vacuum (E = 0 eV) should be converted to the energy levels
relative to the bottom of the Al film potential (E = −15.9 eV).

B. Three-dimensional case

Figure 3 contains the examples of 3D eigenstates. We see
that harmonics along the ϕ coordinate appear. However, for
practical usage, the 2D ρ-z slices are more suitable. Figure 4
contains such slices for the eigenstates corresponding to the
TDSE results in the following sections. All of them have six
maxima of electron density along the z coordinate (this is
stipulated by the sequence of eigenstate occupation in the
dynamic case). We see that there are two groups of eigenstates:

(i) “Central” states (E = −1.17, −1.43, and −1.61 eV)—
when the electron density is located near the symmetry axis
and does not depend on the ϕ coordinate. It should be noted
that these states are equal to the 2D eigenstates obtained for
the z-ρ coordinates.

(ii) “Peripheral” states (E = −1.16, −1.19, −1.21, −1.29,
−1.32, and −1.37 eV)—when the electron density near the
symmetry axis is close to zero, and the eigen wave functions
depend on the ϕ coordinate.

The spatial localization of the electron density for the
“peripheral” states is a bit unexpected, because �n(�r) �=
�i(z)�j (ρ)�k(ϕ) as one can expect by parity of reasoning
with the 1D and 2D cases. The possible explanation for such
a dependence is that a member of TISE (1/ρ2)(∂2ψ/∂ϕ2)
seeks infinity for ρ → 0 unless ∂ψ/∂ϕ �= 0. Hence, two
types of eigenstates can be realized: if ψ(ρ → 0) �= 0, then
(∂ψ/∂ϕ)(ρ → 0) = 0 and the TISE solution gives “central”
states, which do not depend on ϕ; otherwise, the TISE solution
gives “peripheral” states.

In conclusion, for the precise analysis of TDSE results, we
should use the TISE eigenstate obtained for the same potential,
i.e., not the isolated island film but rather the island film and
the neighbor ion (see Fig. 1). The comparison shows that the
TISE results for the described complex system are very similar
to the TISE results for the lone island film (the difference in
the eigenenergies is less than 0.02 eV).
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FIG. 3. (Color online) 3D eigen wave functions (electron density) for the thin Al film of thickness 15 a.u. and radius 50 a.u. Isosurfaces
for the electron density equal to half of the maximal density are shown; the values of the axes x,y,z are given in atomic units.

IV. RESONANT CHARGE TRANSFER FOR THE
CYLINDRICALLY SYMMETRIC PROBLEM

This section contains the results of 3D RCT calculations
for the cylindrically symmetric problem. Some examples are
compared to the results of the 2D calculations for the same
systems. The 2D calculations were performed previously
by the corresponding author by means of the wave-packet-
propagation method and reported in Refs. [43,45].

A. Evolution of the electron density and ion state
survival probability

Figure 5 represents the evolution of the electron density
spatial distribution in the symmetrical case. This evolution
can be divided into four stages: (i) During the first stage
(0−50 a.u.), the electron propagates into the nanosystem along
the z direction without any restrictions, and the electron
density distribution is continuous. (ii) During the second stage
(50−150 a.u.), the electron reaches the remote nanosystem

FIG. 4. (Color online) 2D projection of 3D eigen wave functions (electron density) for a thin Al film of thickness 15 a.u. and radius 50 a.u.
Each slice shows an electron density projection on the z-ρ plane (choice of ϕ value corresponds to the maximum of the 3D electron density).
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FIG. 5. (Color online) Isosurfaces of the electron density (ρ = 0.0001) at the subsequent moments of time for the cylindrical symmetry
case (X = 0). The ion coordinates are (0,0,12) a.u., and the island film borders are z = 0 a.u., z = −15 a.u., and x2 + y2 = (50 a.u.)2. The
values of the axes x,y,z and t moments are given in atomic units.

border and starts to propagate mainly along the ρ direction,
and 1D maxima appear along the z coordinate. (iii) During
the third stage (150−2000 a.u.), the electron reaches the
radial borders of the nanosystem, and 2D maxima appear
along the z-ρ coordinates. (iv) During the fourth stage (more
than 2000 a.u.), the electron density exhibits 3D maxima
along the z-ρ-ϕ coordinates. Due to the aspects of electron
density visualization, the electron density as shown in Fig. 5
has a different number of maxima along the z coordinate
for different times. However, the precise calculation of the
averaged electron density shows that during stages 2–4, it has
six maxima along the z coordinate. This means that the electron
preserves the z-harmonic received at stage 2. In addition, it
should be stressed that the electron density distribution exhibits

two maxima outside the film borders, which is analogous
to the image states for the metals with the projected band
gap.

The matching of the spatial distribution of the electron
density (mainly by maxima along the ρ coordinate) shows
that the electron density is relevant to different eigenstates
for different time moments. More precisely, the electron
density distribution inside the nanosystem is a superposition
of densities of several relevant eigenstates and a moving
part of the wave packet. Initially the electron populates
the “1D” eigenstate E = −1.61 eV (stage 2). This is not
surprising, because RCT between an ion and a nano-object
in the symmetrical case is likely to occur via “central”
states.
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FIG. 6. Energy spectrum for the symmetrical (X = 0) and asym-
metrical (X = 5 a.u.) cases. The ion coordinates are (0,0,12) and
(5,0,12) a.u. respectively; the island film borders are z = 0 a.u.,
z = −15 a.u., and x2 + y2 = (50 a.u.)2.

In stage 3, the “2D” electron density maxima appear.
Note that the depicted electron density maxima (rings) do
not reflect the motion of the wave packet, but they remain
stable for several hundreds of atomic units of time. For
example, for t = 500 a.u. (rings near ρ = 33 a.u.), the eigen-
state with E = −1.21 eV dominates; for t = 700 (rings near
ρ = 17 a.u.), the dominated eigenstate is E = −1.19 eV. At
the moment t = 1600 a.u. (rings near ρ = 31 and 11 a.u.),
two eigenstates with energies E = −1.32 and −1.29 eV are
visible. The above energies of eigenstates are confirmed
by the energy spectrum of the autocorrelation function
(Fig. 6). It has maxima near −1.31, −1.16, −1.48, and
−1.65 eV. The main peak corresponds to the energy level
of the hydrogen anion located at 12 a.u. from a metallic
surface (−1.32 eV = 0.75 eV + 27.211 eV/4 × 12 a.u.). The
other peaks correspond to different eigenstates shown in Fig. 4.

Note that the sequence of eigenstate occupation (E =
−1.21, −1.19, and −1.32 eV) does not correspond to the
energy proximity to the ionic level (−1.32 eV). The radial
eigenstate occupation occurs as a result of wave-packet
reflection from the film’s boundary, which is why the eigenstate
with the largest radius of electron density became populated
first.

Note that during the third stage, the electron density
distribution does not depend on the ϕ coordinate, but for
the moments when the electron is distributed across the
film, the spatial localization of the electron density is close
to the ϕ-dependent “peripheral” states (E = −1.21, −1.19,
−1.32, and −1.29 eV) rather than to the ϕ-independent
“central” states. More surprising is that for the 2D calculations
(z-ρ coordinates), the electron density maxima along the ρ

coordinate also correspond to the 3D “peripheral” states. To
solve this paradox, let us look at the TISE equation in the
cylindrical coordinates:

−1

2

(
∂2ψ

∂ρ2
+ 1

ρ

∂ψ

∂ρ
+ ∂2ψ

∂z2
+ 1

ρ2

∂2ψ

∂ϕ2

)
+ U (�r)ψ(�r)

= Ekψ(�r).

For large ρ (ρ > 10 a.u.), the member ( 1/ρ2)(∂2ψ/∂ϕ2) is
significantly less that other derivatives. Hence the approximate
TISE solution can be obtained, ψ(z,ρ) ≈ ∫

dϕ ψ(z,ρ,ϕ),

FIG. 7. Probability of the H− state survival as a function of time
for the cylindrical symmetry case (X = 0). The solid line represents
the results of 3D calculations; the dashed line represents the results of
2D calculations (in polar coordinates z-ρ); the dotted line represents
electron density anticorrelation with 3D eigen wave functions in
arbitrary units.

which does not depend on the ϕ coordinate. This solution does
not satisfy the precise TISE equation, but it has a physical
meaning for the dynamic situation (TDSE) in which the
electron density near ρ = 0 changes in time rapidly due to
the interaction with the ion. Thus, in the dynamic situation,
the pseudo-3D states arise, which have localization close
to the real 3D states, but they do not depend on the ϕ

coordinate. From a mathematical point of view, the pseudo-3D
states can be obtained by solving the TISE on a ring [e.g.,
∂ψ/∂ρ(ρ = 10 a.u.) = 0].

It should be noted that even under 2D initial conditions
and potential (cylindrically symmetric), the system evolves
to the 3D state with electron density maxima along all three
coordinates. This is a fundamental difference with the 2D cal-
culations. Of course, the electron density distribution preserves
cylindrical symmetry for a long time (up to 2000 a.u.), so
for the realistic interaction times the RCT in the symmetrical
case can be described by 2D calculations, where the electron
interacts with 2D continua of the nanosystem. The calculations
of the electron current along the z, ρ, and ϕ coordinates do not
show any interesting dependences. The only fact that should be
mentioned is that the electron current along the ϕ coordinate is
three orders of magnitude less that the electron current along
the z and ρ coordinates. After t = 1500 a.u., jϕ increases
approximately twofold. Another interesting feature of RCT
in the symmetrical case is its “reversibility”. Figure 7 shows
the survival probability of the H− state (or ion occupation)
as a function of interaction time [modulus of autocorrelation
function; see Eq. (8)]. We can see that in the first stage of
interaction, the electron decays from an atomic particle into
the nanosystem, but in the second stage the reverse process
begins—the electron moves back to the atomic particle. Note
that this process has an oscillatory characteristic, i.e., the
ion occupation is a periodic function of time. The oscillation
period (∼1100 a.u. for the system under study) is equal to the
electron reflection time, i.e., the time necessary for the wave
packet of the electron to propagate to the remote nano-object
boundary and to return. The oscillation amplitude, which
defines the minimal ion survival probability, depends on the
RCT efficiency. It is approximately equal to the portion of the
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FIG. 8. H− level width as a function of island film radius for the
symmetrical (X = 0) and asymmetrical (X = 5 a.u.) cases.

electron density tunneled to the nanosystem during half of the
electron reflection time. One can see that the ion occupation
exhibits anticorrelation with the occupation of “peripheral”
states. This fact indicates that for the symmetrical problem
(X = 0), RCT between the ion and the nanosystem occurs via
“central” states. In other words, when the electron is located
on the “peripheral” state, it cannot transfer back to the ion.

Also in Fig. 7, the results of 2D calculations are shown.
We see that oscillations in the 2D case have a slightly
different period and are more regular (oscillation amplitude
remains the same). The maximal ion-survival probability
decreases monotonically because the electron reflection in the
nanosystem is not perfect, and during each cycle, the definite
portion of the electron density remains in the nanosystem.
The attenuation of the oscillation amplitude after 2000 a.u. of
time in the 3D case is explained by the more stable occupation
of the “peripheral” eigenstates, which is accompanied by the
increase of the jϕ current component.

B. Quantum-size effect observation and interpretation

Figure 8 demonstrates the H− level width (RCT efficiency)
as a function of the island film radius. We see that this
dependence is nonmonotone and the RCT efficiency can vary
up to four times with the nanosystem size. This dependence is
called the quantum-size effect, and it is similar to the 2D case
dependence, reported in Ref. [45]. The small subpeak near
the maxima at R = 32 a.u. is interpreted as an artifact of the
H− level width extraction procedure, and it does not have a
physical meaning.

The qualitative explanation of the quantum-size effect is
based on the discrete energy structure of the nanosystem.
During RCT, the H− electron successively occupies the
nanosystem’s eigenstates along the z, ρ, and ϕ coordinates.
For the film of 15 a.u. thickness, initially the energy state with
energy −1.61 eV (see Fig. 4) is occupied, which corresponds
to the electron transition into the infinite thin film. Because of
the energy conservation law, the electron wave packet acquires
some kinetic energy (the difference between ionic levels −1.32
and −1.61 eV) preferably in the direction parallel to the
surface. When the higher harmonic of the electron’s de Broglie
wavelength fits the island film radius, the electron resonantly
populates the island film’s state in the radial direction. Hence,
the ion level decay occurs more efficiently, and we can see

larger values of the ion level width. Therefore, the peaks in
Fig. 8 are the results of the accidental match between island
film radius and de Broglie wavelength in the radial direction.
This also explains the periodic character of the H− level width
dependence (∼20 a.u.).

V. RESONANT CHARGE TRANSFER FOR THE
ASYMMETRICAL PROBLEM

For most of the examples in this section, the distance from
the ion to the film symmetry axis is chosen as X = +5 a.u.,
which is much less than the island film radius 50 a.u.

A. Evolution of the electron density and ion
state survival probability

Figure 9 represents the evolution of the electron density
spatial distribution in the asymmetrical case. In said case,
the electron density distribution evolution contains only three
stages, because occupation of eigenstates along the ρ and ϕ

coordinates begins in parallel. The first two stages are similar
to the symmetrical case in that the electron distribution is
continuous in the first stage and forms maxima along the z

coordinate in the second stage. However, the third stage differs
significantly in that the electron density exhibits maxima on
the z, ρ, and ϕ coordinates.

Due to the broken symmetry, the correspondence of the
electron density spatial distribution to the eigenstates is not as
perfect as it is in the symmetrical case. However, the maxima
near ρ = 33, 17, and 11 a.u. are clearly visible at the different
times that correspond to E = −1.21, −1.19, and −1.32 eV,
respectively. The energy spectrum of the autocorrelation
function shows that compared to the symmetrical case, the
peak E = 1.36 eV appears (Fig. 6).

Figure 10 demonstrates the survival probability of the H−
state as a function of interaction time for the symmetrical and
asymmetrical cases. We see that in the asymmetrical case, the
RCT process is also reversible, but it has a different oscillation
period and character. There are periods when the electron is
tunneling to the ion (at the moments t ∼ 1000 and 2000 a.u.),
but the amplitude of these back-tunneling peaks is small
comparing to the symmetrical case. The reason for such
alteration of RCT reversibility is that in the asymmetrical case,
the “peripheral” state became populated earlier and intensively
compared to the symmetrical case.

In Sec. III A, it was explained that electron reflection and
backpropagation in the symmetrical case occur via “central”
states (with maxima along the z-ρ coordinates only), and
the electron from the peripheral states (with maxima along
the z-ρ-ϕ coordinates) is not likely to transfer back to the
ion. In the asymmetrical case, occupation of the “peripheral”
states is greater compared to the symmetrical case. Due to the
broken symmetry, the system is nondegenerate and the electron
occupies “peripheral” states more intensively. In addition,
contrary to the symmetrical case, during stages 1 and 2 the
electron is forced to occupy the “central” states. However,
due to electron wave-packet propagation, the asymmetrical
system evolves to the electron density distribution close to the
“central” state at times near 2650 a.u. (Fig. 9). As a result, we
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FIG. 9. (Color online) Isosurfaces of the electron density (ρ = 0.0001) at the subsequent moments of time for the asymmetrical case
(X = 5). The ion coordinates are (5,0,12) a.u., and the island film borders are z = 0 a.u., z = −15 a.u., and x2 + y2 = (50 a.u.)2. The values
of the axes x,y,z and t moments are given in atomic units.

can see a great increase in the H− ion survival state for the
time ∼3000 a.u.

Another characteristic feature of RCT in the asymmetrical
case is that the electron current along the ϕ coordinate jϕ (ϕ
current component) is much more than that in the symmetrical
case, and its magnitude is comparable to the electron current
along the z and ρ coordinates. Moreover, the jϕ exhibits an-
ticorrelations with H− ion survival probability. This indicates
that high jϕ values are related to “peripheral” state occupation,
and it proves the intuitive assumption that electron rotation
around the center does not lead to backpropagation to the ion.

Finally, it should be stressed that a relatively small deviation
from the symmetry axis (X = 5 
 R = 50 a.u.) leads to a
significant change in the electron evolution and RCT character.

B. Features of the quantum-size effect in the asymmetrical case

Figure 8 shows the H− level width (RCT efficiency) as a
function of the island film radius for the asymmetrical case.
We see that this dependence exhibits the quantum-size effect
as in the symmetrical case, but it is “softer.” The possible
explanation for this “softer” dependence is that due to the
initial asymmetry of electron transition and localization, the
resonance between the de Broglie wavelength and the island
film radius became blurred.

Another interesting effect is the lateral dependence of the
RCT efficiency (Fig. 11). We see that under a fixed nanosystem
size and ion-surface distance, RCT efficiency can vary up
to two times, depending on the ion’s lateral position (the
distance to the film’s symmetry axis). This means that in the

022710-10



THREE-DIMENSIONAL EFFECTS IN RESONANT CHARGE . . . PHYSICAL REVIEW A 92, 022710 (2015)

FIG. 10. Probability of the H− state survival as a function of
time. The solid line represents the result for the symmetrical case
(X = 5), the dashed line represents the result for the asymmetrical
case (X = 5), and the dotted line shows the ϕ component of the
electron current in arbitrary units.

case of nanosystems, RCT efficiency depends not only on
the ion-surface distance, but also on the ion’s lateral position.
Therefore, the projectile trajectory will have a great impact on
the final charge state.

The explanation of the RCT lateral dependence is based on
the spatial localization of “peripheral” states. Figure 11 also
contains the averaged electron density distribution along the ρ

coordinate for the “peripheral” states, which are participants in
RCT. Despite the fact that this is a simple unweighted average,
we can see an evident correlation with the maxima of RCT
lateral dependence. On the qualitative level, RCT should be
more efficient when the distance between the ion’s location
and the eigenstate’s electron localization is minimal.

Note that the RCT lateral dependence was observed in
Refs. [34,50], but here the lateral-dependent potential was used
for modeling the solid body. In this study, we observe the RCT
lateral dependence for the potential, which is constant along
the surface.

C. Electron current evolution and quantum vortices

In the asymmetrical case, the averaged electron current
distribution in the x-y plane has no axial symmetry. In this
case, a very interesting phenomenon is observed, namely

FIG. 11. H− level width as a function of the distance between the
atomic particle and the island film’s symmetry axis (solid line). The
dashed line shows the averaged ρ distribution of the 3D eigen wave
functions (electron densities).

FIG. 12. (Color online) Illustration of quantum vortices arising
in the asymmetrical case (X = 5). The figure shows the electron
current averaged along the z coordinate at time 1500 a.u. The values
of the x and y axes are given in atomic units.

quantum vortices (see Fig. 12). We can see that near points
x ∼ −3.5 a.u. and y = +/ − 12 a.u., the averaged current
forms rotary fields, which are called quantum vortices. The
origination of quantum vortices has been reported before [58],
but the important difference is that in our case the quantum
vortices appear in the static case (i.e., the Hamiltonian in the
TDSE does not depend on time).

Figure 13 explains the formation of quantum vortices on a
qualitative level. From the beginning of RCT, the electron
predominantly occupies the right part of the film (x > 0),
because the ion is located there. After the reflection from
the right part of the island film, the radial boundary electron
propagates parallel to the surface in the direction x = −50 a.u.

After the reflection from the radial boundary, the electron
begins the occupation of 3D eigenstates of the island film.
The electron wave function can be treated as a superposition
of several relevant eigenstates and a wave packet, moving
parallel to the surface.

Up until t = 450 a.u., the system preserves symmetry with
respect to the y axis, and the electron density distribution has
branches/flows with radius ∼33 a.u. This spatial localization
is likely to be the “fingerprint” of the eigenstate with energy
−1.21 eV (note that the same eigenstate dominates at t =
500 a.u. in the symmetrical case). At this period, the electron
preferably propagates along the rings of the dominating
eigenstate. Hence two branches of the electron density are
forced to collide with each other in the region y = 0 (t =
500 a.u.). Because of this collision, the electron density flows
are twisted to the center of the system, and we can see two
quantum vortices (t = 550 a.u.). The electron density flows
are twisted to the center because there are no eigenstates with
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FIG. 13. (Color online) Formation of quantum vortices in the asymmetrical case (X = 5). The figure shows electron current averaged along
the z coordinate at the subsequent moments of time. Curved arrows show the main direction of the electron’s density movement. The ion
coordinates are (5,0,12) a.u., and the island film borders are z = 0 a.u., z = −15 a.u., and x2 + y2 = (50 a.u.)2. The values of the axes x,y,z

and t moments are given in atomic units.

greater radius (see the sequence of the eigenstate occupation
in Sec. III A).

After their formation, quantum vortices demonstrate dy-
namical stability for a relatively long period. For example,

Fig. 14 illustrates the movement of quantum vortices. Two
originated vortices are moving in the direction x = +50 a.u.
The size and movement velocity of the vortices remain
constant for the period from 600 to 800 a.u. The spatial
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FIG. 14. (Color online) Evolution and movement of quantum vortices in the asymmetrical case (X = 5). The figure shows the electron
current averaged along the z coordinate at the subsequent moments of time. The ion coordinates are (5,0,12) a.u., and the island film borders
are z = 0 a.u., z = −15 a.u., and x2 + y2 = (50 a.u.)2. The values of the axes x,y,z and t moments are given in atomic units.

electron localization during this period exhibits maxima for
ρ = 33, 17, and 11 a.u. These are “fingerprints” of eigenstates
with energy −1.21, −1.19, and −1.32 eV, respectively. For
the period t = 600−800 a.u., we can observe the successive
electron transition from eigenstate −1.21 eV to 1.19 eV

and 1.32 eV, which is accompanied by the formation of
quantum vortices. For the period t = 800−1000 a.u., the
depicted quantum vortices hold their place and disappear
after t = 1000 a.u., but the new vortices originate for the later
times.
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FIG. 15. Probability of the H− state survival as a function of the
distance to the surface for different projectiles velocities.

Note that the observation of quantum vortices in the static
system is a very interesting result that could not be obtained
by 2D calculations. Generally, it could be said that the times
and localization of the quantum vortices are determined by the
ion position and eigenstate localization inside the nanosystem.
However, the regularities of the formation and evolution of
quantum vortices require further investigation.

VI. RESONANT CHARGE TRANSFER FOR
THE DYNAMIC PROBLEM

Finally, the developed TDSE solver was applied to the
dynamic problem when a hydrogen ion approaches a thin
island film with a constant velocity along the island film’s
symmetry axis. Figure 15 shows the ion survival probability
as a function of the distance to the film surface for different
projectile velocities. Similar calculations have been done for
the 2D case in Ref. [45]. We see that for large velocities (v >

0.1 a.u.), exponential decay takes place and the RCT process
can be described by the rate equation dPH−/dt = 	(z)PH−

(a comparison is given in [45]), while for small velocities
(v < 0.05 a.u.), the ion occupation exhibits oscillations, i.e.,
reverse transitions of the electron from the nanosystem to the
projectile take place. Such oscillations cannot be described
by the rate equation under the adiabatic assumption. This
illustrates the bottom limits of the applicability of the adia-
batic approximation in the case of RCT with nanosystems.
Of course, these limits depend on the nanosystem’s size,
especially its thickness along the z coordinate. For a film
of 15 a.u. thickness, the limitation on the normal velocity is
v⊥ � 0.1 a.u. This velocity value corresponds to the relatively
small H ion energy 250 eV, but also to the significant 10 keV
energy for Ar ions.

VII. CONCLUSIONS

This paper addresses a principal RCT features arising in
nanosystems. To do this, we compared the RCT calculation
results for the cylindrically symmetric problem (which have
been well studied before) with the RCT calculation results for
the asymmetrical problem (that was not extensively studied
due to the numerical difficultness of the 3D calculations). The
original high-performance numerical solver is used for the ab
initio 3D RCT calculations.

The analysis of 3D eigen wave functions for thin metallic
island film shows that there are two groups of eigenstates:
(i) “central” states—when electron density is located near
the symmetry axis and does not depend on the ϕ coordinate
(these states are equal to the 2D eigenstates of the z-ρ
coordinates); (ii) “peripheral” states—when electron density
near the symmetry axis is close to zero and the eigen wave
functions depend on the ϕ coordinate.

The electron density distribution inside the nanosystem is
a superposition of densities of several relevant eigenstates
and a moving part of the wave packet. The evolution of
the electron density spatial distribution in the symmetrical
case can be divided into four stages: in the first stage,
the electron propagates without any restrictions, as in bulk
metal, and in stages 2, 3, and 4 it successively occupies the
nanosystem’s eigenstates along the z, ρ, and ϕ coordinates,
respectively. Of note, even under 2D initial conditions and
potential (cylindrically symmetric), the system evolves to
the 3D state with electron density maxima along all three
coordinates. It should be noted that despite the occupation of
the eigenstates, part of the electron wave function continues to
move inside the nanosystem. Note that during the third stage,
the electron density distribution does not depend on the ϕ

coordinate, but the spatial localization of the electron density
is close to the ϕ-dependent “peripheral” states rather than to the
ϕ-independent “central” states. More surprising is that for the
2D calculations (z-ρ coordinates), the electron density maxima
along the ρ coordinate also correspond to the 3D “peripheral”
states. This happens because near the symmetry axis, the wave
function is very volatile and the pseudo-3D states arise, which
have localization close to the real 3D states but do not depend
on the ϕ coordinate.

Another interesting feature of RCT in the symmetrical case
is its “reversibility,” i.e., in the first phase of interaction the
electron decays from an atomic particle into the nanosystem,
but in the second phase the reverse process begins, i.e., the
electron moves back to the atomic particle. It should be
noted that ion occupation has an oscillatory characteristic. The
oscillation period is equal to the electron reflection time, and
the oscillation amplitude depends on the RCT efficiency. The
ion occupation exhibits anticorrelation with the occupation of
“peripheral” states. This fact confirms that for the symmetrical
problem (X = 0), RCT between the ion and the nanosystem
occurs via “central” states. Note that due to the 3D effects, the
oscillations in the 3D case fade more rapidly compared to the
2D calculations. In the asymmetrical case, the electron density
distribution evolution contains only three stages, because
occupation of eigenstates along the ρ and ϕ coordinates begins
in parallel. In this case, the electron movement energy along
the ϕ coordinate (which indicates the intensity of the 3D state
occupation) is two orders of magnitude higher than that for the
symmetrical case. The RCT process in the asymmetrical case is
also reversible, but the oscillations are not as regular as in the
symmetrical case. The ion occupation in the asymmetrical case
exhibits anticorrelation with the electron movement energy
along the ϕ coordinate.

The dependence of the RCT efficiency on the nanosystem
size shows that it can vary up to four times. The maxima
of RCT efficiency correspond to the resonant occupation
of the island film’s eigenstates in the radial direction. The
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conditions for resonant occupation depend strongly on the
island film radius. In the asymmetrical case, the RCT efficiency
exhibits the quantum-size effect as well, but the dependence is
weaker because of the blurring of the resonance conditions. In
addition, it should be noted that under a fixed nanosystem
size, the variation of the atomic particle’s lateral position
changes the RCT efficiency up to twofold. The maxima of the
RCT efficiency’s lateral dependence are related to the spatial
localization of the eigenstates inside the nanosystem. This
means that during ion-surface interaction, the nanosystem’s
size and the ion trajectory strongly influence the ion’s final
charge state.

In the asymmetrical case, the observation of quantum
vortices in the static system is a very interesting result that
cannot be obtained by 2D calculations. On a qualitative level,
the formation of quantum vortices can be described by the

collision of two electron density flows, which are bounded to
the spatial localization of eigenstates inside the nanosystem.

The dynamical study of the RCT process between an ion
and a nanosystem shows that for small projectile velocities
(less than 0.1 a.u.), the ion occupation exhibits oscillations
instead of exponential decay for large velocities. This means
that in the case of nanosystems, the rate equation is applicable
to the RCT problem only for relatively large projectile energies
(greater than 250 eV for H and 10 keV for Ar).
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