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Low-energy dissociative electron attachment to CF2

S. T. Chourou,1 Å. Larson,2 and A. E. Orel1
1University of California, Davis, Davis California 95616, USA

2Stockholm University, S-106 91 Stockholm, Sweden
(Received 4 May 2015; published 6 August 2015)

We present the results of a theoretical study of dissociative electron attachment (DEA) of low-energy electrons
to CF2. We carried out electron scattering calculations using the complex Kohn variational method at the
static-exchange and relaxed self-consistent field (SCF) level at the equilibrium geometry and compare our
differential cross sections to other results. We then repeated these calculations as a function of the three internal
degrees of freedom to obtain the resonance energy surfaces and autoionization widths. We use this data as input
to form the Hamiltonian relevant to the nuclear dynamics. The multidimensional wave equation is solved using
the multiconfiguration time-dependent Hartree (MCTDH) approach within the local approximation.
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I. INTRODUCTION

In the processing of semiconductor devices, fluorocarbon
plasmas are often used to etch silicon surfaces [1,2]. The gases
currently used in the plasma production of microelectronic
devices have been shown to have a strong greenhouse effect.
CF3I and C2F4 have been proposed as alternate feedstock
gases [3]. Although the feed gas is nonreactive, under electron
bombardment it fragments to produce reactive species such
as CF, CF2, and CF3 radicals and the corresponding ions.
Electron collision cross sections for these transient, reactive
species are difficult to measure experimentally. Therefore, ab
initio theory can be of value in estimating the cross sections
that are needed in large-scale simulations of these processing
plasmas [4,5]. It is important to identify not only the cross
sections but also the branching ratios into the various fragment
channels following dissociation. These quantities are critical
in modeling the behavior of the feedstock gases in a plasma
environment [6].

One question that has arisen in these plasmas is the source of
F−. It had originally been predicted that dissociative electron
attachment to C

CF + e− → (CF)−∗ → C + F−

would be efficient [7,8]. Further calculations [9] showed that
although, as found in the previous studies, the anion curve
crossed the neutral near the equilibrium geometry, at the
energies needed for dissociation [7,8] the cross section was
extremely small and significant vibrational excitation was
needed to produce any significant F− product. It was also
proposed that the dissociative electron attachment to CF2

CF2 + e− → (CF2)−∗ → CF + F−

might be efficient. R-matrix calculations were carried out at
several internuclear separations, but no dynamics for the dis-
sociation were calculated [8,10]. These calculations indicate
the existence of at least one anion resonance 2B1 (2A

′′
) which

crosses the neutral and predicted the dissociative attachment
cross section to be large. Later calculations [11] computed
differential cross sections that compared well to experiments.
These calculations at the static exchange level found a
single resonance at low energy unbound at the equilibrium
geometry of the ground state. However, when a static-exchange

plus polarization calculation was performed, which correctly
balances the anion and target correlation, the anion was found
to be bound. This is in agreement with photodetachment
spectroscopy experiments [12] that found the CF−

2 anion to
be bound. In addition, an experiment [13] which measured
the cross section for the dissociative electron attachment to
CF2 found it to be no greater than ∼5 × 10−20 cm2. More
recently [14], an experimental study of dissociative electron
attachment to a number of fluorocarbon radicals found that the
process yielded F− with low efficiency (less than 2%), except
in the case of CF2, where no attachment was observed.

In this paper we present our calculations on the dissociative
electron attachment to CF2. We first describe the electron
scattering calculations performed to determine the resonant
states and construct the complex potential energy surfaces.
We compare our differential electron scattering calculations
with previous theoretical and experimental results. We discuss
the computation of the nuclear dynamics of CF−∗

2 . Finally, we
present our results for the DEA cross section.

II. ELECTRON SCATTERING CALCULATIONS

We use the complex Kohn variational method [15] to
describe the electron scattering from the neutral. This method
has been described elsewhere so only a summary will be
presented. The (n + 1)-electron scattering wave function for
fixed nuclei positions represented collectively by the vector Q
is written as

�λ
el(r

n+1; Q) = Â

[∑
λ′

φλ′
el (rn; Q)Fλλ′

(�rn+1; k)

]

+
∑

μ

dλ
μ�μ(rn+1; Q), (1)

where rn+1 = (�r1,�r2, . . . ,�rn+1) is the (n + 1)-electronic coor-
dinates vector and Â is the antisymmetrizing operator. The first
sum is denoted as the P -space portion of the wave function
and runs over the energetically open target states. In this case,
only one channel was open. The function φλ

el(r
n; Q) is the

target n-electron ground state in the irreducible representation
λ with the nuclei clamped at Q. The second term, denoted
as the Q-space portion of the wave function, contains the
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FIG. 1. Molecule in internal coordinates.

functions �μ, which are square-integrable n + 1 configuration
state functions (CSFs) which are used to describe short-range
correlations and the effects of closed channels. Fλλ′

(�rn+1; k)
is the scattering electron’s wave function at position �r and
momentum k, which is further expanded to match asymptotic
boundary conditions:

Fλλ′
(�r; k) =

∑
i

cλλ′
i ui(�r) +

∑
lm

[
f λ

l (kr)δll′δmm′δλλ′

+ T λλ′
ll′mm′(k)h+λ

l (kr)
]
Ylm(r̂)/r, (2)

where the {ui} are square-integrable functions, {f λ
l } and {h+λ

l }
are respectively the regular Ricatti-Bessel and the outgoing
Hankel functions, and Ylm are the normalized spherical
harmonics. Angular momenta up to l = 6 and |m| = 4 are
included in the calculation.

By inserting the trial wave function into the complex Kohn
functional [15], the unknown coefficients in the trial wave
function, dλ

μ, cλλ′
i , and T λλ′

ll′mm′ can be optimized. The terms
T λλ′

ll′mm′ are the T -matrix elements that determine the eigenphase
sums as a function of the electron’s collision energy. The
eigenphase sums were fit to the Breit-Wigner form [16],

δ

(
k2

2

)
= arctan

(
�/2

ε − k2

2

)
+ δbkgd

(
k2

2

)
, (3)

where ε,� are the corresponding parameters to be determined
and δbkgd is the background phase shift taken to be a slowly
varying function of the electron energy.

We performed calculations at two levels. In all calculations
the carbon and flourine atoms were described using a triple-ζ -
plus-polarization (TZP) function basis set [17], which is then
augmented with one s with exponent 0.01 and one p function
with exponent 0.09. The first calculation was carried out at
the static exchange level. At this level a SCF wave function
is used for the target wave function, φλ

el(r
n; Q). In the second

level of calculations, a static exchange plus polarization (SEP)
calculation was run with a relaxed SCF (RSCF) wave function,
that is, including all symmetry-preserving single excitations
from the occupied target orbitals into all unoccupied orbitals.
This has been used in previous studies [9] and found to yield
a balanced description of the neutral and anion. This leads to
9075 configurations in 2A

′′
, the symmetry that includes the

resonance.
We have chosen to work in the internal coordinate system

shown in Fig. 1. The coordinates r1 and r2 represent the
distance between the two fluorine atoms and the carbon atom,
and θ is the F-C-F angle.

A. Differential cross section

The fixed-nuclei differential cross section is computed and
shown in Fig. 2 in comparison to experimental results and other
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FIG. 2. (Color online) Differential cross section for electron scat-
tering from CF2 at (a) 3.0 and (b) 6.0 eV. The results at the static
exchange level are shown with dashed lines (red online), while the
solid black lines show the results at the RSCF level. Results from
previous calculations [11] and experiments [11] are displayed with
the dotted (blue online) lines and symbols respectively.

calculations. In order to compare to the previous calculations,
our results are shown without the Born correction. Since the
experiment could not be performed below 20◦ and the effect
of the dipole moment will become significant below 10◦ the
differential cross sections plotted should be reliable. As can
been seen in the figure, there is very good agreement between
the two calculations and the experimental results. The static
exchange results of the previous calculation [11] and our static
exchange calculations cannot be distinguished on the figure,
so only ours are shown. Adding polarization to the calculation
lowers the cross section in the forward direction. As the energy
increases the effect of polarization decreases. The differences
between the two calculations and the experiment may be due to
changes in the differential cross section as a function of nuclear
geometry. The calculations shown are at fixed geometry. These
results should be averaged over the initial target vibrational
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FIG. 3. (Color online) (a) Effect of changing the C-F bond
distance on the differential cross section θ = 104.8◦, one C-F bond
fixed at r1 = 2.4 a0 and the second at r2 = 2.3 a0, dashed line (red
online); r2 = 2.4 a0, solid black line; and r2 = 2.6 a0, dotted line (blue
online). (b) Molecule bending effect on the differential cross section
for r2 = 2.4 a0 and angle θ fixed at 100◦, dashed line (red online);
104.8◦, solid black line; and 110◦, dotted line (blue online).

wave function. The effect is usually small, but in this case the
resonance becomes bound in the Franck-Condon region. In
order to see the magnitude of the change we repeated these
calculations for a range of angles and bond distances. Figure 3
shows the effect of changes in these parameters. As can be seen,
the cross section in the forward direction is quite sensitive to
changes in the internuclear separation and the bend. These
results show that the relaxed SCF calculation gives a good
description of the electron scattering in the low-energy region.
Therefore, the calculations of the resonant surfaces were done
at this level.

B. Resonance surface

The computation of the eigenphase sums as a function
of incident electron energy reveals one low-lying shape

0.05 0.1 0.15 0.2
Energy (hartree)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Ei
ge

np
ha

se
 su

m

(a)

0.05 0.1 0.15 0.2
Energy (hartree)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Ei
ge

np
ha

se
 su

m

(b)

FIG. 4. (Color online) (a) Effect of changing the C-F bond
distance on the eigenphase sum θ fixed at 104.8◦ and one C-F bond
fixed at r1 = 2.4 a0 and r2 = 1.4 a0, black solid line; r2 = 1.6 a0, dotted
line (red online); r2 = 1.8 a0, dashed line (green online); r2 = 2.0 a0,
dot-dashed (blue online); and r2 = 2.3 a0, dot-dot-dashed (magenta
online). (b) Molecule bending effect on the eigenphase sums for
r1 = r2 = 2.0 a0 and angle θ fixed at 90◦, dashed line (red online);
104.8◦, solid black line; and 120◦, dotted line (blue online).

resonance. In Fig. 4 the eigenphase sum show the resonance
feature of CF2 in 2A′′ symmetry up to an electron collision
energy of 0.2 Hartrees (5.44 eV). Figure 4(a) displays the
effect of changing the C-F bond, while keeping the angle fixed
at the equilibrium geometry, θ = 104.8◦, and the other C-F
bond at 2.4 a0. As can been seen in the figure, the resonance
moves to lower energy and becomes bound as the bond distance
is increased. Figure 4(b) shows the effect of bending at fixed
bond distances. The eigenphase sums shown in the figure were
calculated at the bond distances fixed at r1 = r2 = 2.0 a0,
where the resonance is not bound. As can be seen in the figure,
the resonance energy position is much less sensitive to the
bend angle. The potential energy used in our calculations is
expressed in the (r1,r2,θ ) coordinates spanning the domain
[1.6 a0, 8.0 a0] × [1.6 a0, 8.0 a0] × [80 ◦, 160◦].
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FIG. 5. (Color online) One-dimensional cut of the potential en-
ergy surfaces of the ground state of the neutral CF2, solid black line,
and the ground state of the anion CF−

2 at the static-exchange level,
dotted line (red online), and the relaxed SCF level, dashed line (green
online), as a function of r2 with r1 fixed at 2.4 a0 and the angle θ fixed
at 104.8◦.

For comparison, a one-dimensional cut of the potential
energy surfaces of the ground state of the neutral CF2 and
the anion CF−

2 at the static-exchange level and the RSCF level
are shown in Fig. 5 as a function of r2 with r1 fixed at 2.4
a0 and the angle θ fixed at 104.8◦. The dissociation energy
for the ground state is found to be 0.25 Hartrees (6.8 eV)
in fair agreement with the measured value in Ref. [18]. The
anion surface at the RSCF crosses the neutral at a bond
distance smaller than the equilibrium bond distance of the
neutral.

The potential energy surfaces of both the ground state of
the neutral and anion molecules show little changes when the
angle is varied. One-dimensional cuts for several angles are
shown in Fig. 6(a) for the neutral and Fig. 6(b) for the anion
at the RSCF level as a function of r2 with r1 fixed at 2.4a0.
There is a much stronger variation with change in the bond
distance. One-dimensional cuts for several values of r1 are
shown in Fig. 7(a) for the neutral and Fig. 7(b) for the anion
at the RSCF level with the angle θ fixed at 104.8◦.

Similar behavior is seen for the autoionization width, shown
in Fig. 8. There is little variation with angle, but a stronger
change with internuclear separation.

III. NUCLEAR DYNAMICS

We solve for the nuclear dynamics of the metastable
negative-ion state in the local complex potential model. The
approximation used in this model has been discussed in detail
elsewhere [19] and will only be outlined here. The nuclear
wave equation is given by

[Etot − Ĥ (Q)]ξν(Q) = ην(Q), (4)

where the Hamiltonian operator is given by

Ĥ (Q) = T̂Q + Vel(Q). (5)

The kinetic energy operator T̂Q for a total momentum
operator J = 0 is given in the (r1,r2,θ ) coordinate system
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FIG. 6. (Color online) Potential energy surfaces of the ground
state of the neutral CF2 (a) and the anion CF−

2 (b) as a function of r2,
r1 fixed at 2.4 a0 for three values of θ : 90.0◦, black solid line; 104.8◦,
dotted line (red online); and 120.0◦, dashed line (green online).

by

T̂Q = − 1

2μ1
∂2
r1

− 1

2μ2
∂2
r2

+
(

1

2μ1r
2
1

+ 1

2μ2r
2
2

)
ĵ 2

− 1

2mC

∂r1∂r2 + 1

mC

(
1

r1
∂r2 + 1

r2
∂r1

)
∂θ sin(θ )

− 1

2mCr1r2
[cos(θ )ĵ 2 + ĵ 2 cos(θ )], (6)

where μ1 = μ2 = ( 1
mF

+ 1
mC

)
−1

defines the reduced masses
associated with r1 and r2 with mC and mF being the masses
of the carbon and fluoride atoms respectively. The operator ĵ 2

in Eq. (6) represents the angular momentum operator squared.
(Note that we use atomic units � = me = 1 throughout.) The
complex potential Vel(Q) relevant to the resonant CF−

2 anion
is defined by

Vel(Q) = Eel(Q) + εres(Q) − i

2
�(Q). (7)

The driving term ην(Q) in Eq. (4) is known as the entry
amplitude and it expresses the capture probability of the
incoming electron by the molecular target in the discrete
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FIG. 7. (Color online) Potential energy surfaces of the ground
state of the neutral CF2 (a) and the anion CF−

2 (b) as a function of r2,
θ fixed at 104.8◦ for four values of r1: 1.6 a0, black solid line; 1.8 a0,
dotted line (red online); 2.4 a0, dashed line (green online); and 2.8 a0,
dash-dotted line (blue online).

vibrational state χν(Q) into the resonant state associated with
the complex potential of Eq. (7). In our model, it is expressed
as

ην(Q) =
(

�(Q)

2π

)1/2

χν(Q). (8)

Finally, ξν(Q) is the nuclear wave function we seek to
determine. We use the time-dependent formulation established
by McCurdy and Turner [20]. The problem thus reduces to
solving the time-dependent Schrödinger equation:

Ĥ (Q)�nuc(Q,t) = i∂t�nuc(Q,t);

�nuc(Q,0) = ην(Q). (9)

We use the computational technique based on multiconfigu-
ration time-dependent Hartree (MCTDH) formalism discussed
in detail in Ref. [21]. In the context of this theory, the nuclear
wave function for the negative ion of CF2 is expressed in the
internal coordinates as

�nuc(r1,r2,θ,t) =
Nr ,Nr ,Nθ∑

i,j,k

Aijk(t)wi,j,k(r1,r2,θ,t), (10)
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FIG. 8. (Color online) Autoionization width (a) as a function of
r2, r1 fixed at 2.4 a0 for three values of θ : 90.0 ◦, black solid
line; 104.8◦, dotted line (red online); and 120.0◦, dashed line (green
online); and (b) as a function of r2, θ fixed at 104.8◦ for four values
of r1: black solid line, 1.6 a0; dotted line (red online), 1.8 a0; dashed
line (green online), 2.4 a0; and dash-dotted line (blue online), 2.8 a0.

where

wi,j,k(r1,r2,θ,t) = ρ1
i (r1,t)ρ

2
j (r2,t)�k(θ,t). (11)

Each single-particle function appearing in Eq. (11) is in
turn expanded in terms of a function basis set chosen to
correspond to that of a discrete variable representation (DVR)
for computational efficiency. Here, Nr1 = Nr2 = 30 and Nθ =
8. The single-particle functions associated with the variables
r1 and r2 are expressed in terms of sine-DVR (300 grid points
each) and the angle θ is represented by the Legendre-DVR (66
grid points).

IV. COMPUTATIONAL RESULTS

The wave packet for the ground neutral state is computed
by relaxation, that is, propagation on the neutral adiabatic
potential energy surface in negative imaginary time. By
applying Eq. (8), we determine the initial wave packet needed
to solve the system of equation Eq. (9).

At the grid boundaries, an appropriate complex absorbing
potential (CAP) is included to ensure that wave packet is not
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reflected back into the grid, causing undesired interferences.
The form of the CAPs adopted in this study is given by the
form

−iW (R) = −iC|R − RCAP|bS(R − RCAP), (12)

where S is the Heaviside step function and the values of the
parameters C, b, and RCAP used in this propagation are 0.01,
3.0, and 5.0 a0, respectively. Propagation is carried out for a
duration of 1000 fs.

A. Cross section

The wave-packet flux at the grid boundaries is used to
compute the DEA cross section. The energy-resolved outgoing
flux associated with the initial target vibrational state ν through
the CAP is therefore given by

Fν(E) = 1

(2π )2|�(E)|2 〈ξν |F̂ |ξν〉Q, (13)

where F̂ is the flux operator and �(E) is the energy distribution
of the initial wave packet [22]. In order to achieve a time-
dependent dynamics formulation of the process, the bracket
term in Eq. (13) is computed in terms of the time domain
integrals as

〈ξν |F̂ |ξν〉Q =
∫ ∞

0
dt

∫ ∞

0
dt ′

× 〈ην |ei(̂̃H †−E)t F̂ e−i(̂̃H−E)t ′ |ην〉Q, (14)

where the operator ̂̃H is given bŷ̃H = Ĥ − iW (R), (15)

representing the CAP-perturbed Hamiltonian of the system
defined in Eq. (5).

The cross section relevant to the DEA channel for an initial
neutral target in the vibrational mode ν may be expressed based
on the flux function as

σ
ν→DEA

(
k2

2

)
= gsga

4π3

k2
Fν

(
k2

2

)
, (16)

where gs is the statistical ratio of the resonant state to
the ionization continuum (here equal to 1) and ga is the
arrangement multiplicity (here equal to 2). The reader is
referred to Refs. [22–25] for detailed treatment of the CAP-
based flux formalism.

In Fig. 9, the DEA cross section at the RSCF level is
shown for one-dimensional (θ and one C-F bond fixed),
two-dimensional (θ fixed), and three-dimensional calculations.
In the one-dimensional (1D) calculation, the electron can be
captured at low collision energy; however, the anion state is not
open for dissociation until the energy is larger than 2 eV. It is
the high-energy tail of the capture probability that has enough
energy for dissociation. The cross section calculated within the
1D model is very small (10−21 cm2) with regular oscillations
due to energy-dependent overlap between the vibrational wave
function of the target molecular and the continuum function
of the anion [26,27]. In two dimensions, the peak of the cross
section occurs around 3 eV and with a peak height of roughly
1 × 10−19cm2. However, when the bend is added the cross
section drops. Bending does not lead to dissociation, so as the

FIG. 9. (Color online) DEA cross section for F− production from
CF2 with resonance parameters determined at the RSCF level: one-
dimensional, dotted line (blue online) with r1 as variable and θ and r2

fixed; dashed line (red online), two-dimensional surface with r1 and
r2 as variables and θ fixed; and black solid line, full three-dimensional
surface.

wave packet spreads in that dimension it can only autoionize.
We obtain a peak value of 6 × 10−20 cm2 at around 2 eV. This
is consistent with the estimate given by Graupner et al. [13],
which put an upper limit on the DEA cross section of less
than 5 × 10−20 cm2 for energies less than 10 eV and the
observations of Shuman et al. [14] that observed no attachment
in this system over a similar energy range.

In the experiments [13] the temperature was 300 K.
The vibrational frequencies are as follows: symmetric
stretch, 152 meV; asymmetric stretch, 138 meV; and bend,
82 meV [28]. Therefore the symmetric and asymmetric
stretches are in the ground vibrational states. The lower

FIG. 10. (Color online) DEA cross section for F− production
from CF2 as a function of initial vibrational excitation in the bending
mode: ν = 0, solid line (black online); ν = 1, dashed line (red online);
ν = 2, dotted line (green online); and ν = 3, dot-dashed line (blue
online).
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frequency bend has a population of 4% in ν = 1 and 96%
in ν = 0. In order to assess the effect of vibrational excitation,
a calculation was carried out with excitation in the bend. The
results are shown in Fig. 10. The cross section increases with
increasing vibrational excitation, but by ν = 3 it is only a factor
of ten higher. This will not lead to any significant changes the
dissociative electron attachment rate.

V. CONCLUSION

We have carried out theoretical calculations on DEA of
CF2. These calculations show that the resonance that appears
at the static-exchange calculations at the equilibrium geometry
becomes bound when polarization effects are included. The
DEA cross section is found to be quite small, in agreement
with the most recent experiments. This means, as previously
speculated [8,10], that DEA of CF2, as was found with

our previous studies of DEA of CF, cannot be a source of
F− in processing plasmas. Further work is needed to study,
for example, DEA of CF3 to see if this system could be
a source, although recent experiments [14] indicate this is
inefficient. Another possible source is the ion-pair channel in
the dissociative recombination of CF+, with the process

CF+ + e− → C+ + F−.

Further work is needed to test this possibility.
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