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Optical Feshbach resonances: Field-dressed theory and comparison with experiments
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Optical Feshbach resonances (OFRs) have generated significant experimental interest in recent years. These
resonances are promising for many-body physics experiments, yet the practical application of OFRs has been
limited. The theory of OFRs has been based on an approximate model that fails in important detuning regimes,
and the incomplete theoretical understanding of this effect has hindered OFR experiments. We present the most
complete theoretical treatment of OFRs to date, demonstrating important characteristics that must be considered
in OFR experiments and comparing OFRs to the well-studied case of magnetic Feshbach resonances. We also
present a comprehensive treatment of the approximate OFR model, including a study of the range of validity for
this model. Finally, we derive experimentally useful expressions that can be applied to real experimental data to
extract important information about the resonance structure of colliding atoms.
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I. INTRODUCTION

A. Background

Magnetic Feshbach resonances (MFRs) have become a
staple of quantum gas experiments with alkali-metal atoms,
allowing for unprecedented control of interatomic interac-
tions [1]. The MFR technique is so powerful that it has ex-
tended the reach of dilute quantum gas experiments to a variety
of areas of physics. Examples of high impact experiments that
utilize MFRs are the study of strongly correlated systems [2]
such as unitary Bose [3,4] and Fermi [5–7] gases, the
discovery of exotic few-body bound states [8–11], the ability
to make ultracold molecules [12,13], and the engineering of
novel quantum matter [14,15]. Feshbach resonances based
on laser fields—known as “optical Feshbach resonances”
(OFRs) [16,17]—have also been observed [18,19], but so
far their utility has been limited. Since laser fields can be
focused tighter and switched faster than magnetic fields,
it is expected that OFRs could yield an MFR-like effect
but with orders of magnitude better spatial and temporal
control [20].

Furthermore, OFRs are better suited for alkaline-earth-
metal atoms, which have magnetically insensitive elec-
tronic ground states. The study of alkaline earth atoms is
now a rich field, attracting attention for metrology [21],
quantum information [22,23], and many-body physics [24].
Quantum degenerate gases of these atoms have also been
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realized [25–27]. Many-body physics has been demonstrated
in strontium lattice clocks [28], and it has been shown that
controlling many-body interactions in gases of alkaline earth
metals could lead to better clock accuracy [29]. Without
MFRs to facilitate the same many-body control enjoyed by
alkali-metal experiments, OFRs have been suggested as an
alternative [30].

OFRs have been the focus of several experiments. These
resonances have been observed in alkali gases [18,31] and
in alkaline-earth-like atoms [32]. P -wave OFRs have been
reported [33], and OFRs have been successfully applied to
induce thermalization in Sr gases [34] and manipulate the con-
densate dynamics of a Sr Bose-Einstein condensate [35,36].
The theory used to describe these experiments was based on
a quantum defect treatment by Bohn and Julienne, who used
an isolated resonance approximation to derive the optically
modified scattering length [37].

Although the isolated resonance theory has been successful
in describing some observations of OFRs, it fails to explain
OFR behavior in the large detuning regimes that are critical
to a proposal for practically applying these resonances [30].
Attempts to experimentally realize this proposal did not
succeed [34]; therefore, the limited theoretical understanding
of OFRs has hindered experimental progress. To broaden
the theoretical understanding of OFRs, we perform the most
complete theoretical analysis of this effect to date. To this
end, we treat OFRs with a numerical coupled-channel method,
which has been highly successful for treating MFRs [1,38].
Like the MFR theory, our coupled-channel approach is capable
of treating multiple interacting resonances without being re-
stricted to the more limited isolated resonance approximation.
Consequently, this more general treatment allows us to study
the range of validity of the isolated resonance approximation,
and it also enables us to point out similarities and significant
differences between OFRs and MFRs. Finally, we use the
isolated resonance theory to derive experimentally useful
formulas that can be used to understand real experimental
OFR data.
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B. Basic collision theory

In the context of cold-atom physics, a Feshbach resonance
is a collisional resonance of two particles that is tunable
by an external field. This is possible if a molecular bound
state from an excited scattering channel (called the “closed
channel”) couples to the free atom continuum of the ground-
state scattering channel (called the “entrance channel” or the
“background channel”). Furthermore, the bound-state energy
is tunable by an external magnetic or electromagnetic field. The
presence of this bound molecular state modifies the s-wave
scattering length of the atoms, thereby changing the atomic
interactions as the external field is tuned.

We emphasize that both MFRs and OFRs can be treated
by the same scattering formalism, which accounts for the
differences in their coupling and control mechanisms, as
presented in the review by Chin et al. [1]. A typical MFR
is coupled to the entrance channel by internal short-range
spin-dependent couplings within the ground-state manifold
of Zeeman levels. MFRs are tuned by varying an external
magnetic field B to move a molecular bound state across a
collision threshold, creating a pole in the scattering S matrix as
a function of B. An OFR involves coupling a bound molecular
state to two colliding atoms in their ground states using a
photon from a laser, hereafter called the “photoassociation
laser” or “PA laser.” In this case, the coupling depends on both
the PA laser detuning from a photoassociation resonance (the
“molecular detuning”) and the PA laser intensity. In contrast
to MFRs, which are often based on molecular states that
have very long lifetimes, spontaneous decay of the excited
molecular state in an OFR introduces an appreciable linewidth
to the molecular transition. Any population transferred to the
excited state undergoes spontaneous decay, which translates
to inelastic loss collisions that must be minimized in order
to utilize an OFR. However, resonance decay does not
necessarily prevent the application of OFRs since MFRs with
two-body decay channels [39–41] have proven experimentally
useful [42–46].

In the OFR studies presented here, we consider bosonic
88Sr with the two ground-state atoms providing the 1S0 + 1S0

ground-state entrance channel and the excited state 1S0 + 3P1

providing the closed channels, schematically represented in
Fig. 1. Since bosonic isotopes of alkaline earth metals have
no nuclear spin, the 88Sr resonance structure is considerably
simpler than for atoms with hyperfine interactions, making it
a good atom for an OFR experiment. The 1S0 → 3P1 atomic
transition is an intercombination line with a natural linewidth
of γa = 2π × 7.4 kHz. The narrowness of this transition
means that all OFRs in 88Sr are well resolved from the
atomic line, decreasing the severity of off-resonant atomic
light scattering.

To analyze the scattering of two colliding 88Sr atoms in a
light field, we calculate the scattering S matrix to determine the
elastic and inelastic scattering cross sections. Since the 88Sr
ground state is completely spinless, and since current OFR
experiments are typically performed at temperatures of a few
μK or below, the scattering is described by an s-wave collision
with a single nondegenerate entrance channel. Therefore, we
develop our theory for this experimentally simple OFR system,
for which we only need a single s-wave S-matrix element
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FIG. 1. (Color online) (a) The 1S0 + 1S0 entrance channel of 88Sr
couples to a bound state of the 3P1 + 1S0 closed channel via the PA
laser field. The atomic transition is a 7.5-kHz intercombination line.
Here E is the collision energy, ω0 is the atomic resonance frequency,
and ω is the laser frequency. (b) In the dressed-state picture, two
free atoms in the entrance channel are brought into resonance with a
molecular bound state. Here δ is the “molecular detuning” (defined
in Sec. III), and np is the photon number. The Condon radius Rc is
defined as the value of R where the two potentials cross.

S(k) = e2iη(k), represented, in general, by a complex energy-
dependent phase shift η(k). Here k is defined via the collision
velocity �k/μ, μ = m/2 is the reduced mass, and m is the
mass of an 88Sr atom. This phase shift, in turn, defines an
energy-dependent scattering length α(k) as [13,47,48]

α(k) = a(k) − ib(k) = − tan η(k)

k
= 1

ik

1 − S(k)

1 + S(k)
. (1)

This expression is useful for small but nonvanishing collision
energies, and the standard complex scattering length is the
k → 0 limit of this expression. The elastic and inelastic loss
cross sections are

σel = πg

k2
|1 − S(k)|2 = 8π |α(k)|2f 2(k), (2)

σin = πg

k2
[1 − |S(k)|2] = 8π

k
b(k)f (k). (3)

Here g is a collisional symmetry factor, which is equal to 2 for
identical bosons (as assumed here). The function

f (k) = 1

1 + k2|α(k)|2 + 2kb(k)
(4)

approaches unity when k|α| � 1 for all detunings. For a
trapped gas of atoms, this limit occurs when kBT /�γ � 1,
where kB is Boltzmann’s constant and T is the sample
temperature. The elastic and inelastic collision rate coefficients
are related to these cross sections as

Kel(k) = �k

μ
σel(k) → 8π

�

μ
k|α(k)|2 as k → 0, (5)

Kin(k) = �k

μ
σin(k) → 8π

�

μ
b(k) as k → 0. (6)

These general expressions are valid in the s-wave limit for
OFRs and for decaying or nondecaying MFRs. A sum over
higher partial waves is needed when these begin to contribute
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at higher k, and a thermal average of Kel(k) and Kin(k) is
needed when comparing to experiment.

II. COUPLED-CHANNEL FORMULATION OF OPTICAL
FESHBACH RESONANCES

A. Background

The standard treatment for atomic collisions involving two
or more internal states of the atoms is the coupled-channel
(CC) method. Numerical models based on CC methods
have been very successful in treating collisions and MFRs
of ground-state alkali-metal atoms [1,38]. The CC method
involves setting up a basis set representing the “channels”
of the electronic, spin, and rotation degrees of freedom of
the colliding atoms and then solving the matrix Schrödinger
equation for the amplitude of the radial motion in the
interatomic separation coordinate R for each of these channels.

In MFR theory, the channels represent the states of the
atoms in a magnetic field for R → ∞, the Born-Oppenheimer
potentials characterize the R-dependent interactions, and
spin coupling matrix elements are approximated by their
atomic values. An external B field shifts the energies of the
atomic and molecular energy levels. In the case of OFRs,
the channels represent the field-dressed atoms, where the
ground and excited states are coupled by the light field in
the dipole approximation, and the R-dependent molecular
interactions are represented by the ground- and excited-state
Born-Oppenheimer potentials together with any nonadiabatic
coupling between them. The OFR case has the added com-
plication of including the spontaneous emission of light by
excited-state atoms or molecules.

To date, all cold-atom OFRs have been treated by a
resonant scattering formulation [16,37,49]. The next section
will discuss the approximation of treating each OFR as an
isolated resonance. Here we concentrate on giving a full CC
treatment [50–53] that includes the effect of multiple over-
lapping resonances without restricting the theory to treating
isolated single resonances. This enables us to establish the
conditions under which the isolated resonance approximation
is valid.

We follow the field-dressed collision approach of Juli-
enne [54,55], which was applied to explain experiments on
the collisional redistribution of light [56,57]. To do this it is
necessary to properly represent the three-dimensional (3D)
nature of the collision and the role of atomic degeneracy.
References [55,58] treat the exchange of multiple photons
during a collision, by which one partial wave is coupled
to higher partial waves through the intrinsically anisotropic
nature of the interaction with light. Reference [58] adapts the
CC dressed atom formalism to cold-atom collisions in strong
optical fields to explain the phenomena of optical shielding.

Three effects need to be incorporated within a CC theory
to describe OFRs in the collision of 1S0 Sr atoms in a light
field tuned near the 1S0 → 3P1 line: (1) the field dressing of
the collision; (2) the inherently 3D nature of the collision,
with a space axis defined for the separated atoms by the
PA laser polarization but with a rotating interatomic axis
needed for the excited molecular bound states; and (3) the
spontaneous emission while in the excited state. If we make

the approximation that the light field is weak, the total angular
momentum J is a good quantum number (the optical coupling
matrix element remains small compared to the spacing of
rotational levels in the excited state). In this case, Refs. [56,57]
showed that six CCs are needed to describe optically coupled
1S0 + 1S0 → 1S0 + 1P1 collisions. The same is true when we
replace 1P1 with 3P1. One set of channels represents the
ground-state collision with partial wave 	 = J and np photons
at an angular frequency ω. Another set represents the excited
0u and 1u molecular states with np − 1 photons at frequency
ω and respective projection 
 = 0 and 1 of electronic angular
momentum j = 1 on the interatomic axis. These excited-state
channels have total angular momentum Je = J − 1 (two
channels), J (one channel), and J + 1 (two channels). In
the special case of s-wave collisions (J = 0) of cold atoms,
only three channels are needed, representing the ground state
and the 0u and 1u states with J = 1. Finally, spontaneous
emission from the excited molecular state can be included
with a complex potential [59], with a caveat that the imaginary
decay part of the potential has to be turned off when the atoms
are far apart in the free atom limit.

We assume that the free atoms are weakly dressed—that
is, the PA laser with photon energy �ω is detuned from the
atomic excitation energy �ω0 by a large amount compared to
the optical coupling strength

Vopt = (2πI/c)1/2d, (7)

where I is PA laser intensity, c the speed of light, and d is
a molecular transition dipole matrix element [57]. However,
the short-range molecular states can be strongly dressed, so
that the peak of an on-resonant PA line at �ωn, where n is
the molecular vibrational level, can be power broadened. The
rotational quantum number Je will remain a good approximate
quantum number as long as Vopt remains small compared to
the rotational constant Bn of level n. (The separations of the
J = 0 and 2 levels from the J = 1 level are 2Bn and 4Bn,
respectively.)

B. Formulation for 88Sr

We include in our treatment here the minimal number
of three channels needed to get a basic description of near-
threshold s-wave OFRs. This minimal treatment could be
written in either of two basis sets representing the electronic,
spin, rotational, and photon degrees of freedom. One basis
set for the molecular degrees of freedom is the Hund’s case
(c) basis represented as |
sJM〉c, where the projection of
electronic plus spin angular momentum j on the rotating
body-fixed axis is 
, s represents the gerade or ungerade
inversion symmetry of electronic coordinates, and M is the
projection of total angular momentum J on a space-fixed axis.
The other molecular basis is the Hund’s case (e) asymptotic
basis of Refs. [54,57] represented as |js	JM〉e, where js = 0
or 1 represents the separated atoms in the respective 1S0 + 1S0

and 1S0 + 3P1 channels with partial wave 	, coupled to total
angular momentum J and projection M . The subscript s on j

indicates that the electronic wave function is symmetrized with
respect to the exchange of electronic coordinates. Table I shows
the three basis functions for a dressed CC calculation in either
representation. The transformation between the molecular and
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TABLE I. Minimal CC basis sets in the Hund’s case b = (c) and
(e) representations, where σ = 0,±1 represents the polarization of
the light with np photons of frequency ω that couples the ground and
excited states.

Channel Case (c): |
sJM〉|npωσ 〉 Case (e): |j	JM〉|npωσ 〉
|1〉b |0g00〉c|npωσ 〉 |0g000〉e|npωσ 〉
|2〉b |0u1σ 〉c|np − 1,ωσ 〉 |1u01σ 〉e|np − 1,ωσ 〉
|3〉b |1u1σ 〉c|np − 1ωσ 〉 |1u21σ 〉e|np − 1ωσ 〉

asymptotic representations is (see, for example, Eq. (36) of
Ref. [54])

|0uJM〉c =
(

J

2J + 1

)1/2

|1u,J − 1,JM〉e

−
(

J + 1

2J + 1

)1/2

|1u,J + 1,JM〉e, (8)

|1uJM〉c =
(

J + 1

2J + 1

)1/2

|1u,J − 1,JM〉e

+
(

J

2J + 1

)1/2

|1u,J + 1,JM〉e. (9)

Using the CC expansion of the full wave function at total
energy E,

�(R,E) =
3∑

i=1

|i〉bFi,b(R,E)/R, (10)

where Fi,b represents the amplitude of the wave function
projected on the basis function |i〉b for Hund’s case b = (c)
or (e). The CC matrix Schrödinger equation for the s-wave
collision of the two atoms in a (moderately) weak light field is

∂2�

∂R2
+ 2μ

�2
[E · I − V(R)]� = 0, (11)

where I is the identity matrix and the potential matrix V
describes the diagonal and off-diagonal matrix elements of
the collisional and optical interactions. Either the b = (c) or
(e) representations (Table I) of the excited state could be used
to set up the expansion and V matrix in Eqs. (10) and (11).
Our numerical calculations use the Hund’s case (e) basis, for
which the matrix elements are given in Table I of Ref. [57],
and quoted in the supplemental online material for Ref. [34],

V =

⎛
⎜⎝

Vg Vopt 0

Vopt
1
3 (V0u + 2V1u)

√
2

3 (V1u − V0u)

0
√

2
3 (V1u − V0u) 1

3 (2V0u + V1u) + 6Vcen

⎞
⎟⎠ ,

(12)

where the 6Vcen term represents the d-wave centrifugal
potential with Vcen = �

2/(2μR2). Here Vg(R), V0u(R), and
V1u(R) represent the ground-state and 0u and 1u excited-state
BO potentials, each of which we model as a Lennard-Jones

potential plus an additional long-range term:

Vg(R) =
[(

R0,g

R

)6

− 1

]
C6,g

R6
− C8,g

R8
+ Vg∞, (13)

V0u(R) =
[(

R0,0u

R

)6

− 1

]
C6,0u

R6
− C3,0u

R3
+ Vu∞, (14)

V1u(R) =
[(

R0,1u

R

)6

− 1

]
C6,1u

R6
+ C3,1u

R3
+ Vu∞. (15)

The Vs∞ terms give the asymptotic values of the potentials as
R → ∞, as explained below. We use the excited-state potential
parameters from Zelevinsky et al. [60,61]. The ground-state
C6,g and C8,g parameters come from Ref. [62], and R0,g

was optimized to reproduce the measured bound-state binding
energies of Ref. [63] to within 0.4% [64]. Vg(R) has an s-wave
scattering length of −1.4a0, consistent with that reported in
Ref. [63].

The optical coupling matrix element in Eq. (12) is given
by Eq. (7) in the dipole approximation, where we neglect
retardation (that is, the phase difference between the optical
fields separated by distance R � λ, where λ = 2πc/ω is
the wavelength of the excitation light). Thus, since we use the
symmetrized g and u electronic states, d = √

2da , where the
atomic transition dipole da = 0.086 82 atomic units (1 a.u. =
e a0, where e is the electron charge and a0 is the Bohr
radius), corresponding to an atomic 3P1 lifetime of 21.46 μs or
linewidth of γa = 2π × 7.416 kHz. Thus, introducing units
into Eq. (7),

Vopt/h = 24.83 MHz × da

√
I/(1W/cm2), (16)

where da is in atomic units. The optical coupling in V conforms
to the case (e) selection rule that �	 = 0,�m	 = 0 (it is only
the electronic j quantum number that changes). This coupling
is also independent of light polarization σ for this transition.
Using Eq. (12), there will be an asymptotic light shift,

V∞ = �(ω0 − ω)

2

⎧⎨
⎩

√[
2Vopt

�(ω0 − ω)

]2

+ 1 − 1

⎫⎬
⎭, (17)

which is negative for the ground state and positive for the
excited state. Thus, taking Vg∞ = V∞ and Vu∞ = �(ω0 −
ω) + V∞ in Eqs. (13)–(15) ensures that when V is diagonalized
the lowest energy eigenvalue at large R for the field-dressed
ground state is zero. With this definition of the zero of energy,
the total energy E in the CC Schrödinger equation (11)
represents the relative collision kinetic energy �

2k2/2μ of
the dressed ground-state atoms, and E = �

2k2/2μ → 0 at the
collision threshold.

The matrix V in Eq. (12) could be transformed to the
molecular case (c) representation by transforming the 2 × 2
excited-state block using the (c) to (e) transformation matrix
used in Eqs. (8) and (9). This would give the diagonal J = 1 0u

and 1u potentials given in Eqs. (1) and (2) of Zelevinsky
et al. [60] and generate the body-frame Coriolis coupling term
between these two states. The optical coupling in the case (c)
molecular basis is different from that in the asymptotic case
(e) basis. Using the transformations in Eqs. (8) and (9) shows
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that the optical couplings matrix elements between the ground
J = 0 0g state and the respective excited J = 1 0u and 1u

states are determined from Eq. (7) with the molecular dipole
matrix elements

d0u =
√

1/3
√

2da, (18)

d1u =
√

2/3
√

2da. (19)

The
√

2 is the same homonuclear g → u enhancement factor
that affects the case (e) matrix element. The other factor
corresponds to the usual Hönl-London factor for R branch
(J → J + 1) molecular transitions.

Treating an OFR requires that we include the decay from
the excited state, which has a molecular decay rate γ . Our
calculations assume γ = γm, where we define γm = 2γa .
This rate γm is the rate of spontaneous emission from the
excited molecular state in the long-range nonretarded dipole
approximation. A nonzero value of γ − γm would be due to
other processes that induce decay of the excited state or change
the emission rate from its long-range nonretarded dipolar
value. While Bohn and Julienne [37] introduced artificial
channels to simulate excited-state decay, a simpler method is
to introduce an imaginary term in the excited-state potentials
in Eqs. (14) and (15), replacing Vju, j = 0,1, with

Vju − i
�γ

2
(1 + eβ(R−Rcut))−1, (20)

where γ is an R-independent constant. The function in
parentheses ensures that molecular decay turns off at large
distances when R exceeds the arbitrary cutoff radius Rcut by
an amount large compared to the length 1/β. Furthermore, this
function ensures that the full molecular decay rate turns on at
small distances where Rcut − R is appreciably less than 1/β.
The constant β parametrizes the distance over which molecular
decay becomes appreciable.

When the coupled equations are solved with this complex
potential in Eqs. (14) and (15), the S matrix is nonunitary, and
1 − |S(k)|2 in Eq. (3) represents loss of ground-state atoms
due to molecular excitation followed by excited-state decay.
We assume that every spontaneous emission event represented
by the imaginary term in Vju results in hot atom or molecular
products that are lost from the trap. Our numerical studies show
that this assumption is good for all the excited levels except
the state nearest in energy to the atomic resonance (Sec. II D).
We calculate that 60% of the emission from this state does not
result in loss from a 10 μK trap [60,65]. The cutoff ensures
that there is no spurious excited-state decay associated with
the asymptotically dressed atoms. We find that in the core
of a PA line, out to molecular detunings of several hundred
line widths from molecular resonance, the loss associated with
the imaginary part of the scattering length is not sensitive to
the value chosen for Rcut, as long as it is significantly outside
the outer turning point of classical motion for the excited-state
vibrational level. Furthermore, the real part of the scattering
length is completely insensitive to the choice of Rcut. We
typically choose Rcut = 500a0 and β = 0.05a−1

0 . We find that
our numerical calculations were insensitive to the choice of β.

C. Approximations and limitations

This three-channel model makes several approximations,
but is capable of representing the essential qualitative and
semiquantitative effects associated with OFRs in the weak- to
moderate-field regime. Our model only includes the minimal
number of partial waves needed to represent the change in
scattering length and molecular losses due to the OFR. It leaves
out the coupling of the excited J = 1 levels to the ground-
state d waves, as well as coupling to the doubly excited states
associated with the 3P1 + 3P1 separated atom limit. This means
that the light shifts calculated from the three-channel model
will not be accurate, since ground-state d waves are known to
contribute to PA light shifts [66,67], and doubly excited states
may contribute also. Furthermore, the effect of field dressing
in modifying the ground-state threshold elastic scattering of
partial waves with 	 > 0 is not included. This modification is
due to field dressing that brings in 1/R3 terms in the long-range
potential that will affect the d-wave collisions of like bosons
or the p-wave collisions of like fermions or unlike species.
Note that in our three-channel treatment, the field-dressed s-
wave interactions have the correct property that they have no
long-range 1/R3 component, since such variation vanishes in
the V2,2 matrix element of Eq. (12) (if we had attempted only a
two-channel field-dressed treatment, the presence of the single
0u excited-state potential would have introduced a spurious
1/R3 term in the ground-state dressed s-wave potential).

It would be straightforward to introduce higher partial
waves and strong field dressing into the calculation, using the
formalism of Napolitano et al. [58]. This formalism uses the
“uncoupled” asymptotic basis |jmj	m	〉, which is better for
treating strong field dressing than the “coupled” |j	JM〉 basis
we use here. The subtle effects of retardation, switching off
the dipole approximation, and including the weak coupling to
the gerade states as R increases [68] should be taken into
account in a more complete theory. We do not perform a
time-domain analysis, so we cannot reproduce the transient
OFR dynamics [69] observed in Ref. [36]. Furthermore, a
full treatment of excited-state spontaneous emission during a
collision is beyond the scope of CC methods and would require
treatment by stochastic Schrödinger equation methods (density
matrix methods are computationally intractable) [70,71]. Last,
as we show in the next section, our analysis with a cutoff of the
long-range decay is sufficient for treating OFRs for molecular
detunings that are of order 100 linewidths (or less) from the
center of a PA line.

D. Coupled-channel results

The CC calculations to solve Eq. (11) were carried out
using the standard renormalized Numerov method [72] using
complex variables so as to represent the effect of the com-
plex potential in the excited-state channels. A step-doubling
algorithm was employed to optimize the number of steps
needed as R increases between the short- and the long-range
regions. The single S-matrix element S(E,I,ω) for the dressed
ground-state s wave was extracted from the log-derivative of
the single-open-channel solution F1,e(R) of the three-channel
propagated wave function of Eq. (10) at a suitable large
asymptotic value of R. Using Eq. (1) then gives the complex
energy-dependent scattering length α(k,I,ω), which then gives
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FIG. 2. (Color online) Real (solid line) and imaginary (dashed
line) parts of the complex scattering length α = a − ib. Here the
detuning from atomic resonance ν − ν0 (the “atomic detuning”) is
measured with respect to the 88Sr intercombination line transition at
ν0. Also, E/kB = 4 μK and I = 10 W/cm2. The dotted line shows
the background abg for E/kB = 4 μK and I = 0. (Inset) A close-up
of the off-resonant behavior of the n = −2 OFR (solid line). Also
plotted is the scattering length predicted by treating the n = −2 OFR
as an isolated resonance (dashed line).

the elastic and inelastic rate coefficients Kel and Kin [Eqs. (5)
and (6)].

Figure 2 shows the real and imaginary parts of α(k)
as the PA laser frequency ν = ω/2π is detuned from
atomic resonance at ν0 = ω0/2π (where ν − ν0 is the
“atomic detuning”). This particular example was taken for
a PA laser intensity of 10 W/cm2 and a relative collision
kinetic energy of E/kB = 4 μK. Here the background
abg = 0.495a0 at E/kB = 4 μK differs from the background
value −1.4a0 in the limit of E = 0 due to the energy
dependence of abg(k). The calculations were carried out for
atomic detunings larger in magnitude than −20 MHz to
avoid strong field-dressing effects at atomic detunings near
resonance (the optical coupling matrix element Vopt/h =
0.84 MHz for this I ). The decay rate was taken to be γ =
γm = 2γa = 2π × 0.014 833 MHz. The figure shows a series
of four OFRs in this region. These four resonances correspond
to the previously observed [60] n = −2, −3, and −4 members
of the 0u J = 1 series at binding energies En/h = 24, 222,
and 1084 MHz and a single n = −1 member of the 1u J = 1
series at 353 MHz. Here n < 0 counts bound states down from
the last level (of a given 0u or 1u symmetry) designated as
n = −1. The scattering lengths show a series of overlapping
resonances that cause a large change in scattering length
near the poles of the resonances but return to abg between
resonances. The fact that the stronger n = −2 resonance
returns to its background value near the n = −3 line (Fig. 2,
inset) illustrates an important general feature of a vibrational
sequence of OFRs: Interfering resonances cause the scattering
length to return to its background value in between resonances.
Even the presence of a neighboring OFR that is comparatively
weak will diminish the off-resonant magnitude of a stronger
OFR (Fig. 2, inset). This property imposes a constraint on OFR
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FIG. 3. (Color online) Imaginary part of α = a − ib from Fig. 2
shown on a log scale. The diamonds show a 1/(ν − ν0)2 scaling.
The inset shows an expanded view of the 0u n = −4 resonance near
−1084 MHz. The dashed, solid, and dotted lines show the results for
Rcut = 200a0, 500a0, and 1000a0, respectively. Near the peak of the
resonance, b is independent of Rcut.

experiments, namely that molecular detunings cannot be so
large as to be comparable to the frequency separation between
the resonance of interest and the nearest resonance. In contrast,
MFRs arising from neighboring spin-channel resonances
interfere with one another in a manner that is qualitatively
different than for a vibrational series (see Sec. IV B).

The imaginary part b of the scattering length that gives the
loss rate coefficient, Eq. (6), shows a series of sharp spikes near
the poles of the resonances in Fig. 2 and shows a value very
near zero on the linear scale of the figure. Figure 3 provides
a better way to illustrate the basic features of b by showing
it on a log scale. Here the “background” on which the poles
sit varies as 1/(ν − ν0)2, with this functional form indicated
by the diamonds on the figure. Furthermore, far detuned from
a molecular resonance, the magnitude of this background is
found to scale linearly with Rcut as Rcut increases. This is
because, away from resonance, most of the loss of flux in
the collision due to the presence of a complex potential comes
from the long-range region, where decay should not be counted
as loss, since it merely represents atomic light scattering that
returns an atom to its ground state. Thus, loss is overcounted
by use of a complex potential if Rcut is too large.

In the core of the line spanning molecular detunings of
100γm, b and Kin are independent of Rcut. For example, at
a molecular detuning of 100γm (inset to Fig. 3) the values
of b calculated with Rcut = 200a0 or 500a0 differ by less
than 2%. The difference grows to 10% if Rcut = 1000a0.
The difference with Rcut = 200a0 or 500a0 only grows to
10% when the molecular detuning is over 250 linewidths.
Consequently, if Rcut is selected to have a small-enough value
where spontaneous decay for R < Rcut represents actual loss
of atoms, the loss calculated for molecular detunings up to
a few hundred linewidths are meaningful and not sensitive
to the choice of Rcut. In any case, the scattering length a

given by the real part of α is completely insensitive at all
detunings to the choice of Rcut. Comparing our CC theory
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to experimental data taken at small molecular detunings, we
are able to reproduce the resonance strengths measured in
Refs. [34] and [35]. However, the atom loss rate of Ref. [35] is
measured at a molecular detuning large enough for our theory
to be sensitive to Rcut; therefore, our theory is not designed to
reproduce this rate.

Within the inherent limitations of our approximations that
we have outlined above, we expect our CC calculations to
give the correct change in scattering length for all detunings
and the atom loss rate coefficient for at least 100 linewidths
from the peak of a molecular resonance. Consequently, since
the resonances are spaced by many thousands of linewidths
apart, we turn our attention in the next section to understanding
the theory for single isolated OFRs for molecular detunings in
the vicinity of a photoassociation resonance.

III. ISOLATED RESONANCE THEORY OF OPTICAL
FESHBACH RESONANCES

The OFR features in Figs. 2 and 3 tend to be well-
isolated from one another and thus can be described quite
successfully by theory designed to treat an isolated single
resonance situated on a background. Isolated resonance theory
has been used for cold-atom OFRs since they were first
proposed [16,17,37,49,59]. This theory successfully explained
alkali-metal-atom PA spectra with hyperfine structure (in good
agreement with experiment [59,73]), and it also explained the
saturation of PA lines at high intensity [66,74,75]. In fact,
both OFRs and MFRs can be treated by the same resonance
scattering formalism when the possibility of decay of the
closed-channel resonance state is taken into account [1].

The isolated resonance approximation assumes that each
molecular bound state is far from the other molecular states
in the closed channel and can be described by a strength
parameter that is local to the resonance, that is, independent
of energy and molecular detuning in the vicinity of the
resonance. Bohn and Julienne give a general resonance
scattering treatment for an OFR based on quantum defect
theory [37]. They derive a general expression for the S-matrix
element S(k) for a single s-wave entrance channel coupled
to an isolated resonance scattering bound state, including a
decay rate γ to exit channels that lead to atom loss. The elastic
scattering S-matrix element S(k) (equivalent to Eq. (3.13) of
Ref. [37]) for an isolated decaying resonance is

S(k) =
{

1 − i��(k)

E − Eres + i 1
2 �[γ + �(k)]

}
e2iηbg(k), (21)

where

Eres = �(ωn + snI − ω) = −�δ (22)

is the energy of the field-dressed molecular resonance level
n. Its “bare” location at �ωn = �ωa − En is shifted by an
intensity-dependent shift �snI , where En is the binding energy
with respect to the excited separated atom limit when I = 0.
We define the molecular detuning δ so it is negative for red
detuning, in which case a resonance peak occurs when E =
Eres.

We assume low power, in which case the shift varies
linearly with intensity. The coefficient sn can be either positive

or negative [37,67], where a positive value corresponds to
a shift of the resonance peak closer to the atomic line.
The closed-channel resonance bound state is coupled to the
entrance channel by the stimulated decay rate,

�(k) = 2π

�
|〈n|Vopt|E〉|2 . (23)

Here |n〉 represents the excited bound state, which, in general,
would be a mixture of the two |2〉 and |3〉 excited case (c)
states in Table I. In practice, |n〉 would be well approximated
by a single 0u or 1u J = 1 vibrational state. The ground-
state scattering wave function |E〉 is assumed to be energy
normalized [76], so that

F1(R,E) →
(

2μ

π�2k

)1/2

sin(kR + ηbg) as R → ∞, (24)

where the phase shift ηbg is related to the scattering length abg

in the k → 0 threshold limit as ηbg = −kabg.
We emphasize that the form of the expression in Eq. (21)

is completely general for any isolated threshold resonance
and applies equally well for MFRs and OFRs, if the terms
are identified properly. The Fermi golden rule width �(k)
expresses the strength of the resonance pole term with a tunable
denominator. When �(k) = 0, there is no Feshbach resonance,
and we recover the standard expression S(k) = e2iηbg for
the uncoupled entrance channel. The expression in Eq. (23)
ensures that �(k) follows the standard threshold law, and thus
for an s-wave entrance channel, �(k) ∝ k. For nondecaying
resonances, γ = 0, and the imaginary term in the denominator
vanishes as k → 0.

IV. COMPARISON BETWEEN OPTICAL FESHBACH
RESONANCES AND MAGNETIC FESHBACH

RESONANCES

A. Isolated resonance theory

The resonance length formalism summarized in Sec. IIA3
of Ref. [1] shows how to relate MFR and OFR resonance
strengths and compare OFRs to MFRs in a unified approach.
All we need to note is that in the case of an isolated MFR,
the threshold width �(k) in Eq. (21) is given by an expression
similar to Eq. (23), except that Vopt needs to be replaced with
an appropriate internal spin-dependent Hamiltonian [1,38].
Furthermore, Eres would be replaced with a B-dependent
tuning and shift [1,77,78], Eres = δμ(B − Bc) + Eshift, where
B represents magnetic field, Bc is the field where the bare
resonance level crosses threshold, δμ represents the difference
between the sum of the magnetic moments of the two atoms
and the magnetic moment of the bare resonance level, and
Eshift represents an energy-dependent shift term.

The threshold law for s-wave collisions shows that as k → 0
the quantity ��(k)/k (for either an OFR or the MFR analog)
becomes a k-independent constant having the units of length
times energy. Thus, for either an MFR or an OFR, we can
decompose �(k)/k into a product of a length factor Lr and an
energy Er,

��(k)

2k
= LrEr. (25)
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Since only the LrEr product is significant, we are free to choose
either the length Lr or the energy Er factor to yield a convenient
expression for the scattering length.

In the case of nondecaying MFRs, it is conventional to
choose Lr = abg. The Er factor is typically written as δμ�,
thereby defining the magnetic “width” � of the MFR:

��MFR(k)

2k
= abg(δμ�). (26)

Here the subscript “MFR” indicates the type of resonance.
When this form is substituted in Eq. (21), γ is set equal to zero,
and the k → 0 limit is taken with the shift term in Refs. [1,77],
Eq. (1) reduces to the standard expression for an MFR,

a(B) = abg − abg
�

B − B0
, (27)

where B0 = Bc − Eshift/δμ is the pole position. In the case
γ 
= 0, this procedure would give the complex scattering
length for a decaying MFR [1,41].

By analogy to MFRs, one can define an OFR resonance
frequency width w by

��OFR(k)

2k
= abg(−�w). (28)

Note that −abgw is positive definite. In the limit |δ| � γ where
we can ignore the decay of the resonance, the scattering length
due to an OFR is

a(ω) = abg − abg
w

ω − (ωn + snI )
. (29)

The standard way to express the LrEr product in the case
of an OFR is to define Er to be the known quantity �γm and
call the length parameter the “optical length” lopt [30,34],

��OFR(k)

2k
= lopt(�γm). (30)

For large detunings |δ| � γ the scattering length is

a(ω) = abg + lopt
γm

ω − (ωn + snI )
. (31)

A similar resonance length parameter has been defined for a
decaying MFR by Hutson [47] by using the total decay width
of the resonance for Er.

In the case of an OFR that decays only to the ground
state, choosing Er = �γm has the advantage of eliminating
the dipole strength from the expression for lopt. Using �γa =
32π3d2

a /3λ3
a , the definition γm = 2γa , taking Vopt in Eq. (7),

and assuming the R-independent molecular dipole moments
of Eqs. (18) or (19), we find

lopt = �(k)

2kγm

= λ3
a

16πc

|〈n|E〉|2
k

Ifrot, (32)

where frot is equal to 1 for 0u states and 2 for 1u states (due to
the different rotational Hönl-London factors for parallel and
perpendicular transitions). Consequently, LrEr is proportional
to the product of a Franck-Condon factor and the square of the
molecular electronic transition dipole moment.

Equation (32) shows that lopt varies linearly with PA laser
power I . The only molecular physics parameter it depends
on is the free-bound Franck-Condon factor |〈n|E〉|2, which
varies linearly with k at small k. As an example, direct

calculation of |〈n|E〉|2/k for the J = 0 n = −4 0u level
shows that this quantity decreases at a rate of 0.66 percent
per μK as E/kB ranges from 0 to 10 μK. Thus, lopt/I is only
weakly dependent on collision energy in ultracold gases and
may be approximated as a constant. Its weak variation with
energy could be estimated from approximate theories based
on the reflection approximation [37] or the stationary phase
approximation [67].

A useful way to compare the strengths of MFRs and OFRs
is to use a dimensionless resonance “pole strength” parameter
that applies to either case: sres = LrEr/āĒ, where ā is the mean
scattering length of the van der Waals potential [79] and Ē =
�

2/(2μā2) is the corresponding energy. These are ā = 71.8a0

and Ē/h = 7.97 MHz for 88Sr collisions. Chin et al. [1] used
sres to characterize and classify MFRs according to whether
sres > 1 (open-channel dominated) or sres < 1 (closed-channel
dominated), where the former tends to be “broad” and the latter
“narrow.” Thus, we have

sMFR
res = abg

ā

�δμ

Ē
, sOFR

res = lopt

ā

�γm

Ē
. (33)

One obvious difference between MFRs and OFRs is that the
strength of an OFR can be controlled by increasing the PA
laser power to increase lopt, whereas the strength of a MFR
is fixed. However, lopt cannot be increased too much since
the light scattering loss rate due to either atomic or molecular
processes also increases with I [34].

Experimentally useful MFRs tend to have a pole strength
parameter between unity and 100 [1]. The width ratio
�γm/Ē = 0.0019 is much less than unity for the narrow OFRs
near the intercombination line of 88Sr, so sOFR

res � 1 unless it
can be compensated by making lopt/ā very large compared
to unity. Thus, 88Sr OFRs tend to be weak, narrow, “closed-
channel-dominated” resonances. An interesting comparison is
with the experimentally useful broad open-channel-dominated
MFR of two 85Rb atoms at 155.2 G, for which sres = 28 [1].
This is a decaying MFR in an excited spin channel [38],
with a natural decay width of γ /(2π ) = 5.0 kHz due to spin
relaxation of the “bare” closed-channel state of the resonance.
The lifetime of 32 μs [40] of this spin channel is comparable to
that of the excited Sr 3P1 state. The major difference between
the 85Rb MFR and 88Sr OFRs is the much smaller resonance
strength sres of the latter at intensities where the atomic light
scattering is not harmful.

In contrast to 88Sr, OFRs for the species 172Yb were found
to have an lopt on the order of 104a0 at I = 1 W/cm2 for
levels near 1 GHz atomic detuning [80]. This implies that
broad open-channel-dominated OFRs with sres > 1 may be
realizable with 172Yb. It is not yet known whether OFRs
might exist with sres > 1 for frequencies near the alkaline-earth
intercombination line in mixtures of alkaline-earth species and
alkali-metal species. This is a subject for future experimental
and theoretical research.

B. Multiresonance theory

It is useful to compare isolated OFRs and MFRs since
isolated resonance theory is widely utilized in both cases;
however, both OFRs and MFRs exist as sets of resonances
that interfere with one another, so it is instructive to compare
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multiresonance treatments of the two effects. Although a thor-
ough treatment of a multiresonance OFR-MFR comparison
could be the subject of an entire publication, in this section we
provide an overview of such a comparison using results from
multichannel quantum defect theory (MQDT).

When resonance interference is considered, significant
qualitative differences between OFRs and MFRs emerge.
There are two sources of such differences. First, the molecular
physics that determines the resonance strength is due to short-
range spin-dependent interactions for MFRs and long-range
photoassociation for OFRs. Second, OFRs typically span many
vibrational levels of the same closed-channel molecular state,
whereas experimentally utilized MFRs are typically different
spin components rather than a vibrational progression.

Sets of overlapping MFRs are well studied for different
alkali-metal species [41,78,81–84], and overlapping MFRs
have recently been shown to be important for few-body
physics [85]. The interference of overlapping MFRs can be
quantitatively explained by MQDT [78,86,87], with which one
can derive an S matrix that is a multiresonance generalization
of the isolated resonance formula in Eq. (21). We introduce
the MQDT theory here to highlight the differences between
overlapping OFRs and MFRs.

Considering one background channel and one closed
channel, the background is characterized by the usual E-
dependent phase shift ηbg(E) [78,86–88]. The closed channel
c is characterized by a bound-state phase function νc(E − Ec).
The energy Ec of the separated atoms in the closed channel
is modified with the “field tuning,” which means varying the
external magnetic field in the MFR case or the atomic detuning
in the OFR case. Bound states of the closed channel exist where
tan νc(E − Ec) = 0. Thus, the external field tuning moves
the bound-state spectrum relative to the background channel
E = 0 threshold, allowing bound states to be tuned across
threshold. The coupling between the background and the
closed channel is characterized by the dimensionless MQDT
parameter sres, which may also depend on the external fields.

If we follow Ref. [78] and express energies as ε = E/Ē and
κ = kā, then the equivalent MQDT expression to Eq. (21) for
an MFR or an OFR can be written in a universal dimensionless
form,

SMQDT = Sbg

[
1 − i

2κsres

(εm/π ) tan νc + εshift + iεwidth

]
, (34)

where Sbg(ε) = e2iηbg(ε) is the background term,

εm(ε) = π

∂νc(ε)/∂ε
(35)

represents the mean spacing between different eigenenergies,
and εshift(ε) and εwidth(ε) = 1

2 �γ /Ē + κsres represent the re-
spective shift and decay parts of the complex energy of the
interacting, decaying resonance. The shift term εshift(ε) will
scale as sres, and both of these quantities are only very weakly
dependent on energy near threshold. Here we need to view the
MQDT parameter sres as a continuous function of the external
field that defines the Hamiltonian.

Using Eq. (34), we can now describe some key differences
of OFRs and MFRs. These come from the variation with
field strength of both the numerator and the denominator of
Eq. (34). In the MFR case, it is an excellent approximation

to take sres to be a constant, independent of B and E, since
the interactions that determine this parameter are short range,
where R � ā and the energy scale is large. Consequently, the
matrix element that sets the magnitude of sres is independent of
small field tuning. On the other hand, for an OFR, sres scales
linearly with laser power, and we must also think of sres(ω)
as being highly sensitive to field tuning, since the optical
coupling is determined by the Condon point at very long
range (on the order of ā or larger). The Condon point varies
rapidly with PA laser frequency, so the crossing structure of
the field-dependent Hamiltonian varies with laser frequency in
a major way, changing the response of the system to the optical
field. Another way of thinking about this variation is that for
an isolated resonance sres is proportional to a Franck-Condon
factor, which will vary rapidly from level to level in the closed
channel, so that the general MQDT coupling parameter cannot
be taken as a field-tuning-independent parameter [89].

Second, note that the proper MQDT expression in the
denominator of Eq. (34) that contains the effect of field tuning
is the tan νc term, which vanishes at resonance poles. To get
the normal isolated resonance approximation near a tunable
eigenenergy εres, as in Eq. (21), it is necessary to expand this
function in a Taylor series as [78,87]

tan νc(ε − εc) ≈ ∂νc(ε − εc)

∂ε

∣∣∣∣
ε=εres

(ε − εres). (36)

In the ultracold case, ε tends to remain very close to 0 but
εres is varied by tuning the field, so the expansion in Eq. (36)
should be made near ε = 0. This linearizing approximation
is normally quite good as long as the range of expansion
ε − εres remains small compared to the mean spacing εm to
adjacent levels. This is normally the case for MFRs, where the
widths of even broad resonances tend to be small compared
to the distance to the next vibrational level in the same spin
channel [90]. On the other hand, it is common to observe a
series of vibrational levels of the same electronic state in the
OFR case. In this case, the tan νc must be left unexpanded and
νc treated as a continuous function of field tuning if multiple
resonances are present [91].

Reference [78] showed how to extend the MQDT formalism
for Eq. (34) to multiple spin channels with overlapping
resonances. Generally, for the reasons discussed above sres for
each separate channel can be well approximated as a E- and
B-independent constant, and the linearizing approximation
in Eq. (36) is used for detunings spanning multiple spin
channels. Then the generalization of Eq. (36) gives a sum
of resonance terms similar to that in the pole term of Eq. (36),
where there is a global background scattering length abg

for all channels and the shift terms in each denominator
depend on all the poles simultaneously. The formula can be
transformed to a form where each narrow resonance can be
viewed as an isolated resonance having a “local” (in field
tuning) background modified from the global one by nearby
interfering resonances. An extension to OFRs from different
electronic states may not be possible, because of the rapid
variation of MQDT parameters with field tuning. Furthermore,
the MFR theory should not be used for different members
of the same vibrational series because of the inability to
linearize the tan νc function across two or more vibrational
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levels. It may be possible to develop some approximations
appropriate to the OFR case, but meanwhile the isolated
resonance approximation or CC calculations remain the best
tools for understanding OFRs.

V. ELASTIC AND INELASTIC COLLISIONS

A. OFR isolated resonance formulas

For detunings as large as hundreds of linewidths from the
resonance center (but smaller than the separation between
resonances), the complex scattering length α(k,ω,I ) and the
elastic or inelastic collision rate coefficients derived from the
S matrix of Eq. (21) are in excellent agreement with the full
CC calculations. In this regime, Eq. (21) fully describes an
isolated OFR as a function of energy, detuning, and intensity.

The expression in Eq. (21) gives the isolated resonance
approximation to the entrance channel loss probability Ploss in
terms of only two parameters, lopt and the resonance position
Eres,

Ploss = 1 − |S(k)|2 = 2kleff

D2 + 1
4 (1 + 2kleff)2

, (37)

where

leff = lopt(γm/γ ), (38)

D = (E − Eres)/�γ. (39)

Here the effective optical length leff determines the reso-
nance coupling strength for the general case when γ > γm.
Ploss determines the inelastic cross section in Eq. (3) and thus
the loss rate coefficient Kin in Eq. (6). Note that for 2kleff � 1,
Eq. (37) describes power broadening.

Figures 4(a) and 4(b) show the behavior of Ploss as a function
of detuning for different intensities and collision energies. In
Fig. 4(a), Ploss is not saturated at low collision energy. As
collision energy increases, Ploss broadens, and its peak value
(when E = Eres) approaches its upper bound of unity. This
only occurs for red molecular detunings. Figure 4(b) shows
similar broadening in the inelastic rate coefficient Kin ∝ Ploss

as intensity is increased and collision energy is kept low. For
large intensities, Kin saturates at its value given by the unitarity
limit. Note that according to Eq. (22), the intensity-dependent
frequency shift of the resonance is accounted for in δ. For
temperatures in the μK range, thermal averaging of the line
shape is essential to compare with experiment. As is well
known [19], PA lines have a pronounced red-blue asymmetry
when kBT is larger than the natural width of the PA line.

The isolated resonance S matrix can be used to derive
the complex k-dependent scattering length α(k). Combining
Eqs. (21) and (1),

α(k) = αbg(k) +
��(k)

2k
[1 + k2αbg(k)2]

E − Eres − kαbg(k) ��(k)
2 + i

�γ

2

, (40)

where αbg(k) is found by using the background Sbg(k) = e2iηbg

in Eq. (1). Notice that this expression does not contain
power broadening, which enters the elastic and inelastic cross
sections through the f (k) factor in Eqs. (2)–(4).
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FIG. 4. (Color online) (a) Coupled-channel calculated inelastic
loss probability 1 − |S(k)|2 versus atomic detuning ν − ν0 for
different values of collision energy E/kB . We have used I = 5 W/cm2

and the 0u J = 1, n = −4 feature, where En/h = −1084.0763 MHz.
The black dots indicate the peak values calculated with lopt = 161.5a0,
γ = γm, and ν − ν0 = (En − E)/h [where D vanishes in Eq. (37)].
Since 1 − |S(k)|2 calculated from the isolated resonance formula in
Eq. (37) is indistinguishable from the CC calculation on this graph,
only the peak comparisons are shown by the black dots on the
figure. (b) Coupled-channel calculated inelastic loss rate coefficient
Kin versus molecular detuning. Here we plot different values of PA
laser intensity I . We use a collision energy E/kB = 1 nK and the
0u J = 1, n = −4 feature near ν − ν0 = −1084 MHz. The black
dots show the predictions of the analytic formula in Eq. (37). The
line wings beyond around |δ/γm| = 6 scale linearly with power. The
black dotted line represents the unitarity limit where Kin saturates.

In the limit that k|αbg| � 1 (valid for a Bose-Einstein
condensate), we obtain

α = abg + leff
δγ

δ2 + γ 2/4
− i

2
leff

γ 2

δ2 + γ 2/4
, (41)

where we have taken αbg = abg to be real. Figure 5 illustrates
the real and imaginary parts of α = a − ib calculated at
E/kB = 1 nK. The results from Eq. (41) are in excellent
agreement with the CC calculations. The peak values of
b = 2lopt at δ = 0 and of a = ±lopt at δ = ±γ /2 are also
plotted in Fig. 5.

022709-10



OPTICAL FESHBACH RESONANCES: FIELD-DRESSED . . . PHYSICAL REVIEW A 92, 022709 (2015)

-5 0 5
δ/γm

-400

-200

0

200

400

600

a,
b

 (
u

n
it

s 
o

f 
a 0

)

a
b

E/k
B

 = 1 nK

10 W/cm2

FIG. 5. (Color online) Coupled-channel calculation of a and b

versus molecular detuning in linewidth units δ/γm, with γ = γm. We
use the 0u J = 1, n = −4 feature and 10 W/cm2 PA laser intensity.
The dots show the analytic predictions at the peak extrema using
Eq. (41) with lopt = 323.2a0.

B. Photoassociation

The isolated resonance approximation also describes pho-
toassociation [92], the process by which two ground-state
atoms and a photon combine to form an electronically excited
molecule [19]. This phenomenon can be used to measure leff ,
which characterizes the strength of an OFR. This strength
can be inferred from measurements of the trapped atom
loss (into untrappable molecules) that results from driving
a photoassociation resonance. Using Eqs. (3) and (6), the
inelastic rate coefficient, which describes molecule formation,
is

Kin(δ,leff,k) = 4π�

μ

γ 2leff

(δ + E/�)2 + γ 2

4 (1 + 2kleff)2
. (42)

For a trapped ultracold thermal gas, one must introduce
Boltzmann averages into the theory. To this end, we approx-
imate that the PA laser interacts with an entire velocity class
at each point in space within the trap. This approximation,
which is good for large densities, means that one must
momentum average Kin. Furthermore, we use the fact that
photoassociation is a short-range phenomenon in the isolated
resonance approximation [37]; therefore, we do not perform a
Boltzmann spatial average in this treatment.

The quantity K in, which is the momentum-averaged Kin, is
given by

K in = 1

π3p6
0

∫
d3 
p1

∫
d3 
p2e

−(p2
1+p2

2)/p2
0 Kin(δ,leff,k)

= 4√
πk3

th

∫ ∞

0
dk k2 e−k2/k2

thKin(δ,leff,k), (43)

where p0 = √
2mkBT , kth = √

2μkBT /�, 
p1 and 
p2 are the
momenta of the two collision partners, and | 
p1 − 
p2| = �k.

In order to use K in to describe trap loss due to photoassocia-
tion, we must understand what fraction of molecules is ejected

δδ /  / γ
-30 -15 0 15

N
 / 

N
0

0.4

0.6

0.8

1

1 µK
3 µK
5 µK

FIG. 6. (Color online) Trap loss, given by Eq. (45), as a function
of detuning for various cloud temperatures. Here γ = γm, leff =
100a0, tPA = 200 ms, and we take the limit of τ � tPA. We also
assume a spherical trapped cloud with N0 = 6 × 104 atoms and a
20-μm r.m.s radius. Note the broadening toward red detunings, which
is a result of momentum averaging Kin.

from the trap. As mentioned in Sec. II B, we approximate that
every photoassociated molecule is lost to the trap. We have
numerically studied this approximation, finding that it is good
to 1% for all molecular states except for the least-bound 0u

level. In this case, the evolution of the in-trap atomic density
is

ρ̇ = −2K in
ρ2

2
− ρ

τ
, (44)

where ρ is the atomic density and τ is the one-body lifetime
(due to loss mechanisms such as background gas molecules
and atomic light scatter). Here the ρ2 term arises from the
number of pairs in an N -particle sample, N (N − 1)/2 �
N2/2. The signal in photoassociation experiments is typically
the atom number N after the application of the PA laser [34,63],
given by integrating the solution to Eq. (44) over space,

N (δ,leff) =
∫

d3
r ρ0(
r) e−tPA/τ

1 + K in(δ,leff) ρ0(
r) τ (1 − e−tPA/τ )
. (45)

Here tPA is the pulse duration of the PA laser and ρ0(
r)
is the in-trap density before the PA laser is applied. Figure 6
depicts N (δ,leff) for different temperatures and detunings. The
density ρ0(
r) can be determined by fitting experimental in-trap
absorption images to a 3D Gaussian distribution (Ref. [34],
supplementary online material).

Unless a magic wavelength trap is employed, the ac Stark
shift from optical traps causes a position-dependent frequency
shift of the atomic resonance [34,63]. For photoassociation
experiments, this effect results in a broadening of the line-
shape feature in the signal N . To model this broadening, one
must understand both the atomic response to the optical trap
and the intensity profile Itrap(
r) of the trap laser (Ref. [34],
supplementary online material). In the case of 88Sr, the 1S0

and 3P1 polarizabilities are known well enough to calcu-
late the differential polarizability, α3P1 (ωtrap) − α1S0 (ωtrap), to
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FIG. 7. (Color online) Atom number data from Ref. [34] as a
function of the PA laser detuning from the atomic resonance. The
false color pictures above the plot are the measured optical depths
corresponding to the data points directly below the centers of
the pictures. These measurements were performed in a nonmagic
wavelength trap, which caused broadening toward blue detunings
since ωStark(0) = 2π × 327 kHz. The solid line is a fit using Eq. (45)
with ωStark(
r) included in K in. The quantities T and leff were free
parameters in the fit.

better than 10% for typical trap laser wavelengths (such as
1064 nm).

One can model Itrap(
r) with the Gaussian beam equation,
using parametric heating measurements to obtain the beam
waists [93]. This broadening can be included in the photoas-
sociation signal by adding a Stark shift,

ωStark(
r) = − 1

2�ε0c
[α3P1 (ωtrap) − α1S0 (ωtrap)]Itrap(
r), (46)

to δ in Eq. (42) and then carrying this term through to
Eq. (45). With the trap ac Stark shift accounted for, we can fit
experimental photoassociation data (Fig. 7). For these fits it is
necessary to approximate the integrals in Eqs. (45) and (43) as
sums (Ref. [34], supplementary online material).

A full treatment of the photoassociation line shape would in-
clude Doppler broadening. However, according to theoretical
studies of narrow-line photoassociation [92], since a T of a few
μK (typical for narrow-line laser-cooled 88Sr) is greater than
the PA laser photon recoil temperature, Doppler broadening
is negligible compared to the momentum broadening shown
in Fig. 6. We numerically checked whether Doppler effects
are significant for our analysis, and we find that Doppler
broadening can only be neglected in the fits of Fig. 7 due
to the presence of both a large momentum broadening and an
appreciable Stark shift broadening toward blue detunings.

Treating collisions in this manner breaks down when elastic
processes become important. The elastic-to-inelastic collision
ratio is approximately

Kel(k)/Kin(k) � 2kleff = 2kthleff, (47)

where the overline denotes thermal averaging. In deriving
this formula, we made the approximation e2iηbg � 1, which
is acceptable for the above estimate since abg is only
−1.4 a0. Therefore, when leff ∼ 1/2kth, elastic collisions must
be treated.

C. Elastic collisions

If photoassociation can be minimized and elastic collision
rate modifications can be made large, the OFR effect could
be used to manipulate atomic interactions with relatively
little particle loss. The usefulness of such manipulations is
evident from experiments based on the MFR effect, which
has proved to be a very fruitful technique that is central to
numerous experiments [1]. To access this regime in a quantum
degenerate gas (for which k → 0), the ratio of the optically
modified elastic scattering length to the inelastic scattering
length, [a(0) − abg]/b(0) = 2δ/γ , must be much greater than
unity. For a thermal gas, the rate coefficients determine the
relevant limit, 〈Kel(k)/Kin(k)〉 � 1, which implies via Eq. (47)
that leff � 1/2kth.

We estimate from the latter condition that a thermal 88Sr
gas at T = 3 μK (typical of narrow-line laser cooling) will
require leff to be much greater than 400a0. Using the isolated
resonance approximation, large changes in elastic scattering
were predicted to arise from an OFR based on the n = −1
vibrational state [30]. This prediction required high PA laser
intensity and very large molecular detunings from the n = −1
state. However, as our CC theory has shown, these conditions
will not yield an effect comparable to a lossless MFR because
the requisite detunings are larger than the separation between
resonances. Instead, the OFR physics is determined by the
nearest resonance to a given detuning (Sec. II D).

Experimentally, elastic collisions can be studied using
cross-dimensional thermalization. For instance, in Ref. [94],
a trapped atomic gas was prepared in a nonequilibrium
state using parametric heating in 1D of the trap. Due to
elastic collisions, the authors observed thermalization of the
nonequilibrium gas. The thermalization time of the gas can be
calculated from a simple treatment based on Enskog’s equation
or a full molecular dynamics simulation [95]. These treatments
show that, on average, each particle participates in about three
elastic collisions events during the 1/e thermalization time.

Elastic collisions induced by OFRs were experimentally
studied in Ref. [34] using cross-dimensional thermalization.
In this work, an OFR was accessed in a trapped 88Sr gas
prepared in a nonthermal state. In the absence of OFR-induced
collisions, this gas would not thermalize over experimental
time scales because of the negligible abg = −1.4a0 in 88Sr.
With a PA laser applied, clear temperature changes were
observed as a function of ν − ν0. To understand whether these
observations were caused by elastic collisions, we apply our
theory to the experimental data.

Since the atomic samples in this measurement never
reached thermal equilibrium over the time scale of the
experiment, it is not possible to study the resulting data
analytically. Instead, a time-dependent simulation of the phase-
space density is necessary to understand the data quantitatively.
Our analysis uses a numerically efficient method due to
Bird [96] for simulating collisions between thousands of
particles. The method discretizes the trap volume into small
“collision volumes” containing much less than one particle
on average. If there is more than one particle in a collision
volume, the probabilities Pel and Pin of elastic and inelastic
collisions between these atoms is calculated as Pel/in = |
v1 −

v2|σel/intstep/V . Here 
v1 and 
v2 are the velocities of the two
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atoms, tstep is the time step of the simulation, V is the collision
volume, and the cross sections are given by

σel = 8π

1 + k2a2
bg

[
leffγ + abg

(
δ + E

�

)]2 + a2
bgγ

2/4

(δ + E/�)2 + γ 2

4 (1 + 2kleff)2
, (48)

σin = 4πleff

k

γ 2

(δ + E/�)2 + γ 2

4 (1 + 2kleff)2
. (49)

If an inelastic collision occurs, both particles are removed
from the simulation. For an elastic collision event, the
particles’ velocity vectors are rotated using a random rotation
matrix. Between each of these collision steps, the particles
evolve in the trap potential using an embedded Runge-Kutta
method. We have checked this simulation against known
results for cross-dimensional thermalization in harmonic traps
and have also confirmed that, with elastic collisions removed,
the simulation reproduces the results of photoassociation
theory of the previous section [97].

Figure 8 depicts temperature data from the experiments of
Ref. [34] as well as our simulation results. Our simulation tells
us that the temperature peaks for certain detunings because the
PA laser is driving photoassociative loss of the coldest atoms,
resulting in antievaporative heating. We also find that without
including elastic collisions in our simulation, the simulation
does not predict the dip in the horizontal temperature apparent
in the data. Therefore, we conclude that this temperature
dip indicates partial thermalization of the gas. The fact that
antievaporation and thermalization have different detuning
dependence arises because the elastic and inelastic collision
rates average differently over the collision momentum k.

The interplay between elastic and inelastic processes is
sensitive to the value of γ used in the simulation. The
simulation only agrees with the experimental data if we set γ =
2π × 40 kHz = 2.7γm. This leads us to conclude that the OFR
effect in 88Sr is broadened beyond the natural spontaneous
decay of the 88Sr2 molecules. Extra broadening has also been
seen in other 88Sr [35,60] and Rb [31] OFR experiments.

ν - ν0

FIG. 8. (Color online) Temperature data from Ref. [34] for hor-
izontal (H) and vertical (V) trap eigenaxes. The solid lines are the
results of a Monte Carlo simulation including elastic and inelastic
collisions.

VI. SUMMARY AND CONCLUSION

We have developed CC and isolated resonance theories
of OFRs. The CC theory predicts resonance interference for
detunings between OFRs, causing the OFR effect to vanish
between resonances. We conclude that OFR experiments have
a “nearest-resonance” constraint, meaning that the OFR effect
is dictated by the nearest resonance to a given detuning.
The isolated resonance theory agrees with the more complete
CC theory for detunings near a molecular resonance. In this
regime, it is possible to use the simpler isolated resonance
theory to model photoassociation and OFR measurements and
fit the data from these experiments. Such models have shown
a broadening beyond the expected linewidth of the molecular
state accessed by an OFR.
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