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Almost exact exchange at almost no computational cost in electronic structure
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Potential-functional theory is an intriguing alternative to density-functional theory for solving electronic-
structure problems. We derive and solve equations using interacting potential functionals. A semiclassical
approximation to exchange in one dimension with hard-wall boundary conditions is found to be almost exact
(compared to standard density-functional approximations). The variational stability of this approximation is
tested, and its far greater accuracy relative to the local-density approximation demonstrated. Even a fully
orbital-free potential-functional calculation yields little error relative to exact exchange, for more than one
orbital.
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I. INTRODUCTION

Electronic-structure problems in chemistry, physics, and
materials science are often solved via the Kohn-Sham (KS)
method of density-functional theory (DFT) [1,2], which
balances accuracy with computational cost. For any practical
calculation, the exchange-correlation (XC) energy must be
approximated as a functional of the density. The basic theorems
of DFT guarantee its uniqueness, but they give no hint about
constructing approximations. The early local-density approx-
imation (LDA) [2], much used in solid-state physics, was
the starting point for today’s more accurate methods, such as
the generalized gradient [3,4] and hybrid [5] approximations.
However, no systematic approach for their derivation is known,
so a plethora of XC approximations have been created [6].

This lack inspires many approaches beyond traditional
DFT, such as orbital-dependent functionals such as exact
exchange (EXX) [7,8], use of the random-phase approximation
[9], and (first-order) density-matrix functional theory [10].
While these can produce higher accuracy, their computational
cost is typically much greater, and as of yet none has yielded
a universal improvement over existing methods. Hybrid
functionals replace some fraction of generalized gradient
exchange with exact exchange, they are standard in molecular
calculations, and they yield more accurate thermochemistry in
most cases [6]. Furthermore, range-separated hybrids [11],
where the exchange is treated in a Hartree-Fock fashion,
typically yield much improved band gaps for many bulk solids
[12]. However, their computational cost in plane-wave codes
can be up to 1000 times higher [13], making such methods
much less useful in practice.

Potential-functional theory (PFT) is an alternative approach
to electronic-structure problems that is dual [14] to DFT.
Recently, the formalism of pure PFT has been developed
[15–17], and approximations for noninteracting fermions in
simple model systems have been tested [18,19]. The leading
corrections to Thomas-Fermi theory are explicit functionals
of the potential [18,20,21], and inclusion of these yields
approximations that are typically much more accurate than
their DFT counterparts. Explicit PFT approximations have
only been available for noninteracting one-dimensional (1D)
models so far.

We take advantage of the KS mapping within PFT and
solve the corresponding variational problem using the KS
potential as a basic variable. We show that this implies
a practically useful orbital-free approach, if one finds the
required explicit potential-functional approximations. We il-
lustrate this by testing a recent semiclassical expression that
is a potential-functional approximation for the density matrix
in one dimension [22]. Even for only one occupied orbital, the
error is less than 5% compared to that of an LDA exchange
calculation (LDAX), and it is negligible for two or more
orbitals, as we show in Fig. 1. No explicit density-functional
approximation for exchange comes close to this level of
accuracy. If such a formula existed for three dimensions, the
cost of (almost) EXX would be vanishingly small, relative
to an LDA calculation. While our one-dimensional formula
[see Eq. (9)] cannot be immediately applied to real-world
calculations (even single atoms), our results show what should
be possible if an extension to atomistic systems could be found.

II. POTENTIAL-FUNCTIONAL THEORY
FOR INTERACTING PARTICLES

To begin, the ground-state energy of N electrons in an
external potential v(r) is given by

E0 = min
�

〈�| T̂ + V̂ee + V̂ |�〉, (1)

where the search is over all normalized antisymmetric �, and
T̂ is the kinetic energy operator, V̂ee is the electron-electron
repulsion, and V̂ = ∑

i v(ri) is the one-body operator. We use
Hartree atomic units (e2 = � = me = 1) and suppress spin
indices for simplicity. The universal potential functional [17]
is

F [v] = 〈�0[v]| T̂ + V̂ee|�0[v]〉, (2)

where �0[v] is the ground-state wave function of v(r), so

E0 = min
ṽ

(
F [ṽ] +

∫
dr n[ṽ](r)v(r)

)
, (3)

where n[v](r) is the ground-state density of v(r). In the exact
case, ṽ(r) = v(r).
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FIG. 1. (Color online) Energy error made by LDA exchange
(LDAX), non-self-consistent (*) semiclassical exchange (scX), and
semiclassical kinetic and exchange (scKX) for N spin-unpolarized,
interacting fermions in a 1D well (see Table I).

In PFT, once n[v](r) is given, F [v] can be deduced,
either by a coupling-constant integral or a virial relation [17].
When applied to noninteracting fermions, an approximation
ns[vs](r) yields an approximation Ts[vs], where vs(r) is the
potential in this noninteracting case. Now we introduce a
potential approximation to the XC energy, EXC[vs], and ask
the following: How can these two approximations be used to
find E0 of interacting fermions?

To deduce the answer, write F as a functional of vs(r) rather
than v(r) [16]:

F̄ [vs] = F [v[vs]] = Ts[vs] + U [vs] + EXC[vs], (4)

i.e., all are functionals of the KS potential [which is uniquely
determined by v(r)], where U is the Hartree energy and EXC

is everything else. Given ns[vs](r), we can determine Ts and
U . Applying Eq. (3) yields, via the Hohenberg-Kohn theorem
[14],

E0 = min
ṽs

(
F̄ [ṽs] +

∫
dr ns[ṽs](r) v(r)

)
, (5)

and the minimizing KS potential vs(r) satisfies [16]

δEv0 [ṽs]

δṽs(r)

∣∣∣∣
vs

= 0 (6)

for both the interacting and noninteracting systems. If
χs[vs](r′,r) = δns[ṽs](r′)/δṽs(r)|vs

is the one-body density-
density response function,

v′
s[vs](r) = v0(r) +

∫
dr′χ−1

s [vs](r′,r)
δEHXC[ṽs]

δṽs(r′)

∣∣∣∣
vs

, (7)

where EHXC[ṽs] = U [ṽs] + EXC[ṽs] = U [ṽs] + EX[ṽs] + EC[ṽs],
and [16]

v′
s[vs](r) = −

∫
dr′χ−1

s [vs]
δTs[ṽs]

δṽs

∣∣∣∣
vs

. (8)

Equations (7) and (8) are the self-consistent equations for
minimizing approximate functionals in PFT (which have some
approximate vs as minima). They generalize the results of

Ref. [14], which only exploits the exact Ts[vs], beyond the
special case when v′

s = vs. The solution of Eq. (7) yields the
minimizing KS potential vs(r), once ns[vs](r) and EHXC[vs]
are given. An approximation that satisfies Eq. (8) together
with Eq. (7) is variationally consistent (see also Ref. [16]).
If an approximation does not satisfy Eq. (8), it could yet be
proven practically viable by a direct numerical minimization
of Eq. (5). This is also numerically convenient as Eq. (7)
requires computing the inverse of χs, which becomes costly as
N increases. Below, we proceed with a direct minimization of
Eq. (5) via the Nelder-Mead algorithm.

Our results so far apply to any approximate PFT cal-
culations, including fully realistic systems and approximate
correlation. Here we test them on a model in which ex-
plicit approximations have been derived. Contour integration
techniques [15,18] yield a semiclassical potential-functional
approximation (PFA) to the one-body reduced density matrix,

γ sc
s (x,x ′) =

∑
λ=±

−λ sin
[
θλ

F (x,x ′)
]
cosec

[
αλ

F (x,x ′)/2
]

2TF

√
kF(x)kF(x ′)

, (9)

of N fermions in a one-dimensional potential inside a
box, whose chemical potential is above the potential ev-
erywhere. Here θ±(x,x ′) = θ (x) ± θ (x ′), α±(x,x ′) = α(x) ±
α(x ′), θ (x) = ∫ x

0 dx ′k(x ′) denotes the semiclassical phase,
k(x) = √

2[E − v(x)] is the wave vector, E is the energy,
α(x) = πτ (x)/T , τ (x) = ∫ x

0 dx ′k−1(x ′) is the traveling time
of a classical particle in the potential v(x) from one boundary
to the point x at a given energy, and T = τ (L) [15]. A subscript
F denotes evaluation at the Fermi energy, which is found
by requiring the wave functions to vanish at the edge, i.e.,
�F (L) = (N + 1/2)π . The derivation and implications for
DFT of this expression are given elsewhere [22]. As x → x ′,
the diagonal reduces to the known semiclassical approximation
for the density [15] from which the noninteracting kinetic en-
ergy is obtained through a coupling-constant integral [17]. For
a given electron-electron repulsion, vee(u), where u = |x − x ′|
denotes the separation between electrons, the semiclassical
exchange is

Esc
X [vs] = −1

2

∫ ∞

−∞
dx

∫ ∞

−∞
dx ′∣∣γ sc

s [vs](x,x ′)
∣∣2

vee(u). (10)

III. ILLUSTRATION

We test both the accuracy and the stability of the semiclas-
sical approximations relative to standard DFT by performing
a sequence of calculations with different contributions treated
via PFT: (a) nonvariational, semiclassical exchange approxi-
mation evaluated on the KS potential from LDAX; (b) varia-
tional, semiclassical exchange approximation; (c) variational,
semiclassical approximation of all energy components. In all
cases, we put the “electrons” in pairs in a 1D box of unit length,
with a one-body potential v(x) = −5 sin2(πx), and repelling
each other via exp(−αu) with α = 4, which ensures that the
exact Hartree and exchange potentials show realistic decay
within the box without reducing to a contactlike interaction
(where LDA would perform artificially well [23]). This choice
ensures that the condition on the Fermi energy [15] is satisfied
for all N . Here the exact solution is a full OEP calculation
using the exact orbital expression for exchange, yielding the
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TABLE I. Total EXX energy and respective errors of self-
consistent as well as perturbative post-LDAX (*) calculations within
LDAX, scX, and scKX for N spin-unpolarized fermions interacting
via exp(−4u) in an external potential v(x) = −5 sin2(πx) within a
box of unit length.

error × 103

N EEXX EEXX
X LDAX scX* scKX* scX scKX

2 2.81 −0.52 41.72 −1.79 1.40 −3.10 −29.60
4 39.04 −1.26 58.41 −0.15 5.89 −3.86 −1.14
6 126.10 −2.10 70.24 0.14 0.53 −1.20 0.47
8 283.70 −2.98 77.91 0.08 −0.40 −0.10 −1.76

exact KS kinetic and exchange energies and KS potential on
the self-consistent EXX density. Next, we define LDAX and
check its performance. The (spin-polarized) LDAX energy per
electron is

εLDA
X (n(x)) = −arctan β

π
+ ln(1 + β2)

2πβ
(11)

with β = 2πn(x)/α. In Table I we report exact total energies
and errors of several approximate calculations as a function of
the (double) occupation of orbitals. LDAX makes a substantial
error for N = 2, which grows with N , although EX itself grows,
so the fractional error vanishes [15] as N → ∞. A modern
generalized gradient approximation might reduce this error
by a factor of 2 or 3. In Table II, we list the total energy
and its various components for four particles in the well. For
each approximation, �EX ≈ �E, implying that their densities
(and hence their potentials) are highly accurate [24]. Small
differences in the different energy components almost cancel
by the variational principle.

A. Nonvariational, semiclassical exchange

First we find EX in a post-LDA calculation of the exchange
energy using the semiclassical approximation of Eq. (10)
evaluated on the self-consistent potential from LDAX, i.e.,
Esc

X [vLDAX
s ]. The error is plotted in Fig. 1 and tabulated in

Tables I and II, denoted scX*, where the asterisk denotes
nonvariational. Even for N = 2, the error is an order of
magnitude smaller than LDAX. As N grows, the error shrinks
very rapidly, even in absolute terms, because the semiclassical
corrections to LDAX capture the leading corrections in powers

TABLE II. Energy components of self-consistent calculations
within LDAX, semiclassical exchange (scX), and a semiclassical
approximation of all energy components (scKX) for four “electrons”
in the same problem as in Table I.

error × 103

EXX LDAX scX scKX

E 39.04 58.41 −3.86 −1.14
Ts 49.44 1.22 0.34 1.22
Vext −12.72 −1.38 0.07 4.56
U 3.58 0.003 0.02 −5.90
EX −1.26 58.56 −4.29 −1.02

of 1/N [18,19]. We even use the semiclassical kinetic energy
(scKX) on the LDAX KS potential, and we see that, although
the errors can be much larger, they are still far below those of
LDAX. These results show that the semiclassical exchange
and even kinetic energy can be extracted from a simple
LDAX self-consistent calculation, yielding much smaller
errors than LDAX. But such a recipe can be criticized for
not being variational, i.e., not the result of any self-consistent
minimization.

B. Variational, semiclassical exchange

Our second calculation uses the semiclassical PFT ex-
change within a regular KS-DFT calculation. We expand
the KS potential in Chebyshev polynomials and use the
Nelder-Mead method [25,26] to minimize the energy. A
similar technique has been used for EXX [27,28]. Because
the semiclassical approximation is not designed for variational
minimization, this method can find very unphysical minima,
but these are always accompanied by large errors in density
normalization. If normalization deviates by 1% or more from
N , we add a large penalty to the total energy, excluding such
solutions, leading to the good results of Table I.

In Tables I and II, we list the scX results of this procedure.
The error remains much smaller than that of LDAX, and
rapidly reduces with increasing N , just as our previous
semiclassical approximations for the density and kinetic
energy [15,17–19]. However, errors are also typically much
larger than those of the non-self-consistent calculation (scX*),
showing that the variational properties are less robust than
in LDAX. This is unsurprising, given that LDAX satisfies
a crucial symmetry condition that scX does not [17,19].
To illustrate better the improvement in going from LDAX
to scX, we plot the exchange energy densities in Fig. 2,
and their errors. The scX density greatly improves over the
LDAX density everywhere in space (except where LDAX
accidentally matches the exact value). This is in stark contrast
to the well-known difficulty of defining and comparing energy
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FIG. 2. (Color online) Exchange energy density of four spin-
unpolarized fermions for the same problem as in Table I. The upper
plot shows the EXX energy as well as the result from a self-consistent
calculation via LDAX, scX, and scKX. The respective errors are
plotted in the lower panel.
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densities in generalized gradient approximations and other
DFT approximations [29].

C. Variational, semiclassical total energy

Having saved the best for last, we finally run a pure PFT
calculation, using semiclassical expressions for all energy
components, not just the exchange energy, by directly min-
imizing Eq. (5). This scKX is a true orbital-free calculation,
the PFT analog of orbital-free DFT, with results shown in
Tables I and II.

First, note that because we have now approximated the
kinetic energy, we would be doing extremely well to even
match an LDAX calculation. However, in every case, the
errors are smaller than LDAX. This is the basic criterion for
a successful orbital-free functional: its errors are smaller than
typical errors in XC approximations. However, we also note
that for any N > 2, its errors are so small (below 2 mH)
that they match those of exact exchange for most practical
purposes. Of course, for N = 1 or 2, we can always use the
exact result, since EX = −U/N is known and easy to evaluate.

Looking more closely at Table I, it is remarkable that scKX
is more accurate than scX for N = 4 and 6. If we look at the
individual energy components in Table II, we see that, e.g.,
the Hartree energy is far more accurate in scX than scKX,
while the reverse is true for EX. This implies that the density
is quite inaccurate in scKX, but substantial cancellation of
errors occurs. In Fig. 3 we plot both the KS potentials and
density errors for the different calculations, showing the much
greater errors in scKX. The cancellation of errors might be
due to the balanced nature of the calculation, since all energy
components have been derived from a single approximation for
the density matrix [16,17]. Only extensive testing for many
different circumstances can determine if this is a general
phenomenon, and if so, where it fails. Thus minimizing
our PFA reproduces the result of a self-consistent EXX KS
calculation. As the number of electrons increases, not only
does the PFA computational effort not increase significantly,
but the accuracy also increases. The Fock integral required in
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FIG. 3. (Color online) Upper plot: Converged KS potentials of
EXX, LDAX, scX, and scKX runs for the same problem as in
Table I with four spin-unpolarized fermions. Lower plot: Error in
the respective, converged densities with respect to EXX.

EXX or hybrid calculations scales formally as �2N2, where
� is the number of real-space grid points used in our 1D
box. Our semiclassical expression simply scales as �2. As N

increases, � should scale linearly in order to preserve the ratio
of grid points to orbital nodes. Thus the Fock integral scales
as N4 while our approximation scales much more favorably
as N2. In quantum chemistry, evaluation of the Fock energy
has been the focus of much effort to improve the scaling, but
at best the scaling can be reduced to roughly N3 (e.g., when
localized basis sets and various optimization techniques are
used). The scKX calculation is completely orbital-free, and
thus it is not necessary to solve the KS equation. Either due
to direct diagonalization or the orthogonalization of orbitals
depending on the method used, the KS scheme scales as N3,
while scKX scales as N2 due to exchange (the other energy
components scale as N ). Thus PFT can reproduce the result
of an EXX KS calculation while requiring a fraction of the
computational cost. Substituting EXX with our semiclassical
exchange may also be done for a hybrid functional (although
treated within the OEP framework), where the fraction of EXX
mixed in with a standard DFT functional may be replaced.
Calculating this EXX energy is often the costliest part for
hybrid calculations.

IV. CONCLUSION

In conclusion, we have derived the equations for inter-
acting PFT and solved them for a model problem. A PFT
approximation to EX in one dimension is found to be almost
exact and does not require any orbital information. In both
accuracy and efficiency, the PFT approximation performs
better than standard DFT. Ongoing work to extend the
method to 3D systems could speed up electronic-structure
calculations by several orders of magnitude. Unfortunately, the
1D formulas tested here cannot be applied even to spherical
systems such as atoms, since they do not include turning
points or evanescent regions. While formulas as explicit as
Eq. (9) seem unlikely in three dimensions [30], approximations
starting from Eq. (9) might be devised; alternatively, numerical
methods that calculate the leading quantum corrections in three
dimensions might be devised.

In fact, an approximation that could be applied to atoms is
given for the density and kinetic energy density in Ref. [31],
which is the generalization of the density approximation used
here [15]. If that method can be generalized to yield a density
matrix, it could be applied to spherical situations, such as
atoms, but not molecules or solids. Our work here shows the
promise of exchange-based PFT: The leading semiclassical
corrections to the local approximation, as a functional of the
potential, yield absurdly accurate results. While the ability to
extract a simple analytic form is clearly an artifact of one
dimension, the accuracy of these calculations is not (very
likely). If analogous functionals for general 3D problems
could be found, they would likely be as accurate and remove
all practical barriers to using exact exchange in electronic-
structure calculations, especially in solids. We are currently
pursuing several paths toward finding them, either numerically
or with cruder approximations. The present work shows that
such research is well worth pursuing.
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