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Antiproton stopping in atomic targets
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Stopping powers of antiprotons in H, He, Ne, Ar, Kr, and Xe targets are calculated using a semiclassical
time-dependent convergent close-coupling method. The helium target is treated using both frozen-core and
multiconfiguration approximations. The electron-electron correlation of the target is fully accounted for in both
cases. Double ionization and ionization with excitation channels are taken into account using an independent-event
model. The Ne, Ar, Kr, and Xe atom wave functions are described in a model of six p-shell electrons above a
frozen Hartree-Fock core with only one-electron excitations from the outer p shell allowed. Results obtained for
helium in the multiconfiguration treatment are in better agreement with experimental measurements than other
theories.
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I. INTRODUCTION

Knowledge of energy losses as particles travel through
matter is of fundamental importance in a number of fields,
including medical radiation therapy [1], aviation and space
exploration [2], and astrophysics [3]. Significant attention is
being drawn to the area of antiproton scattering from atoms and
molecules due to the development of sources of low-energy
antiprotons; see the review of Kirchner and Knudsen [4].
The antiproton decelerator at CERN [5] is extending its
extra-low-energy antiproton (ELENA) ring [6] to significantly
increase the number of usable or trappable antiprotons, with
scattering experiments due to begin in 2017. Interest in the
processes occurring during antiproton scattering from atoms
and molecules is compounded due to its potential application
to radiotherapy and oncology (see, e.g., Refs. [4,7]). Also,
the future Facility for Antiproton and Ion Research (FAIR) at
GSI has requirements for precise knowledge of the collision
mechanisms between antiprotons and various atomic and
molecular targets.

With the development of the low-energy antiproton ring
(LEAR) facility at CERN, stopping power measurements for
antiprotons in He were performed by Agnello et al. [8].
They simultaneously measured the spacial coordinates and
times of annihilation. Then they solved an inverse problem
to obtain the stopping power. Resulting equations are solved
numerically using parameters to obtain the best fit to the
data. Measurements were performed between 0.5 keV and
1.1 MeV. This data was later reanalyzed by Rizzini et al. [9]
with emphasis on the Barkas effect [10].

The first quantum-mechanical formulation of energy loss
per unit path length, or stopping power, was developed by
Bethe [11]. He applied the first Born and dipole approx-
imations and proposed that the stopping power for heavy
projectiles traveling through matter at nonrelativistic velocity
v is given by
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where N is the number of target atoms per cubic meter, ke is
the Coulomb constant, e is the elementary charge, me is the
electron mass, Zt is the atomic number of the target, Zpe

is the charge of the incident particle, and Ē is the mean
excitation energy of the target. Due to the approximations
made by Bethe [11], the above formula is applicable only
at sufficiently high projectile velocities. However, with the
increased interest in heavy projectile interactions with matter
due to applications in hadron therapy, it is important that
calculations of the stopping power are accurate over the whole
energy range, including low energies. With experimental data
to compare with, Schiwietz et al. [12,13] performed the first
theoretical calculations of antiproton stopping power in H and
He. They performed calculations using atomic-orbital (AO)
close coupling, distorted-wave (DW) Born, and generalized
adiabatic-ionization (AI) methods. It was found that the
first-order contribution to the stopping power dominates at high
velocities with higher-order effects becoming important at in-
termediate velocities, while near-adiabatic dynamics prevailed
in the low-velocity limit. The AO and DW calculations were in
agreement above the stopping maximum. The He calculations
of Schiwietz et al. [12,13] are, in general, not within the
experimental uncertainty of Agnello et al. [8]. Cabrera-Trujillo
et al. [14] were the next to contribute from a theoretical
perspective. They used electron nuclear dynamics (END)
formalism to calculate antiproton energy loss in hydrogen up
to 300 keV. The results showed reasonable agreement with the
AO method of Schiwietz et al. [12,13]. The latest development
in the problem comes from Lühr and Saenz [15] who calculated
antiproton stopping powers in H and He between 1 keV and
6.4 MeV. They used a semiclassical close-coupling approach to
the solution of the time-dependent Schrödinger equation. The
radial wave function was expanded in a B-spline basis with the
He target described using an effective one-electron treatment.
For H, Lühr and Saenz [15] obtained good agreement with
the calculations of Schiwietz et al. [12,13] and there was
reasonable agreement with the calculations of Cabrera-Trujillo
et al. [14] as well. For He, there was good agreement with the
data of Agnello et al. [8] above 2 MeV, but disagreement at
intermediate and low energies. Lühr and Saenz [15] concluded
that this is due to using a one-electron model.

In this paper, we present stopping power calculations of an-
tiprotons in H, He, Ne, Ar, Kr, and Xe. We use a semiclassical
time-dependent convergent close-coupling (CCC) method for
the calculation of stopping powers. The results presented in this
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paper improve upon current theories of Schiwietz et al. [12,13]
and Lühr and Saenz [15] by employing a multiconfiguration
treatment of He which fully accounts for the electron-electron
correlation and by taking into account double ionization and
ionization with excitation via an independent-event model. The
first coupled-channel calculations of scattering cross sections
with correlated two-electron dynamics were performed by Hall
et al. [16,17]; however, their calculations were not applied to
stopping powers.

The paper is set out as follows. Section II outlines the
method. Section III presents and discusses results. Finally, in
Sec. IV, we draw conclusions and discuss future work.

II. THEORY

A. Time-dependent convergent close-coupling method in
impact parameter representation

The time-dependent CCC method has been applied to
antiproton-impact ionization of molecular hydrogen [18,19]
and multielectron targets [20]. Here we briefly describe the
method in a general form for single-, two-, and multielectron
targets.

The method employs a semiclassical impact-parameter
approach, meaning the incident antiproton is treated clas-
sically while the target electrons are treated fully quantum
mechanically. This semiclassical approximation is valid over
all energies considered in this paper. Our calculations are
performed in the laboratory frame in which the target is at
rest. We assume a straight-line trajectory [R(t) = b + vt] for
the incident antiproton traveling with velocity v, where b
is the impact parameter. The nonrelativistic time-dependent
Schrödinger equation for the electronic part of the total
scattering wave function describing our many-body system
is written as

H�(t,r,R) = i
∂�(t,r,R)

∂t
, (2)

where R is the position vector of the antiproton relative
to the target defined above and r collectively denotes the
position vectors of all target electrons (r = {r1,...,rNe

}). For
a hydrogen target, Ne = 1, and for a helium target, Ne = 2.
However, for noble gases, it is not practical to include all
target electrons and so we limit ourselves to Ne = 6 outer
p-shell electrons, with the remaining electrons treated as an
inert core. The antiproton-target scattering system has a total
Hamiltonian given by

H = V + Ht, (3)

where Ht is the target atom Hamiltonian and V is the projectile
target interaction, written as

V = V0 +
Ne∑
i=1

V0i . (4)

Here, V0i is the interaction of the projectile with the target
electrons and V0 is the interaction of the projectile with the
inert core.

The electronic wave function is expanded in terms of a
complete set of target pseudostates �α according to

�(t,r,R = b + vt) =
∑

α

Aα(t,b) exp(−iεαt)�α(r), (5)

where εα is the energy of the target electronic state α.
The expansion coefficients Aα(t,b) define the probability for
transitions into electronic bound and continuum states.

Substitution of the expanded total scattering wave function
(5) into the time-dependent Schrödinger equation (2) yields
a set of coupled-channel differential equations for the time-
dependent expansion coefficients Aα(t,b),

i
dAα(t,b)

dt
=

∑
β

Aβ(t,b)〈�α|V (t,r,b)|�β〉

× exp[i(εα − εβ)t]. (6)

Equation (6) is solved with the initial conditions Aα(t =
−∞,b) = δαi , as the target is initially in the ground state �i .
The probability for transition into some final state f is then

pf (b) = |Af (t = +∞,b)|2. (7)

After integrating over impact parameters, one obtains the
cross section σfi for the transition from initial state i to final
state f .

B. Target structure calculations for H, He, Ne, Ar, Kr, and Xe

For a hydrogen target, the pseudostates in Eq. (5) are written
as

�α ≡ �nlm(r) = Rnl(r)Ylm(r̂), (8)

where

Rnl(r) =
∑

k

Bl
nkξkl(r). (9)

Here, ξkl is a complete set of basis functions and Bl
nk are the

expansion coefficients found by diagonalization of the target
Hamiltonian (〈�α|Ht |�β〉 = εαδαβ).

An important feature of the CCC approach is the choice of
the basis as a set of orthogonal Laguerre functions,

ξkl(r) =
[

λl(k − 1)!

(2l + 1 + k)!

]1/2

(λlr)l+1

× exp(−λlr/2)L2l+2
k−1 (λlr), (10)

where L2l+2
k−1 (λlr) are the associated Laguerre polynomials, l

is the orbital angular momentum, and index k ranges from
1 to Nl , the maximum number of Laguerre functions. Here,
λl is the exponential fall-off parameter which is typically
chosen to give the most accurate ground state of the target
with a minimum number of basis functions. The choice of
λl should not affect the final result; however, it does affect
the speed of convergence. Specific values of λl used for
each target are given below. This choice of basis allows us
to model the whole spectrum of the target atom. As the
size of the one-electron basis increases, the low-lying states
will converge to the bound states of the target, while the
remaining (pseudo)states will provide a representation of the
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target atom high-lying bound states and an increasingly dense
square-integrable representation of the target continuum.

Full details of the target structure calculations for helium
were presented in Fursa and Bray [21] and for noble gas atoms
(Ne, Ar, Kr, Xe) in Fursa and Bray [22]. Here we give a short
overview only.

Within a nonrelativistic formulation adopted in this paper,
the target atom orbital angular momentum l, spin s, and parity
π are conserved quantum numbers. For each target symmetry
{l,s,π}, the target states are obtained via the configuration-
interaction (CI) expansion

�n =
∑

k

Cn
k �̃k, (11)

where configurations {�̃k} are built by orbital angular mo-
mentum and spin coupling of one-electron functions. The
coefficients Cn

k in the CI expansion (11) are obtained by
diagonalization of the target atom Hamiltonian Ht in the basis
of configurations {�̃k}.

The one-electron basis is a set of Laguerre functions [23],

φα(x) = φα(r)χ (σ ) = ξkαlα (r)Ylαmα
(r̂)χ (σ ), (12)

where ξkαlα is the function defined in (10). For helium, the
set of configurations is simply antisymmetrized two-electron
configurations,

|�̃k〉 = A
∣∣φαk

,φβk
: lsπ

〉
. (13)

The antisymmetrization operator A is given by

A = 1√
Ne

(
1 −

Ne−1∑
i=1

PiNe

)
, (14)

where Pij is a permutation operator and Ne = 2. Note that
the 1s Laguerre function with λ0 = 4.0 is exactly the same as
the 1s orbital of the He+ ion. Limiting the set of two-electron
configurations to those where one of the electrons occupies
the 1s He+ orbital leads to a frozen-core model of helium.
Excited states of helium are well described within the frozen-
core model. However, the ground-state benefits from a more
accurate description which can be readily achieved by allowing
for a more general choice of configurations. When several
inner orbitals are allowed, we have the multiconfiguration
description. We emphasize here that both frozen-core and
multiconfiguration descriptions of the target explicitly account
for the electron correlation effects.

For the heavier noble gas atoms (Ne, Ar, Kr, Xe), we
adopt a model of six p electrons above an inert Hartree-Fock
core. Excited states of noble gases are obtained by allowing
one-electron excitations from the outer p shell. This model is
similar to the frozen-core model of helium. We implement
this model in a number of steps. Taking the Ne atom as
an example, the first step is to perform the self-consistent
Hartree-Fock calculations for the Ne+ ion that produces 1s,
2s, and 2p orbitals. Then the quasi-one-electron Hamiltonian
of the Ne5+ ion is diagonalized in the Laguerre basis (10).
This leads to a set of one-electron orbitals from which we
drop the 1s and 2s orbitals and replace the 2p orbital with the
Hartree-Fock 2p orbital. These orbitals are orthogonalized by
the Gram-Schmidt procedure to produce the {φα} one-electron
basis. The configurations are built by angular momentum

and spin coupling of the wave function of the 2p5 electrons
ψc(l4l0+1

0 ) and one-electron functions {φα},
|�̃k〉 = A

∣∣ψc

(
l
4l0+1
0

)
,φαk

: lsπ
〉
, (15)

where l0 = 1 and the antisymmetrization operator A is given
by (14) with Ne = 6.

C. Helium double ionization and ionization with excitation

In this work, we account for double ionization (DI) and
ionization with excitation (IE) processes via an independent-
event model. In this model, DI and IE are considered a two-
step process. The first step is single ionization of He and the
second is ionization or excitation of He+. The probability of
the primary electron being ionized and the second electron
transitioning from the He+ ground state to some final state k

is the product of the two probabilities. Hence the cross section
is

σ+
k = 2π

∫ ∞

0
pHe

ion(b)pHe+
k (b)bdb, (16)

where b is the magnitude of the impact parameter b, and pHe
ion is

the total ionization probability of helium, which is given by the
sum over all probabilities (7) for transitions to positive-energy
states.

D. Stopping power

The energy loss per unit path length, or stopping power, is,
in general, defined as

−dE

dx
= NS(E0), (17)

where S(E0) is referred to as the stopping cross section and
is dependent on the incident energy of the projectile, E0.
For heavy projectiles, the total stopping cross section, in the
semiclassical approximation, is the sum of two contributions,
i.e., the nuclear and the electronic stopping cross sections.

The electronic contribution is the energy losses associated
with all excitation and ionization events of the target electrons.
In a one-electron target, the electronic stopping cross section
is

Se(E0) =
∞∑

f =1

(εf − εi)σfi +
∫ E0+εi

0
(ε − εi)

dσ

dε
dε, (18)

where εi is the energy of the initial state of the target i, σfi is
the cross section for excitation to a state f of energy εf , and
dσ/dε is the single differential cross section for an electron of
energy ε. Hence one sums over all possible energy losses due
to excitation to bound states and integrates over all possible
energy losses due to ionization to continuum states.

In the CCC method, we discretize the continuum as
described in Sec. II B. Therefore, the integral in Eq. (18)
becomes a sum over the total number NT of negative- and
positive-energy pseudostates. The electronic stopping cross
section is then written as

Se(E0) ≈
NT∑

f =1

(εf − εi)σfi. (19)
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In our calculation of the antiproton-helium electronic
stopping cross section, we include energy losses due to
excitation and ionization of the inner electron as well. In this
instance, we have a second term in our electronic stopping
cross section due to these processes,

Se(E0) ≈
NT∑

f =1

(εf − εi)σfi +
N ′

T∑
k=1

(εk − εHe+
)σ+

k , (20)

where εHe+
is the ground-state energy of He+, and σ+

k is the
cross section for the transition of the inner electron to a state
k of energy εk . The process of calculating σ+

k is defined by
Eq. (16).

The nuclear stopping cross section Sn is due to the kinetic
energy transferred to the target atom during elastic and
inelastic scattering. Calculations of nuclear stopping were only
performed for helium so we could more accurately compare
with experiment, which measures all energy-loss contributions
at once (electronic plus nuclear). The procedure of calculating
nuclear stopping cross sections is, in general, well defined, and
given in the Appendix A.

III. RESULTS AND DISCUSSION

A. p̄-H

For calculations of electronic stopping cross sections for
antiprotons in hydrogen, we find that the maximum orbital
angular momentum of the target states, required to reach
convergence, is 6, and Nl = 30 − l. The exponential fall off λl

of the basis functions was chosen to be 2. In Fig. 1, we present
our result for the antiproton-hydrogen electronic stopping
cross section and find good agreement with the theoretical
approaches of Schiwietz et al. [12,13] (AO), Lühr and Saenz
[15], and Cabrera-Trujillo et al. [14]. There is currently
no experiment to compare with; however, good agreement
with other theories validates our method and the associated
computer code. Also included is Bethe’s formula (1). Our
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FIG. 1. (Color online) Electronic stopping cross section for an-
tiproton incident on hydrogen. CCC calculations are compared with
calculations of Schiwietz et al. [12,13], Lühr and Saenz [15], and
Cabrera-Trujillo et al. [14].

calculations tend toward Bethe’s formula at high energies
where the latter is applicable. Although the Bethe formula is a
high-energy approximation, we have included the full curve to
illustrate the extent to which this equation fails at intermediate
and low energies. Bethe-type theories are currently relied upon
in the field of hadron therapy for depth-dose simulations used
in treatment planing. This highlights the potential inaccuracies
that can be incurred from the use of such formulas and the need
for more accurate calculations.

B. p̄-He

For our calculations of the electronic stopping cross
sections for antiprotons in helium, we find that the maximum
orbital angular momentum of the target states required to
reach convergence is also 6. However, for He+, the maximum
orbital angular momentum required to achieve the same
level of convergence was 4. This reduction in the required
maximum orbital angular momentum for He+ is due to the
increase in the binding energy of the target electron. For
both He and He+, sufficient convergence is obtained for
Nl = 20 − l with λl chosen to be 2. In our multiconfiguration
helium calculations, the number of included inner electron
orbitals was also increased systematically until convergence
was reached. It was found that five s states, four p states, and
three d states produced convergent results, while f states and
beyond did not give a significant contribution. In a frozen-core
approximation, the energy of the helium ground state was
obtained to be −23.741 eV. One of the major effects of
the multiconfiguration structure model is that it improves the
ground state. In our multiconfiguration calculation, we obtain
a ground-state ionization energy of 24.540 eV. This is very
close to the experimentally measured value of 24.586 eV.

In Fig. 2, we present the result for the antiproton-helium
stopping cross section together with the theories of Lühr and
Saenz [15] and Schiwietz et al. [12,13], and the experimental
results of Agnello et al. [8]. We use the multiconfiguration
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FIG. 2. (Color online) Total stopping cross section for antiproton
incident on helium. Included is the experiment of Agnello et al. [8],
with the shaded region representing the experimental uncertainty.
Electronic stopping cross sections of Lühr and Saenz [15] and
Schiwietz et al. [12,13] are also presented.
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representation of helium which, when compared to the
frozen-core approach, significantly increases the stopping
cross section below the stopping maximum, and slightly
reduces it above the maximum. We also take into account
double ionization and ionization with excitation via the
independent-event model. The nuclear contribution is also
added, which makes a noticeable contribution below 5 keV, as
discussed later. Our calculations are in agreement with those
of Lühr and Saenz [15] above 400 keV and the AO and DW
calculations of Schiwietz et al. [12,13] above 80 keV, but
our calculations appear to systematically underestimate the
experiment (except the region from 10 and 150 keV). In this
work, we have also evaluated contributions to nuclear stopping
from inelastic scattering. This was achieved by summing
over the kinetic-energy transfers (A2) corresponding to matrix
elements (A4) where �f is no longer the ground-state wave
function. However, due to the dominance of the elastic matrix
element, these contributions were negligible.

To better understand the reason for the small systematic
disagreement, a comment about the experimental data and
associated uncertainties is warranted. The experiment of
Agnello et al. [8] measures the mean annihilation time 〈ta〉 and
path length R of antiprotons in helium and then simultaneously
solves the following two relationships for the total stopping
cross section: (i)

R =
∫ E0

Ecap

dE

S(E)
, (21)

and (ii)

t(E0) =
∫ E0

Ecap

dE

vS(E)
= 〈ta〉 − 〈tcas〉, (22)

where v is the antiproton instantaneous velocity, Ecap is the
antiproton capture energy by the target atom, and 〈tcas〉 is the
mean cascade time. To solve these equations, they make use
of a parameterized function for S presented by Andersen and
Ziegler [24], where at low energies S is based on the Thomas-
Fermi statistical model and is given by Sl = αEβ , and at high
energies it is based on Bethe’s formula and is given by Sh =
[(243 − 0.375Z2)Z2/E] ln(1 + γ /E + 4meE/mp̄Ē). In the
intermediate-energy range, an interpolation formula originally
proposed by Varelas and Biersack [25] is used, where 1/S =
1/Sl + 1/Sh. In this formula, α, β, and γ are determined
by fitting to their experimentally measured data and were
found to be 1.45, 0.29, and 2 × 105, respectively. According to
Andersen and Ziegler [24], this particular fitting function has
an accuracy of around 10% at 10 keV and 5% at 500 keV.
However, the accuracy of the interpolation method in the
intermediate-energy range is said to be approximately 20%.
This uncertainty is in addition to the shaded region in Fig. 2,
which is the limiting behavior determined by the uncertainty
in the experimental measurements. The constraints of using a
fitting function may be one possible explanation for the small
systematic disagreement between our calculations and the
experimental data. Furthermore, in the experiment, a beam of
antiprotons enters a cylinder containing the helium-gas target.
Following a single ionization event, one may have residual
He+ ions within the target gas chamber. To take this into
account, we could have added to our calculations in Fig. 2 the

stopping cross section associated with antiproton scattering
on He+ multiplied by the probability of He+ being formed.
This could be another possible reason for the disagreement. In
terms of uncertainties in our calculations, it must be pointed
out that the independent-event model tends to overestimate
the double-ionization cross section by approximately 30%.
However, since the contribution of double ionization and
ionization with excitation processes to the total stopping cross
section is small, this leads to about a 2% overestimation at the
stopping maximum.

The AO calculations of Schiwietz et al. [12,13] and the
calculations of Lühr and Saenz [15] are for the electronic
stopping cross section. These calculations are in good agree-
ment with each other; however, they significantly overestimate
the experimental data below 15 keV. Adding the nuclear
stopping cross section would make the disagreement even
worse. This overestimation can be attributed to their use
of a hydrogenlike description for helium that does not take
into account electron correlation effects. The stopping cross
section obtained from this model is multiplied by two in
order to account for the contribution from both electrons. This
demonstrates the importance of using a more detailed structure
model if one wishes to obtain more accurate results. The
structural improvements over existing theories have allowed
us to obtain better agreement with experiment. It is important
to emphasize that the CCC results shown in Fig. 2 are based
on the cross section for single ionization of helium that is in
excellent agreement with experiment.

Individual contributions to the total stopping cross section
are presented in Fig. 3. This figure demonstrates the im-
provement that a multiconfiguration description of the target
provides over a frozen-core description at low and intermediate
energies. It also shows that energy losses associated with
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FIG. 3. (Color online) Individual contributions to the antiproton-
helium total stopping cross section. FC is the stopping cross
section for the primary electron in a frozen-core approximation.
Similarly, MC is for the multiconfiguration approximation. DI+IE
is the stopping cross section associated with double ionization and
ionization with excitation events (obtained using MC treatment). Sn

is the nuclear stopping cross section. The stopping cross section for
antiprotons in He+ is also shown.
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FIG. 4. (Color online) Electronic stopping cross sections due to
one-electron transitions from the outer p shell for antiprotons in Ne,
Ar, Kr, and Xe.

double ionization and ionization with excitation process make
a substantial contribution, as does the nuclear stopping cross
section. The stopping cross section for antiprotons in He+ is
also shown.

C. Nobel gas targets

We have also performed antiproton electronic stopping
cross-section calculations in the more complex nobel gases
of Ne, Ar, Kr, and Xe using the frozen-core treatment with
Nl = 20 − l and λl chosen to be 2, 2, 2.5, and 3, respectively.
For Ne and Ar, the maximum orbital angular momentum of
target states used in the calculations were 3 and 5, respectively.
For Kr and Xe, the maximum orbital angular momentum
of target states was 9. This resulted in the total number of
coupled differential equations for the different targets being
803, 1276, and 3475, respectively. To quantitatively assess
the accuracy of our structure model for noble gases, we may
compare our calculated ionization energies to measured ones.
With our frozen-core approximation for Ne, Ar, Kr, and Xe,
we obtained ionization energies of 20.57, 14.95, 13.38, and
11.73 eV, respectively, which agree reasonably well with the
measured data of 21.56, 16.76, 14.00, and 12.13 eV.

In Fig. 4 we present our electronic stopping cross sections
for antiprotons in Ne, Ar, Kr, and Xe. The peak of the stopping
cross section increases with the atomic number of the target.
This is as expected since the ionization energies decrease with
the atomic number of the target and hence the active electron is
less tightly bound. We note that these curves are the stopping
cross sections associated with the energy losses due to single-
electron transitions from the outer p shell.

IV. CONCLUSION

In conclusion, we have applied the CCC method to the
calculation of stopping cross sections for antiprotons in H, He,
Ne, Ar, Kr, and Xe. We have obtained excellent agreement
with existing theories for H and use this as a validation of our
approach. For He, we obtained generally better agreement with

the experiment of Agnello et al. [8] than the other theories due
to the use of a multiconfiguration description of the He atom
and taking into account double ionization and ionization with
excitation via an independent-event model. We also presented
calculations of stopping cross sections for antiprotons in Ne,
Ar, Kr, and Xe. For the latter, we used a model of six p-
shell electrons above a frozen Hartree-Fock core with only
one-electron excitations from the outer p shell allowed.

As a next step, we plan to apply the CCC method to
calculations of stopping cross sections for antiprotons in
molecules. Our ultimate goal is to perform accurate calcula-
tions, including rearrangement channels, of protons and carbon
ions in biologically relevant molecules for radiation-dose
simulations in hadron therapy.
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APPENDIX: THE NUCLEAR STOPPING
CROSS SECTION

The nuclear stopping cross section can be modeled as
classical scattering from a screened Coulomb potential. It is
defined as the integral of the kinetic energy transferred to the
target atom over all impact parameters,

Sn = 2π

∫ ∞

0
bT (b)db, (A1)

where T (b) is the kinetic-energy transfer given by

T (b) = 4μE0 sin2 [θ (b)/2], (A2)

μ is the reduced mass of the system, and θ is the scattering
angle defined as

θ (b) = π − 2
∫ ∞

rmin

bdr

r2
√

1 − V (r)/Ec − b2/r2
. (A3)

Here, Ec = E0MHe/(Mp̄ + MHe) is the center-of-mass en-
ergy and V (r) is the screened Coulomb potential. The distance
of closest approach rmin is given by the largest zero of the term
under the square root.

Calculations of nuclear stopping were performed for he-
lium. For the screened Coulomb potential in Eq. (A3), we use
a static potential obtained from

V (r) = 〈�f | − 2

r
+ 1

|r − r1| + 1

|r − r2| |�i〉, (A4)

where r1 and r2 are the coordinates of the two electrons in
the helium atom, and �i is the ground-state wave function.
For elastic scattering, �f is taken to be the ground-state wave
function. All other �f wave functions correspond to inelastic
scattering. The wave functions are produced in our structure
calculations described in Sec. II B.

022707-6



ANTIPROTON STOPPING IN ATOMIC TARGETS PHYSICAL REVIEW A 92, 022707 (2015)

[1] D. Belkic, Theory of Heavy Ion Collision Physics in Hadron
Therapy, Advances in Quantum Chemistry (Elsevier Science,
New York, 2012).

[2] Shielding Strategies for Human Space Exploration, edited by
J. W. Wilson, J. Miller, A. Konradi, and F. A. Cucinotta, NASA
Conf. Pub. No. 3360 (Langley Research Center, Hampton, VA,
1997).

[3] C. Bertulani, Phys. Lett. B 585, 35 (2004).
[4] T. Kirchner and H. Knudsen, J. Phys. B 44, 122001 (2011).
[5] “The antiproton decelerator”, home.web.cern.ch/about/

accelerators/antiproton-decelerator.
[6] “Extra Low Energy Antiproton ring”, espace.cern.ch/elena-

project.
[7] N. Bassler, J. Alsner, G. Beyer, J. J. DeMarco, M. Doser, D.

Hajdukovic, O. Hartley, K. S. Iwamoto, O. Jkel, H. V. Knudsen,
S. Kovacevic, S. P. Mller, J. Overgaard, J. B. Petersen, T. D.
Solberg, B. S. Srensen, S. Vranjes, B. G. Wouters, and M. H.
Holzscheiter, Radiotherapy Oncol. 86, 14 (2008).

[8] M. Agnello, G. Belli, G. Bendiscioli, A. Bertin, E. Botta,
T. Bressani, M. Bruschi, M. Bussa, L. Busso, D. Calvo, B.
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