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QED derivation of the Stark shift and line broadening induced by blackbody radiation
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The rigorous quantum electrodynamic approach is applied for the derivation of the Stark shift of the
atomic energy levels induced by blackbody radiation (BBR) within the framework of perturbation theory.
The temperature-dependent one-loop self-energy (SE) correction of bound atomic electron states accounting
for the number of photons represented by the Planckian frequency-distribution function is examined. According
to this approach, the energy shift arises as the real part of self-energy correction while the imaginary part describes
the BBR-induced depopulation rate for a given atomic state. Moreover, regularization of the divergent energy
denominators arising in the SE correction leads to an additional correction to the level width that has not been
considered before and can be explained by the mixing effect of atomic levels in the presence of the BBR-induced
mean electric field.
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I. INTRODUCTION

The influence of blackbody radiation (BBR) on the atom
is the one of the important topics in the modern atomic
physics. Particular interests to such kind of investigations
arise in view of the essential progress in the theoretical and
experimental research of atomic clocks and determination
of frequency standards. For the comprehensive theoretical
description of the frequency standard, the analysis of the
BBR influence on an atom is required [1,2]. In [1,2] it was
demonstrated that the interaction with the BBR produces
the efficient redistribution of population among closely lying
levels. Moreover, the blackbody radiation at room temperature
generates the so-called alternative current (ac) Stark shifts of
atomic levels. The calculations of the dynamic Stark shifts
and depopulation rates of Rydberg energy levels induced by
blackbody radiation were widely discussed in literature [3–11].

According to [2], BBR efficiently redistributes population
among Rydberg states, shortens the atomic lifetimes, and
causes line broadening. The effective decay rate is given by

�eff = �nt + �BBR, (1)

where �nt represents the natural width of level and �BBR is the
BBR-induced width. There are two ways for the evaluation
of �nt: (a) calculation of the sum of all the probabilities
for transitions to lower-lying states and (b) evaluation of the
imaginary part of the one-loop self-energy (SE) corrections.
The first approach can be pursued within both quantum
mechanics (QM) and relativistic quantum electrodynamics
(QED). However, the rigorous evaluation of the imaginary part
of SE [case b)] can be performed within the frameworks of the
QED only. The derivation of the BBR-induced width �BB for
Rydberg levels on the base of QM approach was presented in
[2] and final result (dipole approximation) can be given in SI
units in the form

�BBR
a =

∑
b

�BBR
a→b = 4e2

3�c3

∑
i, b

|〈a|ri |b〉|2 ω3
ab

e
�ωab
kB T − 1

, (2)
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where e is the electron charge, � is the reduced Planck’s
constant, and c is the speed of light. Boltzman’s constant is
denoted by kB , T represents the temperature of the blackbody
radiation, ri is the component of the spatial position vector
of an atomic electron, and a, b correspond to all the quantum
numbers of atomic levels a and b, respectively. The last factor
in Eq. (2) can be attributed to the temperature-dependent
statistical average 〈E2(ω)〉β ∼ ω3〈n̂(ω)〉β = ω3nβ(ω) with
β = 1/KBT associated with the fluctuation of electric field
mode E(ω) with frequency ω contributing to the mean energy
of the radiation field; it may also be viewed as temporal average

〈E2(ω)〉t = 8α3

π

ω3

e
ω

kB T − 1
= 8α3

π
ω3 nβ(ω) , (3)

where α is the fine-structure constant and angular brackets
with the index t 〈· · · 〉t correspond to the averaging over time
[7]. nβ(ω) denotes the mean occupation number of the field
mode. Here, atomic units (� = me = c = 1) are used (me is
the mass of the electron).

According to [1] these fields induce temperature-dependent
shifts of transition frequencies in atoms and molecules through
the alternative current (ac) Stark effect which can be estimated
via the mean-squared field

〈E2〉t = 1

2

∫ ∞

0
〈E2(ω)〉t dω = 4π3

15
α3(kBT )4

= (8.319 V/cm)2[T(K)/300]4. (4)

In this paper, we will provide explicit derivations of the
finite-temperature effects connected with the BBR influence
on atomic levels on the basis of the rigorous bound-state QED
approach. For this purpose we apply the finite-temperature
QED describtion involving free electrons and photons de-
veloped earlier by Donoghue and Holstein [12] to atoms
interacting with a photon heat bath. Consequently, we recover
the known expressions for the BBR-induced ac Stark shift
and for the level broadening connected with the atomic level
depopulation. Moreover, we find another BBR contribution
to the level broadening, namely, the broadening caused by
the opposite parity level mixing in the mean BBR electric
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field. This contribution appears to be as important as the
depopulation broadening. This effect can be traced also
phenomenologically within the framework of QM, however,
only the QED derivation clarifies the difference between
depopulation and mixing broadening effects.

Although major phenomenological interest in the BBR
investigation in laboratory studies is governed by atomic
clocks studies on heavy neutral atoms and ions, our numerical
results reported in this paper will focus exclusively on the
hydrogen atom. The hydrogen atom was chosen for two
reasons: First, this atom is the most simple and suitable
object for QED studies; the extension of the calculations to
many-electron atoms seems to be straightforward. Second,
our results demonstrate the importance of the Stark-mixing
contribution to the level broadening at temperatures of about
3000 K corresponding to the cosmological recombination
epoch of the universe. So, this effect should be taken into
account also in astrophysics.

Our paper is organized as follows. In Sec. II, we remind the
standard QED expression for one-loop electron self-energy
at zero temperature in the form suitable, which also allows
for generalization to finite-temperature QED including further
application to BBR. In Sec. III, the QED description of atomic
system interacting with a heat bath is introduced mainly on
the basis of the photon propagator at finite temperature. In
Sec. IV, we evaluate the BBR-induced shift and broadening
of atomic levels via the QED approach. Section V contains
the derivation of the level broadening via Stark level mixing,
Sec. VI contains the numerical results, and Sec. VII is devoted
to the conclusions.

II. ONE-LOOP ELECTRON SELF-ENERGY CORRECTION
AT ZERO TEMPERATURE

Within the framework of bound-state QED at zero tem-
perature, the one-loop electron self-energy correction for an
atomic electron corresponds to the Feynman graph Fig. 1,
where the atomic electron interacts with the photon vacuum
(virtual photons only). A generic nondiagonal second-order
S-matrix element in the Furry picture for a bound atomic
electron looks like

〈a′|Ŝ(2)|a〉 = e2
∫

d4x1d
4x2ψ̄a′ (x1)γ μ1S(x1,x2)

× γ μ2ψa(x2)Dμ1μ2 (x2,x1), (5)

where integration is performed over spacetime variables x1,
x2 which denote abbreviatively the spatial position vector �r
and the time variable t . Here, we employ relativistic units
� = c = 1. The Dirac matrices are denoted as γμi

, where
μi takes the values μi = (1,2,3,4), ψa(x) = ψa(�r)e−iEat

is the one-electron Dirac wave function, ψ̄a is the Dirac
conjugated wave function. The standard (zero-temperature)
electron propagator defined as vacuum-expectation value of
the time-ordered product can be represented in terms of
an eigenmode decomposition with respect to one-electron
eigenstates:

S(x1,x2) = −i〈0|T [ψ(x1)ψ̄(x2)]|0〉

FIG. 1. The thermal one-loop self-energy correction for the
energy of an atomic electron in a level a. The double solid line denotes
the electron states and electron propagator in the external potential of
the nucleus (Furry picture). The internal wavy line denotes the virtual
photon (ordinary photon propagator), while the photon line together
with the index γT implies the inclusion of BBR photons distributed
with the function nβ (ω) (thermal photon propagator).

= i

2π

∫ ∞

−∞
dω e−iω(t1−t2)

∑
n

ψn( �r1)ψ̄n( �r2)

ω − En(1 − i0)
, (6)

where summation runs over the entire Dirac spectrum.
Finally, the standard (zero-temperature) photon propagator
D0

μ1μ2
(x2,x1) in Feynman gauge reads as

D0
μ1μ2

(x2,x1) = −i〈0|T [
Aμ1 (x1)Aμ2 (x2)

]|0〉

= i

2π

∫ ∞

−∞
d	 Iμ1μ2 (|	|,r12)e−i	(t2−t1) (7)

together with the notation

Iμ1μ2 (	,r12) = gμ1μ2

r12
ei	r12 , (8)

where r12 = | �r1 − �r2| and gμ1μ2 is the metric tensor (we employ
the pseudo-Euclidean metric). The energy correction 
Ea for
“irreducible” Feynman graph can be obtained via the relation
[13,14]

〈a′|Ŝ(2)|a〉 = −2πi〈a′|U |a〉δ(Ea′ − Ea), (9)


Ea = 〈a|U |a〉. (10)

Performing the integration over time and ω variables leads
to


Ea = e2

2πi

∑
n

[
1 − �α1 �α2

r12
Ina(r12)

]
anna

, (11)

where

Ina(r12) =
∫ ∞

−∞

ei|ω|r12dω

En(1 − i0) − Ea + ω
, (12)

�α is the Dirac matrix, and

[Â(12)]abcd ≡ 〈a(1)b(2)|Â|c(1)d(2)〉. (13)

Correction 
Ea can be presented in a standard form


Ea = L(SE)
a − i

2
�a. (14)

Here, L(SE)
a denotes the lowest-order electron self-energy

contribution to the Lamb shift and �a denotes the lowest-order
radiative width. The other lowest-order radiative correction
giving rise to the energy shift is the vacuum polarization
correction which does not contribute however to �a . The
description of renormalization of the divergent real part of

Ea within QED theory lies beyond of our interests in
this paper.
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Consideration of the lowest-order radiative corrections
(real and imaginary parts) allows for the development of the
line profile approach (LPA) [14]. Within this approach, the
regularization of the singularities in the amplitude of photon
scattering process on atomic electron naturally arises. In the
case of resonant photon scattering process the account for the
sequence of SE (one loop, two loop, etc.) corrections leads
to geometric progression and the corresponding regularization
of the divergent energy denominators. The detailed analysis of
the imaginary part of the higher-order SE corrections can be
found in [15].

III. PHOTON PROPAGATOR AT FINITE TEMPERATURE

Up to now, we have considered only the radiative cor-
rections within standard (zero-temperature) QED theory, i.e.,
with one virtual photon [see Eq. (7)]. Under more realistic
conditions, however, the photon field is not in its vacuum
state. Instead, the electrons bound in an atom (system) interact
with thermal photons considered as heat bath (environment).
Such a scenario is well suited for the application of thermal-
equilibrium quantum field theory. Accordingly, when aiming
at a proper description of QED corrections, the usual (T = 0)
photon propagator D0

μ1μ2
should be replaced by the ensemble-

averaged time-ordered product

iDμ1μ2 (x1,x2|β) = 〈
T
[
Aμ1 (x1)Aμ2 (x2)

]〉
β

= Tr
(
ρ
{
T
[
Aμ1 (x1)Aμ2 (x2)

]})
= iD0

μ1μ2
(x1,x2) + iDβ

μ1μ2
(x1,x2) , (15)

where ρ denotes (in zeroth approximation) the statistical oper-
ator for noninteracting photons, electrons, and positrons. The
trace Tr runs over all (multiparticle) Fock states. This ansatz is
legitimate if no free electrons or positrons are present as well as
for temperatures kBT 
 mec

2. According to Wick’s theorem,
the time-ordered product of the photon-field operators can
be decomposed as sum of a contraction (vacuum-expectation
value of the T product) plus normal-ordered (: · · · :) product

〈
T
[
Aμ1 (x1)Aμ2 (x2)

]〉
β

= 〈0|T[
Aμ1 (x1)Aμ2 (x2)

]|0〉
+ 〈

:Aμ1 (x1)Aμ2 (x2):
〉
β
. (16)

Thus, the finite-temperature photon propagator (15) appears
as sum of the zero-temperature part D0

μ1μ2
plus the thermal

part Dβ
μ1μ2

involving Planck’s frequency distribution for the
photons of the heat bath. In this section, we will account for
this and, in particular, we are interested in the influence of
blackbody radiation on the atomic characteristics. Then, the
thermal averaged number of photons nβ(ω) in the frequency
mode ω as given by Planck’s distribution function should be
employed:

nβ(ω) = 1

e
ω

kB T − 1
, ω > 0

(17)
nβ(ω) = 0, ω < 0

where β = (kBT )−1 and T is the temperature in Kelvin.
To reveal the effects arising via the inclusion of distribution

function (17), we refer to the finite-temperatures QED ap-
proach developed by Donoghue and Holstein [12]. Within the
approach of Donoghue and Holstein (DH), a free-electron gas
(no external field) interacts with a photon gas is considered
as being in thermal equilibrium and described by a grand
canonical statistical operator, which modifies both the electron
and the photon propagator. Since our task is to consider the
influence of the BBR on atomic levels, we retain the electron
propagator in the form (6) and will treat the influence of the
BBR within QED perturbation theory involving the the thermal
photon propagator.

According to [12], the thermal photon propagator in the
momentum space reads as

DDH
μ ν (k) = −gμν

[
i

k2 + iε
+ 2πδ(k2)nβ(ω)

]
, (18)

where k is the four-dimensional momentum, k2 = �k2 − ω2,
and nβ(ωk) is defined by Eq. (17). In the coordinate space we
obtain

DDH
μ ν (x1, x2) = −4πigμ ν

∫
d4k

(2π )4
eik(x1−x2)

×
[

1

k2 + iε
− 2πiδ(k2)nβ(ω)

]
. (19)

The expression in Eq. (19) can be evaluated in the standard
way, i.e., the z axis in �k space can be chosen along the direction
of vector �r . After the integration over angles we find (denoting
|�k| ≡ κ)

DDH
μ ν (x1, x2) = −4πigμ ν

(2π )4

∫
d�k dω

[
ei�k(�r1−�r2)−iω(t1−t2)

k2 + iε
− 2πiei�k(�r1−�r2)−iω(t1−t2)δ(k2)nβ(ω)

]
(20)

= − (4π )2igμ ν

(2π )4

∫ +∞

−∞
dω

∫ +∞

0
dκ

κ

r12
sin κr12e

−iω(t1−t2)

[
1

κ2 − ω2 + iε
− 2πiδ(κ2 − ω2)nβ(ω)

]
= D0

μν(x1, x2) + Dβ
μν(x1, x2).

Then, integration in complex plane κ with account for poles κ1, 2 = ±√
ω2 + iε ≈ ±ω ± iε for the first term in Eq. (20) leads

to the standard expression

D0
μν(x1, x2) = gμ ν

2πir12

∫ +∞

−∞
dω ei|ω|r12−iω(t1−t2). (21)
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The second term in Eq. (20) can be evaluated with the relation

δ(x2 − a2) = 1

2a
[δ(x − a) + δ(x + a)]. (22)

This yields

Dβ
μν(x1, x2) = − gμν

πr12

∫ +∞

−∞
dω nβ(|ω|) sin |ω|r12e

−iω(t1−t2).

(23)

Finally,

DDH
μν (x1, x2) = gμν

2πir12

∫ +∞

−∞
dω ei|ω|r12−iω(t1−t2)

− gμ ν

πr12

∫ +∞

−∞
dω nβ(|ω|) sin |ω|r12e

−iω(t1−t2).

(24)

We should note that in the calculations of the energy correction

Ea with Dβ

μν to first order in α, no ultraviolet divergence
arises because the function nβ(ω) provides a natural cutoff for
the ultraviolet divergence [12] (see also [16] and references
therein).

IV. EVALUATION OF ONE-LOOP ELECTRON
SELF-ENERGY CORRECTION IN PRESENCE OF BBR

A. Real part of the one-loop self-energy correction

We consider now the real part of the one-loop electron
self-energy correction with the inclusion of the photon number
nβ(ω). For this purpose, we replace the photon propagator D0

μν

in Eq. (5) by DDH
μν . Then, the energy shift is


Eβ
a = e2

π

∑
n

[
1 − �α1 �α2

r12
Iβ
na(r12)

]
anna

, (25)

where

Iβ
na(r12) =

∫ +∞

−∞
dω nβ(|ω|) sin |ω|r12

En(1 − i0) − Ea + ω
. (26)

Explicit insertion of the sign of modulus in Eq. (26) yields

Iβ
na(r12) =

∫ +∞

0
dω nβ(ω)

sin ωr12

En(1 − i0) − Ea + ω

+
∫ 0

−∞
dω nβ(−ω)

− sin ωr12

En(1 − i0) − Ea + ω
. (27)

Change of the variable ω → −ω in the second term in Eq. (27)
gives

Iβ
na(r12) =

∫ +∞

0
dω nβ(ω) sin ωr12

[
1

En(1 − i0) − Ea + ω
+ 1

En(1 − i0) − Ea − ω

]
. (28)

Further, we can use the relation

lim
ε→0

1

x ± iε
= P. V.

(
1

x

)
∓ iπδ(x), (29)

where P. V. means the principal value. Then, expression (28) can be transformed to

Iβ
na(r12) = P. V.

∫ +∞

0
dω nβ(ω) sin ωr12

2ωna

ω2
na − ω2

+ iπ

∫ +∞

0
dω nβ(ω) sin ωr12[δ(ωna − ω) + δ(ωna + ω)], (30)

where the notation ωna = En − Ea was introduced.
Insertion of Eq. (30) into Eq. (25) leads to an expression which consists of the real part [first term in Eq. (30)] and the imaginary

part arising via the second term in Eq. (30). The expression for the real part of the energy shift simplifies significantly in the
nonrelativistic limit. The function nβ(ω) is localized between zero and ionization potential I at any reasonable temperatures (up
to ≈10 000 K) for the neutral hydrogen atom and low-Z hydrogenlike ions. The value of I equals to 1

2me(αZ)2 r.u. where Z is
the charge of the nucleus in the units of e. In the nonrelativistic limit we can use the dipole approximation, when ω ∼ me(αZ)2

r.u., r12 ∼ 1/(meαZ) r.u., and ωr ∼ (αZ) 
 1. Expanding the sin ωr12 into the Taylor series we need to keep the two leading
terms. Then, the real part of Eq. (25) can be written as

Re
Eβ
a = e2

π

∑
n

{
P. V.

∫ +∞

0
dω nβ(ω)

1 − �α1 �α2

r12

[
ωr12 − 1

6
(ωr12)3

]
2ωna

ω2
na − ω2

}
anna

= e2

π

∑
n

[
P. V.

∫ +∞

0
dω nβ(ω)

(
−ω �α1 �α2 − 1

6
ω3r2

12

)
2ωna

ω2
na − ω2

]
anna

. (31)

The term containing ωr12 in Eq. (31) gives the zero due
to the orthogonality of the wave functions. To complete
the evaluation of Eq. (31) in the nonrelativistic limit,
we suggest that the main contribution to the integral in
Eq. (31) comes from the region ω ≈ ωna . Then, using rela-
tions (�α)a b � ( �p)a b = iωa b(�r)a b, r2

12 = r2
1 + r2

2 − 2( �r1 �r2), we

find

Re
Eβ
a =4e2

3π

∑
n

∫ ∞

0
nβ(ω)ω3|〈a|�r|n〉|2 ωan

ω2
na−ω2

dω. (32)

The integral over ω in Eq. (32) should be understood if
necessary in a sense of principal value.
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Note that Eq. (31) contains the sum over intermediate
states from the negative spectrum. The contribution of negative
energy part of spectrum can be evaluated in the nonrelativistic
limit as well. For the two-photon transition probabilities, it was
done in [17]. However, the contribution of the negative energy
part represents a small correction to Eq. (32). Thus, the sum in
Eq. (32) runs over positive energies (discrete and continuum)
only. Inserting Eq. (17) in Eq. (32), we find that the result for
the real part of the energy shift Re
E

β
a coincides precisely

with the definition of ac Stark shift given in [2].

B. Imaginary part of one-loop electron self-energy correction

Let us now turn to the imaginary part of one-loop self-
energy correction (25) with account for the photon distri-
bution nβ(ω). As before, we use the expression (30) for
I

β
na(r12). Then, the imaginary part of energy shift (25) looks

like

Im
Eβ
a = e2

∑
n

{
1 − �α1 �α2

r12

∫ +∞

0
dω nβ(ω) sin ωr12

× [δ(ωna − ω) + δ(ωna + ω)]

}
anna

. (33)

Integration over ω leads to

Im
Eβ
a = e2

∑
n

[
1 − �α1 �α2

r12
nβ(ωna) sin ωnar12

]
anna

− e2
∑

n

[
1 − �α1 �α2

r12
nβ(−ωna) sin ωnar12

]
anna

.

(34)

Using the properties of the function nβ(ω), we can conclude
that the first term in Eq. (34) is nonzero for En > Ea and, in
contrast, the second term is nonzero for En < Ea . Therefore,

we can further write

Im
Eβ
a = e2

∑
En>Ea

[
1 − �α1 �α2

r12
nβ(ωna) sin ωnar12

]
anna

+ e2
∑

En<Ea

[
1− �α1 �α2

r12
nβ(ωan) sin ωanr12

]
anna

. (35)

Employing again the approximations made in the previous
section, we obtain in the nonrelativistic limit

Im
Eβ
a = −2

3
e2

∑
n

|〈a|�r|n〉|2nβ(|ωan|)ω3
an. (36)

In Eq. (36), the sign of terms in Eq. (34) is taken into account
automatically with the modulus notation. Using the definition
of �a in Eq. (14) we arrive at

�β
a = 4

3
e2

∑
n

|〈a|�r|n〉|2nβ(|ωan|)ω3
an. (37)

Thus, substitution of Eq. (17) into the expression (37) results
in the BBR-induced level width as defined in [2].

V. QED REGULARIZATION AND STARK-MIXING
BROADENING

In the previous section we have considered the one-loop
thermal electron self-energy correction with account for the
distribution function over the photons nβ(ω) (see Fig. 1).
The QED evaluation confirms the known results, i.e., the
real part of the correction (25) gives the ac Stark shift
and the imaginary part corresponds to the BBR-induced
level width. However, these results were obtained without
the account for the ordinary Lamb shift for atomic states.
In this section, we consider especially the case when the
energy denominator in Eq. (28) becomes singular, i.e., when
ω = En − Ea . The QED regularization procedure consists in
an inclusion of the ordinary one-loop self-energy corrections
into the corresponding S-matrix element, thermal loop (25) in
our case. In this case, the Feynman diagrams depicted in Fig. 2
should be evaluated [14].

The energy shift corresponding to the Feynman graph
Fig. 2(b) is defined by


Eβ
a = e4

2π2i

∑
n m k

∫ +∞

−∞
dω1

∫ ∞

−∞
dω2

〈ψa(�r1)ψm(�r4)| 1−�α1 �α4
r14

nβ(|ω1|) sin (|ω1|r14)|ψn(�r1)ψa(�r4)〉
[En(1 − i0) − Ea + ω1][Em(1 − i0) − Ea + ω1]

×
〈ψn(�r2)ψk(�r3)| 1−�α2 �α3

r23
ei|ω2|r23 |ψk(�r2)ψm(�r3)〉

Ek(1 − i0) − Ea + ω1 + ω2
, (38)

where the first factor under the integral represents the thermal one-loop self-energy (SE) correction and the last factor is the
ordinary (T = 0) one-loop QED self-energy correction.

Introducing the notation for the matrix element of the ordinary self-energy operator [14] and for the matrix element which
enters the expression for the thermal SE

[�̂(ξ )]u d = − e2

2πi

∑
k

∫ ∞

−∞
dω2

〈ψu(�r2)ψk(�r3)| 1−�α2 �α3
r23

ei|ω2|r23 |ψk(�r2)ψd (�r3)〉
Ek(1 − i0) + ω2 − ξ

,

(39)

[�̂β(ξ )]a b c d = 〈ψa(�r1)ψb(�r4)|1 − �α1 �α4

r14
nβ(|ω1|) sin (|ξ |r14)|ψc(�r1)ψd (�r4)〉,
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FIG. 2. Insertions of “ordinary” one-loop self-energy correction into the thermal one-loop self-energy correction leading to a “dressed”
electron propagator [see graphs (a), (b), (c)]. The internal wavy line denotes the virtual photon (ordinary photon propagator), while the photon
line together with the index γT corresponds to the thermal photon loop (including the BBR photons).

the energy shift corresponding to the Feynman graph Fig. 2(b) can be written in the form


(1)Eβ
a = e2

π

∑
nm

∫ +∞

−∞
dω1

〈ψa(�r1)ψm(�r4)| 1−�α1 �α4
r14

nβ(|ω1|) sin (|ω1|r14)|ψn(�r1)ψa(�r4)〉[�̂(Ea − ω1)]nm

[En(1 − i0) − Ea + ω1][Em(1 − i0) − Ea + ω1]

= e2

π

∑
nm

∫ +∞

−∞
dω1

[�̂β(ω1)]a mn a

En(1 − i0) − Ea + ω1

[�̂(Ea − ω1)]nm

Em(1 − i0) − Ea + ω1
. (40)

The sum of the self-energy corrections Figs. 2(a) and 2(b) is given by


Eβ
a + 
(1)Eβ

a = e2

π

∑
n

∫ +∞

−∞
dω1

[�̂β(ω1)]a n n a

En(1 − i0) − Ea + ω1
+ e2

π

∑
n m

∫ +∞

−∞
dω1

[�̂β(ω1)]a mn a

En(1 − i0) − Ea + ω1

[�̂(Ea − ω1)]nm

Em(1 − i0) − Ea + ω1
.

(41)

Within the resonance approximation [14] we restrict ourselves with one term m = n only and thus write


Eβ
a + 
(1)Eβ

a = e2

π

∑
n

∫ +∞

−∞
dω1

[�̂β(ω1)]a n n a

En(1 − i0) − Ea + ω1

{
1 + [�̂(Ea − ω1)]n n

En(1 − i0) − Ea + ω1

}
. (42)

Repeating such insertions within the resonance approximation [the next term of this series is depicted in Fig. 2(c)], we arrive
at the geometric progression that gives


̃E
β

a = e2

π

∑
n

∫ +∞

−∞
dω1

[�̂β(ω1)]a n n a

[En(1 − i0) − Ea + ω1]
{
1 − [�̂(Ea−ω1)]n n

En(1−i0)−Ea+ω1

} . (43)

Within the resonance approximation operator �̂(Ea − ω1) can be expanded in a Taylor series around the value Ea − ω1 = En.
Employing the definition [�̂(En)]n n = LSE

n − i
2�n, the final expression is


̃E
β

a = e2

π

∑
n

∫ +∞

−∞
dω nβ(|ω|) 〈a n| 1−�α1 �α2

r12
sin (|ω|r12)|n a〉

En + ω − Ea + LSE
n − i

2�n

, (44)

where LSE
n is the Lamb shift and �n is the natural level width of the nth level.

Apart from the self-energy correction, the vacuum-polarization insertions in the electron propagator to all orders should be
also considered within the resonance approximation. Similarly, the resulting geometric progression of the vacuum-polarization
corrections contributes to the real part of energy shift only and, thus, the total Lamb shift of nth state LSE

n + LVP
n does arrive.

With a somewhat more involved procedure, the self-energy and vacuum-polarization correction for the state a (wave-function
corrections) can be taken into account. Finally, the sum of widths and difference of Lamb shifts for the states n and a can be
inserted in the electron propagator [14].

Further evaluation of the expression (44) can be made as in the previous section. Accordingly, we arrive at the expression


̃E
β

a = e2

π

∑
n

∫ +∞

0
dω nβ(ω)〈a n|1 − �α1 �α2

r12
sin ωr12|n a〉

×
[

1

En − Ea + ω + LSE
n + LVP

n − i
2�n

+ 1

En − Ea − ω + LSE
n + LVP

n − i
2�n

]
. (45)

Equation (45) differs from Eq. (28) by presence of the Lamb shift LSE
n + LVP

n and the natural level width �n. In contrast to
evaluations made in the previous section, we do not need to use Eq. (29) anymore.
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In the nonrelativistic limit we have


̃E
β

a = −e2

π

∑
n

∫ +∞

0
dω nβ(ω)ω|〈a| �p|n〉|2

[
1

En − Ea + ω + 
EL
na − i

2�na

+ 1

En − Ea − ω + 
EL
na − i

2�na

]

+ e2

3π

∑
n

∫ +∞

0
dω nβ(ω)ω3|〈a|�r|n〉|2

[
1

En − Ea + ω + 
EL
na − i

2�na

+ 1

En − Ea − ω + 
EL
na − i

2�na

]
, (46)

where �p is the atomic electron momentum, 
EL
na = LSE

n + LVP
n − LSE

a − LVP
a , and �na represents the sum of level widths

�na = �n + �a .
As in the previous section, the total thermal shift consists of the real and imaginary parts. The real part represents again

the ac Stark shift with the Lamb shift of the atomic levels taken into account. This part does not differ in any serious way
from the results obtained earlier with the neglect of the Lamb shift. However, the imaginary part contains now two contributions.
The “old” contribution is responsible for the depopulation of atomic levels by the BBR and does not differ from the results
described in Sec. IV B. The “new” part describes a different physical effect: mixing of the atomic states by the mean electric field
induced by the BBR. This effect can be of course traced in the frames of QM approach (see following) but the QED treatment
makes it quite clear that the level mixing effect is different from the level depopulation effect. All these effects one-by-one will
be considered in this section.

A. Real part: ac Stark contribution

To evaluate the real and imaginary parts of Eq. (46) separately, we rewrite the energy shift 
̃E
β

a in the form


̃E
β

a = −e2

π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)

(
ωω̃2

an − 1

3
ω3

)[
ω̃na + ω + i

2�na

(ω̃na + ω)2 + 1
4�2

na

+ ω̃na − ω + i
2�na

(ω̃na − ω)2 + 1
4�2

na

]
, (47)

where we used the relation ( �p)a b = iωa b(�r)a b and the notation ω̃na = En − Ea + 
EL
na . Then, the real part is defined by

Re
̃E
β

a = −e2

π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)

(
ωω̃2

an − 1

3
ω3

)[
ω̃na + ω

(ω̃na + ω)2 + 1
4�2

na

+ ω̃na − ω

(ω̃na − ω)2 + 1
4�2

na

]
. (48)

The level width �na in energy denominators of Eq. (48) becomes important within the resonance only for the values ω = ω̃na < 0
or ω = ω̃na > 0. The ac Stark shift is considered usually in off-resonance case when the bulk of the BBR distribution lies far
from the atomic transitions. Then, the width �na in denominators of Eq. (48) can be omitted since �na 
 
EL

na . Thus, a similar
result of Eq. (32) again arises which only differs by the replacement ωan → ω̃an:

Re
̃E
β

a = −2e2

π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)

[
ωω̃2

an − 1

3
ω3

]
ω̃na

ω̃2
na − ω2

≈ −4e2

3π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)ω3 ω̃na

ω̃2
na − ω2

.

(49)

Substitution of the dimensionless variable x = βω yields

Re
̃E
β

a = − 4e2

3β2π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dx

x3

ex − 1

ω̃na

β2ω̃2
na − x2

. (50)

Formally, this expression coincides with Eq. (32) with the only difference that the ordinary Lamb shift is included explicitly in
ω̃na .

We should note that the complete BBR-induced energy shift ordinary is given by the real part of Eq. (45) where no
approximations were used. In the nonrelativistic limit, we obtain the result (50) which can be evaluated further for the limiting
cases of low or high temperatures (see Refs. [18–20] for details). In the low-temperature regime, the bulk of nβ(ω) lies in the
region where x 
 β ˜ωna (the off-resonance case) and, therefore, in Eq. (50) the leading term is

Re
̃E
β

a = − 4e2

3β4π

∑
n

|〈a|�r|n〉|2
ω̃na

∫ ∞

0
dx

x3

ex − 1
. (51)

Integration over x leads to

Re
̃E
β

a = −4e2π3

45β4

∑
n�=a

|〈a|�r|n〉|2
ω̃na

r.u. = −1

3
〈E2〉t

∑
n�=a

|〈a|�r|n〉|2
En − Ea

a.u., (52)

where we used definition (4).
Expression (52) represents the static Stark shift. The result (52) was obtained in the low-temperature regime and is proportional

to the fourth degree of temperature. In this case, the influence of the photon distribution can be considered as the external field
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with the electric field strength corresponding to rms value (4). In principle, the low-temperature regime (x 
 β ˜ωna) is applicable
for nondegenerated states only. In case of degenerated (Lamb shifted) states, the high-temperature regime should be employed. In
this case, the Stark shift is proportional to β2 [20] (see also [2]). For example, the presence of n = 2p state in the sum in Eq. (52)
for a = 2s makes the condition x 
 βω̃na much more restrictive since ω̃2p 2s is relatively small. Then, the low-temperature
regime for a = 2s, n = 2p term in hydrogen starts for much lower temperatures than for a = 2s, n �= 2p.

B. Mixing effect and BBR-Stark-induced level width

The results obtained in the previous subsection are in perfect agreement with [18–20]. Furthermore, the QED regularization
leads to the appearance of the imaginary part in energy denominators that is responsible for the additional effect of the BBR
mixing of states. It is well known that the external electric field leads to the Stark mixing of states. This effect is most pronounced
for close-lying states (2s1/2 and 2p1/2 states in hydrogen, for example). As it was shown in [21–24], the influence of an external
electric field on the 2s state in hydrogen atom can be described by the modified wave function∣∣2smjs

〉 = ∣∣2smjs

〉 + η
∑
mjp

〈
2pmjp

∣∣eDr
∣∣2smjs

〉∣∣2pmjp

〉
, η = 1


EL + i�2p/2
, (53)

where mjs(p) corresponds to the projection of the total angular momentum js(p) of the s(p) state on the field direction, 
EL is the
Lamb shift, �2p is the level width of the 2p state. The matrix element 〈2pmjp

|eDr|2smjs
〉 represents the dipole interaction of

the atomic electron with the external electric field D.
Then, the one-photon emission amplitude is

U2smjs , 1sm′
js

(k, e) = U2smjs , 1sm′
js

(k, e) + η
∑
mjp

〈
2s mjs

∣∣eDr
∣∣2p mjp

〉
U2pmjp , 1sm′

js
(k, e), (54)

where k is the photon wave vector and e is the photon polarization vector. Within a QM approach, the one-photon decay rate of
the mixed 2s state can be presented in the form [21–24] (in r.u.)

dW
(1γ )
2s, 1s

(nk) = dW
(1γ )
2s 1s(nk)

[
1 + ea0Dnk|η|2 �2p

w(1γ )
+ |η|2 e2a2

0D2

(w(1γ ))2

]
dnk. (55)

Here, nk is the unit vector of the photon emission direction, w(1γ ) =
√

W
(1γ )
2s, 1s/W

(1γ )
2p, 1s , and a0 is the Bohr radius. The one-photon

transition probabilities W
(1γ )
2s, 1s and W

(1γ )
2p, 1s correspond to the emission of the magnetic dipole and electric dipole photons,

respectively. Integration over photon emission direction leads to the expression

W
(1γ )
2s, 1s

= W
(1γ )
2s 1s + e2a2

0D
2


E2
L + 1

4�2
2p

W
(1γ )
2p, 1s . (56)

This expression shows that the additional one-photon electric dipole emission channel is allowed for the atom in metastable 2s

state in presence of an external electric field. Since the decay rate of E1 transition W
(1γ )
2p, 1s = 6.265 × 108 s−1 exceeds strongly

not only the one-photon magnetic decay rate W
(1γ )
2s, 1s = 2.495 76 × 10−6 s−1, but also the main decay channel of 2s state in the

absence of electric field W
(2γ )
2s, 1s = 8.229 s−1, the second term in Eq. (56) may become the dominant decay channel of 2s state for

moderate external electric fields. The complete mixing of the 2s and 2p states in hydrogen corresponds to the field 475 V/cm.
In that case, the decay of the 2s state occurs with the emission of the electric dipole photon and corresponding transition rate is
equal to the decay rate of the 2p state. Hence, the rms value (4) could lead to the effect of mixing in the blackbody radiation of
the order of 10−3–10−4 times less than the full mixing field 475 V/cm at the temperature 300 K.

The term linear in the field in Eq. (55) vanishes after the integration over photon emission directions or after the integration
over field directions. In contrast, the term quadratic in the field does not depend on the photon emission or field directions.
Therefore, it should be present in any isotropic external fields (blackbody radiation, for example). To describe the quadratic
mixing of states in presence of an isotropic field we consider Eq. (45), i.e., take into account the distribution function nβ(ω).
Then, the imaginary part of Eq. (47) in the nonrelativistic limit and in the resonance approximation is given by

Im
̃E
β ′
a = − e2

3π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)ω3

[
�na

(ω̃na + ω)2 + 1
4�2

na

+ �na

(ω̃na − ω)2 + 1
4�2

na

]
. (57)

The “prime” symbol in the left-hand side of Eq. (57) indicates that now we consider another imaginary contribution to 
̃E
β

a ,
different from the contribution (36). This imaginary contribution describes a different physical effect: Eq. (36) corresponds to
the level depopulation by the BBR while Eq. (57) describes the additional broadening due to the Stark level mixing.
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The leading term in low-temperature approximation [see Eqs. (51) and (52)] is

Im
̃E
β′
a ≈ −2e2

3π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)ω3 �na

ω̃2
na + 1

4�2
na

. (58)

Then, for the additional BBR width �mix
a induced by the mixing effect we obtain

�mix
a = 4e2

3π

∑
n

|〈a|�r|n〉|2
ω̃2

na + 1
4�2

na

�na

∫ ∞

0
dω nβ(ω)ω3 = 4e2π3

45
(kT )4

∑
n

|〈a|�r|n〉|2
ω̃2

na + 1
4�2

na

�na r.u. = 1

3
〈E2〉t

∑
n

|〈a|�r|n〉|2
ω̃2

na + 1
4�2

na

�na a.u.

(59)

In particular, for hydrogen atom for very low temperature the leading term in the sum in Eq. (59) will be given by mixing of 2s1/2

and 2p1/2 states.
In the high-temperature regime, we should use condition �na 
 ω̃na 
 ω. At any values of n we find

�mix
a = 4e2

3π

∑
n

|〈a|�r|n〉|2�na

∫ ∞

0
dω nβ(ω)ω = 2e2π

9
(kT )2

∑
n

|〈a|�r|n〉|2�na. (60)

The expressions (59) and (60) represent the rough estimates and it is more adequate to use

�mix
a = 2e2

3π

∑
n

|〈a|�r|n〉|2
∫ ∞

0
dω nβ(ω)ω3

[
�na

(ω̃na + ω)2 + 1
4�2

na

+ �na

(ω̃na − ω)2 + 1
4�2

na

]
. (61)

VI. NUMERICAL RESULTS, TECHNICAL DETAILS, AND
DISCUSSION

In this section, we present numerical results of our eval-
uation of the Stark shifts and widths for different states a in
the hydrogen atom. The Stark shift and BBR-induced width
we compare with the results of [2]. The new object of this
paper, the BBR-Stark-induced level width �mix

a , is evaluated
for different states in hydrogen atom and should be compared
with data on the spectroscopic measurements of hydrogen
atom.

In Table I, the results of numerical evaluation of ac Stark
shift [Eq. (32)] are shown. We recall that Eq. (32) coincides
exactly with the result of quantum mechanical derivation
in [1,2]. Thus, the deviation between our calculations and
numbers given in [2] should be attributed to the method of
numerical evaluation. The summation over discrete set of
intermediate states up to n = 10 gives a good agreement with
the results of Farley and Wing [2]. The following increasing
of the set of intermediate states up to n = 100 leads to a
correction of the order of 0.8% and increasing the set up to
n = 1000 to correction of the order 1% for the 1s and 2s states
in hydrogen atom. The inclusion of the continuous spectrum
gives rise to a contribution of about 19% of the total value
at high temperature, but it seems to be negligible for low
temperatures. Note also that we can reproduce the values of
ac Stark shift for the 1s and 2s states in hydrogen atom at
temperatures T = 300, 4, and 77 K reported in [25] with six
digits. The deviation from [2] remains the same (in a second
digit) for all ns (n = 1–5) states.

Inclusion of the ordinary Lamb shift becomes important
for the excited states beginning from the 2s level. For the 2s

state, the contribution that comes from n = 2p state is smaller
compared to the value of the total sum −0.989 702 (see Table I)
and gives 0.007 001 39 Hz at the temperature T = 300 K.
However, the n = 2p term produces the main contribution at
the low temperatures: 7.166 69 × 10−7 Hz at the temperature

T = 3 K and 2.383 56 × 10−6 at T = 5.5 K. The difference
between numerical evaluations by Eqs. (32) and (50) is
exhibited at low temperatures only when the contribution of
the Lamb shift is included. Thus, the regularization of the
divergent energy denominators in Eq. (25) does not lead to
essential changes of the BBR-induced Stark shift in laboratory
experiments at the room BBR temperature but may become
important for the lowest temperatures of the order of a few
Kelvin. The numerical evaluation was performed utilizing the
Mathematica code by the trapezoidal method with a working
precision of 50 digits.

In [2] it was noted that the ac Stark shift changes its sign
with increasing of n. From Table I it follows that BBR-induced
energy shift also changes its sign with increasing of the
temperature. For the 2s and 3s states, this temperature is about
25–30 K and 10–15 K, respectively.

For the 4s state in hydrogen atom the ac Stark shift turns
to zero at the two points: at low temperature: about 10 K
and at high temperatures about 4000–5000 K. The behavior
of the ac Stark shift for the 5s state repeats the case of 4s

state: at the low temperature about 5 K the energy shift is
equal to zero and at the high temperature 607 K it also turns
to zero. In principle, such behavior provides the method to
avoid the Stark shift induced by the blackbody radiation. The
ac Stark shift evaluated with Eq. (32) and depending on the
temperature is shown in Figs. 3 and 4. In Fig. 3, the behavior
of the ac Stark shift for the 5s state in hydrogen atom for
the temperature region [100, 650] K and in Fig. 4 the same
for temperature region [0, 3.5] K is depicted. In Fig. 3, the
contribution of the Lamb shift is multiplied by the factor 103

to make it visible. The total contribution of the discrete, Lamb
shifted, and continuum states to the energy shift of the state
5s in hydrogen atom is depicted in Fig. 5 for the temperature
region [200, 700] K.

In Table II, the results of numerical evaluation of Eq. (37)
are compiled, i.e., the BBR-induced level widths for the
different states a and different temperatures T . As before,
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TABLE I. The ac Stark shift induced by the blackbody radiation in Hz for the ns states in the hydrogen atom for different temperatures T .
The first column contains the considered n values. In the second column, the lower line for each n value presents the results of [2]. The asterisk
corresponds to the values evaluated without inclusion of continuous spectrum.

a T = 300 K T = 3 K ∗ T = 5.5 K ∗ T = 3000 K T = 4000 K T = 5000 K

1s − 0.038 7511 −3.1542 × 10−10 −3.563 32 × 10−9 −391.455 −1247.01 −3079.38
− 0.041 28

2s − 0.989 702 7.071 28 × 10−7 2.275 78 × 10−6 −22 348.9 −95 953.1 −2.525 46 × 105

− 1.077
3s − 8.939 74 1.280 21 × 10−6 3.643 41 × 10−6 −2.767 04 × 105 −5.729 30 × 105 −8.880 17 × 105

− 9.103
4s − 50.1879 1.338 48 × 10−6 1.150 04 × 10−6 −5.837 84 × 104 −5.794 27 × 104 8.4836 × 103

− 51.19
5s − 186.884 6.242 76 × 10−7 −9.941 88 × 10−6 1.931 86 × 105 3.800 32 × 105 6.196 69 × 105

− 209.5

the values of �
β
a should be compared with the results of [2]

at the temperature 300 K for the hydrogen atom. The level
widths �

β
a are important not only in laboratory experiments,

but in astrophysical investigations of the cosmic microwave
background (see [26] and references therein). For the further
analysis, we evaluate the widths �

β
a at high temperatures

which we associated with the temperatures of the universe
in the recombination epoch. Note that the value of �

β

2s at the
temperature 3000 K coincides with the value reported in [25]
but differs from [25] at the temperature 300 K though our
result coincides with the result of [2].

The numbers in Table II should be compared with the
natural level widths. The most precise value of the �2s was
obtained in [27]. The radiative correction of the leading order
in αZ expansion leads to the contribution −2.057 × 10−6 s−1

[27] which is even less than BBR-induced depopulation rate at
the temperature 300 K (see first column in Table II). Thus, we
can conclude that the influence of blackbody radiation is more
significant and screens the radiative corrections to the level
width in experiments. Moreover, the increasing of temperature
leads to more significant contribution of the BBR-induced
level width according to Eq. (37). At temperatures of a few

(a.u.)

T(K)T(K)

FIG. 3. The temperature dependence of the ac Stark shift for
the 5s state in hydrogen atom in the region [100, 650] K. On the
horizontal axis, the temperature in K and on the vertical axis the
ac Stark shift in atomic units divided by α3 are plotted. The solid
line corresponds to the summation over discrete spectrum, dashed
line denotes the contribution of the continuum. The Lamb shift
contribution is multiplied by the factor 103 and depicted by the dotted
line.

thousands Kelvin (ionization temperatures), the BBR-induced
depopulation rate can be comparable and can exceed the
natural linewidth. Similar to the case of Stark shift evaluation,
the dominant contribution at low temperatures arises due to
the Lamb shift between ns1/2 and np1/2 states. The Lamb shift
contribution decreases with the increase of the temperature
and becomes unimportant at temperatures T > 300 K. With
the growing of the principal quantum number of the state a,
such behavior is more pronounced.

In Table III, the results of numerical evaluation for �mix
a

according to Eq. (61) for the different states a and temperatures
T are presented. The widths �mix

a we associate with the effect
of mixing of atomic states in presence of an external field
[21–24]. The values of level widths are given in Hz. The result
for the 2s state at the temperature 300 K can be compared
with the data indicated for the laboratory experiments with
hydrogen atom [28,29] (see also [30]). The contributions of
�

β
a and �mix

a become larger than the natural level width at high
temperatures.

At low temperatures, the main contribution to the level
width �mix

a arises via the Lamb shifted (degenerated atomic
levels) states. This contribution grows quadratically with the
increasing temperature. Summation over other intermediate
states leads to the correction about four orders smaller. This is
true up to the temperature ∼1000 K when the opposite behavior

T

(a.u.)

T(K)

FIG. 4. The temperature dependence of the total contribution of
ac Stark shift for the 5s state in hydrogen atom in the region [0, 3.5] K.
On the horizontal axis, the temperature in K and on the vertical axis
the ac Stark shift in atomic units divided by α3 are plotted.
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T

a.u.(a.u.)

T(K)

FIG. 5. The temperature dependence of the ac Stark shift for the
5s state in hydrogen atom in the region [200, 700] K. Notations are
the same as in Figs. 3 and 4.

can be noted. At high temperatures, the main contribution
arises from the summation over the full set of intermediate
states which leads to the growth of the width proportional
to the (kT )4. The contribution of the continuum spectrum
is negligible at low temperatures and becomes important for
higher-lying states and higher temperatures. To evaluate the
values listed in Table III, we performed the summation over
intermediate states up to n = 10 for the 2s state. The additional
summation over n leads to the correction five orders smaller
than the main contribution.

The quadratic level mixing effect can be important also in
astrophysics, for description of the radiation escape from the
matter in the early universe in cosmological recombination
epoch. The modern theory of the cosmological recombination
starts with works by Zel’dovich, Kurt, and Sunyaev [31]
and Peebles [32] where it was found that the two-photon
2s → 1s + 2γ (E1) transition is one of the main channels
for the radiation escape and formation of the cosmic mi-
crowave background (CMB). This conclusion is based on the
smallness of the one-photon transition 2s → 1s + 1γ (M1):
WM1

2s-1s = 2.8 × 10−6 s−1. It is well known that the radiation
properties of CMB can be described as BBR. Then, using
the results in Table III for �mix

a at T = 3000 K (the CMB
temperature at the epoch of cosmological recombination)
we find �mix

a (T = 3000 K) = 7.4 × 108 Hz, which is 14
orders of magnitude larger than WM1

2s-1s and is of the same
order of magnitude as the Lyman-alpha transition probability
WE1

2p-1s . This may have serious consequences for the primordial
hydrogen recombination theory.

VII. CONCLUSIONS

In this paper, we reexamined the influence of the blackbody
radiation on the atom. The rigorous derivation of the Stark
shift and BBR-induced level width was presented within the
framework of quantum electrodynamics. For this purpose, the
photon propagator (24) derived within the finite-temperature
QED in [12] was used. This propagator includes the dis-
tribution function of photon number nβ(ω). Moreover, the
propagator (24) allows for the description of the BBR influence
on an atom with the standard technique corresponding to
the self-energy correction for the bound electron. As in
the ordinary case, the real part of such one-loop correction
represents the Stark shift and imaginary part corresponds to the
BBR-induced level width. The depopulation rate �

β
a [Eq. (37)]

and Stark shift [Eq. (32)] are in the exact agreement with the
results of quantum mechanical derivation [2].

The QED approach demonstrates clearly the existence of
another important contribution to the level broadening via the
quadratic mixing of the levels with opposite parity by the BBR
mean electric field. This contribution �mix

a can be described
phenomenologically also within the QM approach, however,
the QED derivation reveals most clearly that this effect is
distinct from the well-known BBR level broadening effect
due to the atomic level depopulation. The mixing of atomic
states by the stray electric field was considered in [21] as an
effect which can mimic the parity violation effect. However,
in [21] the linear in the electric field effect was described. We
consider the effect of level mixing quadratic in the electric
field, which can arise due to the mean BBR electric field.
We should mention also that the QED theory for the atom in
the heat bath can be reformulated in terms of the “thermal
excitation potential” introduced earlier by Low [33].

To check the numerical evaluation of �mix
a we have

calculated the Stark shift and depopulation rates �
β
a for the

different states and temperatures. The results of numerical
calculations are presented in Tables I and II and Figs. 3–5 and
are in good agreement with the results reported in [2,25]. The
dependence on temperatures revealed also that the the Stark
shift can tend to zero at certain temperatures. This behavior
corresponds to the Stark shift quadratic in the field only: the
Stark shift linear in the mean BBR electric field is absent
due to the absence of a preferred direction and the Stark shift
arising due to the next orders in the field gives the small
corrections. There are two values for the temperature where

TABLE II. The BBR-induced depopulation rates in s−1 for the ns states in hydrogen atom Eq. (37) for the different temperatures T . The
first column contains the considered n values. In the second column, the lower line for each n value presents the results of [2]. The asterisk
corresponds to the values evaluated without inclusion of continuum spectrum. In the last column, the natural level widths in s−1 are given.

a T = 300 K T = 3 K ∗ T = 5.5 K ∗ T = 3000 K T = 4000 K T = 5000 K �a

2s 1.422 81×10−5 1.434 77 × 10−7 2.620 32 × 10−7 4.703 76 × 104 3.072 69 × 105 9.773 95 × 105 8.229 352 436
1.42×10−5

3s 8.035 35×10−5 9.0978 × 10−8 1.665 84 × 10−7 9.893 31 × 105 2.281 31 × 106 4.031 77 × 106 6.316 96 × 106

7.97×10−5

4s 15.9454 4.5077 × 10−8 8.260 11 × 10−8 1.756 29 × 106 3.184 43 × 106 4.861 × 106 4.415 94 × 106

16.02
5s 1196.44 2.6374 × 10−8 4.8341 × 10−8 1.933 56 × 106 3.160 22 × 106 4.526 55 × 106 2.839 91 × 106

1199
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TABLE III. The Stark-mixing level widths Eq. (61) in Hz (s−1 divided by 2π ) for the ns states in hydrogen atom are listed for the different
temperatures T . The first column contains considered n values. The second subline in each row gives the values of �mix

a in Hz without the
account for Lamb shift.

a T = 300 K T = 270 K T = 77 K T = 3 K ∗ T = 5.5 K ∗ T = 3000 K T = 4000 K �a

2s 1.703 23×103 1.380 12×103 113.303 0.227 06 0.676 15 7.402 97×108 4.6187×109 1.309 74
0.140 134 0.091 7596 6.022 85×10−4 1.3868×10−9 1.5667×10−8 7.401 28×108 4.6184×109

3s 3.191 83×103 2.5854×103 210.861 0.355 491 1.138 65 2.561 46×108 1.496 32×109 1.005 38×106

1.875 93 1.207 8 7.487 49×10−3 1.7143×10−8 1.936 69×10−7 2.558 28×108 1.495 75×109

4s 5.272 02×103 3.968 44×103 310.502 0.489 158 1.6157 4.452 45×108 1.047 48×109 7.028 19×105

627.656 206.34 4.190 82 6.574 23×10−3 0.021 6627 4.447 81×108 1.046 66×109

5s 3.993 57×104 2.131 01×104 400.95 0.618 677 2.062 95 5.549 16×107 8.566 09×107 4.519 86×105

3.385 59×104 1.638 54×104 0.218 588 4.612×10−7 5.211 71×10−6 5.488 37×107 8.458 02×107

the Stark shift [Eq. (32)] vanishes. The first one corresponds
to the low temperature and another to the high temperature.
For the higher excited state, the upper zeroth point is achieved
at lower temperature. So, for the 4s state the point where
quadratic Stark shift is equal to zero lies between 4000 and
5000 K although for the 5s state this point was found close to
600 K.

The results of evaluation of �mix
a at high temperatures show

that this effect can be important in astrophysical study of
the cosmic microwave background where the 2s state plays
the crucial role in recombination processes for the primordial

hydrogen atoms. More detailed investigations on the subject
will be presented elsewhere as separate publication.
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