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Spontaneous decay rate and Casimir-Polder potential of an atom near a lithographed surface
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Radiative corrections to an atom are calculated near a half-space that has arbitrarily shaped small depositions
upon its surface. The method is based on calculation of the classical Green’s function of the macroscopic Maxwell
equations near an arbitrarily perturbed half-space using a Born-series expansion about the bare half-space Green’s
function. The formalism of macroscopic quantum electrodynamics is used to carry this over into the quantum
picture. The broad utility of the calculated Green’s function is demonstrated by using it to calculate two quantities:
the spontaneous decay rate of an atom near a sharp surface feature and the Casimir-Polder potential of a finite
grating deposited on a substrate. Qualitatively different behavior is found for the latter case where it is observed
that the periodicity of the Casimir-Polder potential persists even outside the immediate vicinity of the grating.
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I. INTRODUCTION

Quantum fluctuations of the electromagnetic (EM) field
are influenced by material boundaries, meaning that a wide
variety of quantum electrodynamical vacuum quantities have
an environment dependence. These effects are often referred
to as dispersion forces. Famous examples include the force
between macroscopic objects known as the Casimir effect [1],
and the closely related Casimir-Polder (CP) force [2] between
an atom and a surface. Other examples include modified
spontaneous decay rates (see, for example, [3–6]), magnetic
moments [7–13], cyclotron frequencies [11,14], and Zeeman
splittings [15,16].

There is contemporary interest in how dispersion forces are
modified by the specifics of the surfaces involved. This can be
by consideration of their optical properties [17], their thermal
environment [18], or their geometries. An example of the latter
is found in [19], where it is shown that nontrivial geometry-
dependent vacuum effects can be studied by using a Bose-
Einstein condensate above a corrugated surface. Dispersion-
force calculations that go beyond simple planar geometries
are usually complicated in the extreme due to the inherent
nonadditivity of dispersion forces (see, for example, [20]
and [21]). To remedy this, various simplifying approaches
have been developed, one of the most prominent being the
proximity-force approximation (PFA) [22], where one models
complex geometries as made up of an ensemble of flat, parallel
surfaces. It has been shown repeatedly both in theory [23–29]
and in experiment [30,31] that the PFA is uncontrolled and is
often significantly in error. Alternative theoretical approaches
are based around at least one of the following assumptions:
the surface having stochastic roughness or being “almost
smooth” [23,24,32,33], being periodic [25–27] and thus al-
lowing the calculation to take advantage of the Bloch theorem,
or being specialized to a particular quantity (such as atomic
decay rates, as done in [34], for example). However, no general
treatment of arbitrarily shaped (nonperiodic, nonstochastic)
mechanically etched surfaces with sharp edges like those
discussed in [35] has yet been supplied.

Here we use a method based on the Born expansion of
the Green’s function of the EM wave equation to calculate
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environment-modified decay rates and CP potentials near a
selection of geometries. In contrast to the PFA, this approach
preserves the rich geometry dependence of dispersion forces,
at the expense of requiring the system to consist of a small “ge-
ometric perturbation” from an exactly solvable “background”
geometry. This approach has been used before in the calcu-
lation of CP potentials [36] and Casimir forces [37,38] and
is familiar from physical optics (see, for example, [39]) One
of the main differences between our work and [36–38] is that
only homogeneous backgrounds were considered there, while
we consider a half-space as the background. The advantage
of this is that the optical properties of the half-space can be
specified completely freely: it is not part of the perturbation
so its electromagnetic response does not need to satisfy any
of the conditions that ensure convergence of the perturbation
series. This allows one to make perturbative calculations for
quantum electrodynamical quantities near arbitrarily shaped
small depositions onto the surface of the (nonperturbative)
half-space, which is the goal of this paper. These kinds of
geometries are relevant to very recent experiments on decay
rates near patterned materials [40] and are common in studies
of surface roughness (e.g., [24] and [4–46]), but as explained
later, these roughness works make additional assumptions
which we do not make here.

II. THEORETICAL BACKGROUND

We use the noise-current approach [47–49] to EM field
quantization in and around dielectric media. This approach
is necessitated by the fact that Maxwell’s equations in a
dispersive, absorbing medium cannot be quantized simply by
promoting the field observables to operators, as this would
cause a violation of the fluctuation-dissipation theorem. To
remedy this, one introduces a source current density operator j
which corresponds to noise associated with loss in the medium
and restores consistency with the fluctuation-dissipation theo-
rem [48–51]. It is interesting to note that in its original form
this theory did not rest on a rigorous canonical foundation,
however, this was recently remedied in [52]. The advantage of
the use of this source current representation is that it allows
the quantised field to be obtained from the classical Green’s
function for the EM field in a given configuration [48–51]. In
this framework, the frequency-domain quantized electric field
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that solves Maxwell’s equations in a medium with position-
and frequency-dependent permittivity ε(r,ω) is given by the
solution to the wave equation [53]

∇ × ∇ × E(r,ω) − ω2ε(r,ω)E(r,ω) = iωj(r,ω), (1)

with j being the operator-valued noise-current source dis-
cussed above. This can be solved by the introduction of a
Green’s function (variously called the dyadic Green’s function
or the Green’s tensor) [48,49] which we call W(r,r′,ω) [54].
It is defined as the solution to

∇ × ∇ × W(r,r′,ω) − ω2ε(r,ω)W(r,r′,ω) = Iδ(r − r′), (2)

where I is a 3 × 3 unit matrix.
The Green’s function W defined by (2) uniquely deter-

mines the quantized field in a particular configuration, which
ultimately means that knowledge of W allows one to calculate
a wide variety of quantum electrodynamical quantities [55].
However, exact calculation of the Green’s function W is only
possible analytically for the very simplest choices of ε(r,ω), so
here we avoid this problem by using a perturbative technique.
As shown in [36] one can write the unknown W in terms of
some known “background” Green’s function W(0)(r,r′,ω) as

W(r,r′,ω) = W(0)(r,r′,ω)

+ω2
∫

d3s1W(0)(r,s1,ω)δε(s1,ω)W(0)(s1,r′,ω)

+ω4
∫

d3s1

∫
d3s2[W(0)(r,s1,ω)δε(s1,ω)

× W(0)(s1,s2,ω)δε(s2,ω)W(0)(s2,r′,ω)] + . . . ,

(3)

where δε(r,ω) is the difference between the entire dielectric
function and that of the background material at a particular
point r. Throughout this work we use the superscript (0) to
refer to the known background part of a particular Green’s
function. This type of perturbative expansion is known as the
Born series and is the foundation of much of scattering theory:
the spatial integrations over si have a definite interpretation as
scattering events [36–38,51].

We can simplify the Born series, (3), by specifying that
the configurations we are interested in are always made up of
an object described by some volume V that has an internally
homogeneous dielectric function, ε(r,ω) = ε(ω), and sits in
some (possibly inhomogeneous) background material with
dielectric function ε(0)(r,ω). Under these assumptions we can
restrict the si integrals to being over the volume V, because
outside this region the background dielectric function at a
particular point is equal to the entire dielectric function at that
point, so δε(r,ω) = 0 there. The assumption of homogeneity
within the volume V means we can also bring the dielectric
functions outside the integrals, giving

W(r,r′,ω) = W(0)(r,r′,ω)

+ω2[δε(ω)]
∫

V
d3s1W(0)(r,s1,ω)W(0)(s1,r′,ω)

+ω4[δε(ω)]2
∫

V
d3s1

∫
V

d3s2[W(0)(r,s1,ω)

× W(0)(s1,s2,ω)W(0)(s2,r′,ω)] + . . . . (4)

This type of approach has been used before in studies of surface
roughness. For example, a similar relation appears in [42],
but for the electric field rather than the Green’s function. As
mentioned in Sec. I, the work presented here differs from [42]
for a number of reasons, chief among them being that we
are not considering roughness so cannot use its stochastic
properties to simplify calculations.

In order to work out surface-modified quantities we need the
so-called “scattering” part of the Green’s function, (4)—that is,
the part which remains after the point-by-point subtraction of
the Green’s function for a homogeneous region. In other words,
to find the scattering Green’s function one takes the whole
Green’s function and then at each point in space subtracts the
Green’s function for a homogeneous region with the same
permittivity as the point in question. We write the scattering
part of the Green’s function W as G and the remaining part as
H. This means that the whole Green’s function can be rewritten

W(r,r′,ω) = G(0)(r,r′,ω) + H(0)(r,r′,ω)

+ω2[δε(ω)]
∫

V
d3s1[G(0)(r,s,ω) + H(0)(r,s,ω)]

·[G(0)(s,r′,ω) + H(0)(s,r′,ω)] + . . . . (5)

In previous calculations [36–38] the background Green’s
function W(0) was taken to be that for a homogeneous medium,
so that its scattering part G(0) is, by definition, 0. This has
the simplifying property that the partitioning of the Green’s
function via the Born series coincides with the partitioning one
makes when finding the scattering part; i.e., for homogeneous
H

WH hom(r,r′,ω) = H(0)(r,r′,ω) + ω2[δε(ω)]

×
∫

V
d3s1H(0)(r,s,ω)H(0)(s,r′,ω), (6)

meaning that the scattering part is

GH hom(r,r′,ω)

= ω2[δε(ω)]
∫

V
d3s1H(0)(r,s,ω)H(0)(s,r′,ω). (7)

This means that all that is required for the calculation
of environment-dependent quantities in a geometry regarded
as a perturbation to a homogeneous medium is an integral
over a homogeneous Green’s function, which is relatively
simple to do. However, this is not usually a case of physical
interest since in real experiments there will likely be an object
nearby that does not obey the conditions for convergence that
the Born expansion requires. To remedy this, we study the
simplest inhomogeneous background, namely, a half-space,
and then add perturbing objects to that, as shown in Fig. 1.
This type of approach has long been used in the study of
EM scattering from rough surfaces (see, for example, [24]
and [41–44],), however, these calculations usually rely on
the specific stochastic properties of the roughness in order
to simplify calculations. This is not done here: the surface
additions are allowed to be arbitrary.

In this work we truncate the Born series at the single-
scattering term, though it is straightforward to extend the
method to higher-order terms as is required to work out Casimir
forces [38], as opposed to decay rates and CP potentials as
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FIG. 1. (Color online) General setup.

done here. We then have the whole Green’s function to order
δε(r,ω),

W(r,r′,ω) = WHS(r,r′,ω)

+ω2[δε(ω)]
∫

V

d3sWHS(r,s,ω)WHS(s,r′,ω)

= WHS(r,r′,ω) + �WHS(r,r′,ω), (8)

with WHS being the Green’s function for a half-space. A similar
relation for the electric field (rather than the Green’s function)
appears in the surface-roughness literature, for example,
in [42]. The half-space Green’s function at frequency ω in
a region z > 0 in the presence of a nonmagnetic material
half-space filling the region z < 0 is conveniently written
as [56]

WHS(r,r′,ω) = − ẑ ⊗ ẑ

k2
δ(r − r′)

+ i

8π2

∑
σ

∫
d2k‖

Dσ (r,r′)
k2
‖kz

× eik‖·(r‖−r′
‖)Fσ

± (z,z′), (9)

where kz ≡
√

ω2 − k2
‖ and r‖ and k‖ are, respectively, the

components of the position and wave vector parallel and
perpendicular to the interface, and ẑ is a unit vector perpendic-
ular to the interface. The symbol σ indexes the two possible
polarizations [TE (transverse electric) and TM (transverse
magnetic)] of the Coulomb-gauge EM field, andDσ represents
the following differential operators:

DTE(r,r′) ≡ (∇ × ẑ) ⊗ (∇′ × ẑ),

DTM(r,r′) ≡ 1

ω2
(∇ × ∇ × ẑ) ⊗ (∇′ × ∇′ × ẑ). (10)

Finally, the function Fσ
± (z,z′) is given by

Fσ (z,z′) = [e−ikzZ< + eikzZ<Rσ
vm]eikzZ>, (11)

where Z> is the greater of z and z′, and Z< is the lesser of z

and z′;

Z> =
{
z for z > z′,
z′ for z < z′, Z< =

{
z′ for z > z′,
z for z < z′ (12)

and Rσ
vs are the Fresnel coefficients for radiation propagating

from a vacuum region into a medium of permittivity ε(ω)

RTE
vm = kz − kd

z

kz + kd
z

, RTM
vm = ε(ω)kz − kd

z

ε(ω)kz + kd
z

, (13)

where kd
z =

√
ε(ω)ω2 − k2

‖ is the z component of the wave
vector inside the medium. We can now use this statement
of the half-space Green’s function to generate the next-to-
leading-order term �WHS(r,r′,ω) in the Born expansion, (8),
which will give the modified Green’s function for the EM field
in the vicinity of a half-space with depositions.

III. MODIFIED GREEN’S FUNCTION

We now present the Green’s function modification
�WHS(r,r′,ω) for a half-space with a deposition. We re-
strict ourselves to the region r,r′ �= s throughout this work,
meaning that we can ignore the δ function terms in (9) when
substituting it into (8). This means that we do not calculate
any quantum electrodynamical quantities inside a deposition
onto a half-space. Apart from complicating the method used
here, calculation of such quantities would require the use
of local-field-corrected Green’s tensors [6,57,58], which are
beyond the scope of this work. Under these assumptions, we
note that �W(r,r′,ω) depends quadratically on Fσ , so from
the form of Eq. (11) one sees that that all contributions to �W
as defined in Eq. (8) must be at most quadratic in the reflection
coefficients, so we can write

�WHS
ij (r,r′,ω) =

∫
V

d3s
∫

d2k‖
∫

d2k′
‖P

×
[

1+KTETM
ij≶ RTERTM

+
∑

σ

(
Kσ

ij≶Rσ +Kσσ
ij≶R2

σ

)]
, (14)

where, for later convenience, we have defined the quantity P

as

P = − δε(ω)

64π4ω4k2
‖k

′2
‖ kzk′

z

exp{i[k‖ · (r‖ − s‖)

+ k′
‖ · (s‖ − r′

‖) + kz(rz + sz) + k′
z(r

′
z + sz)]} . (15)

The various Kij≶ in (14) are matrix elements determined
from Eqs. (8) and (9) by simple but tedious application of the
differential operators, (10), to the functions Fσ

± (z,z′) defined
in Eq. (11). The matrix elements differ depending on whether
rz is greater or less than sz; the subscript ≶ distinguishes these
two cases, as detailed in the full list of matrix elements given
in the Appendix.

A. Simple demonstration: Decay rate near a
sharp surface feature

We, begin with a surface-modified quantity that is relatively
easy to calculate, namely the spontaneous decay rate of an
excited atom that is attributable to its interaction with the
quantized EM field. The effect of the surface geometry on
this rate has been measured [59], and similar calculations find
applications in near-field optical microscopy [60–62]. Theoret-
ical predictions of the decay rate near surface depositions have
been made before using techniques similar to those presented
here [34,63]; its calculation is included in this work as an
example to illustrate the method.
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It is well known (see, for example, [4] and [64]) that the
decay rate � can be expressed in terms of the Green’s function
W as

� = 2ω2
Ad · [ImW(rA,rA,ωA)] · d∗, (16)

where d is the dipole moment of the transition. As a
demonstrative example we present a calculation of the decay
rate �0 of an atom in vacuum, with no material objects present.
We can choose the direction of the polarization freely because
in vacuum we have rotation invariance; we choose the polar-
ization to be aligned along the z direction so that d = d ẑ. Then

�0 = 2ω2
A|d|2ImWvac

zz (rA,rA,ωA), (17)

where Wvac
zz is the zz component of the Green’s function

that solves (2) for ε(r,ω) = 1. This vacuum Green’s function
is well known (see [51] for a thorough review). It can be
found, for example, from the half-space Green’s function, (9),
reported here by taking all reflection coefficients to 0:

Wvac(r,r′,ω) = WHS(r,r′,ω)|Rσ =0. (18)

The zz component of the vacuum Green’s function is

Wvac
zz (r,r′,ωA) = i

8π2

∫
d2k‖

k2
‖

ω2kz

eikz|z−z′ |, (19)

where we have ignored the (real-valued) δ function part
of (9) in anticipation of taking the imaginary part as dictated
by (16). Transforming to polar coordinates in the kx,ky plane
and doing the trivial angular integral, we have

Wvac
zz (r,r′,ωA) = i

4π

∫ ∞

0
dk‖

k3
‖

ω2kz

eikz|z−z′ |. (20)

The integral can be carried out analytically, giving

Wvac
zz (r,r′,ωA) = 1

2πω2

eiω|z−z′ |

|z − z′|3 (1 − iω|z − z′|). (21)

Taking the imaginary part of this followed by the coincidence
limit z′ → z, we find, upon substitution into (17),

�0 = ω3
A

3π
|d|2, (22)

which is a well-known result (see, for example, [65]) and is
used as a convenient unit in the following discussions.

As another point of comparison we also present the known
results for the decay rate near a half-space [4,66],

�HS = 2ω2
Ad · [ImWHS(rA,rA,ωA)] · d∗,

which we split into the free-space contribution �0 and a
surface-modified part ��HS:

�HS = 2ω2
Ad · [Im(Wvac(rA,rA,ωA) + GHS(rA,rA,ωA)] · d∗

= ω3
A|d2|
3π

+ 2ω2
Ad · ImGHS(rA,rA,ωA) · d∗

= �0 + ��HS. (23)

We consider the two cases where the atom is polarized parallel
and perpendicular to the surface with the same magnitude of
dipole moment d = |d| and separately find the two contribu-
tions ��HS

‖ and ��HS
⊥ to the decay rates �‖ = �0 + ��HS

‖
and �⊥ = �0 + ��HS

⊥ . Calculation of ��HS
‖ is simplified by

exploiting invariance in the xy plane to assume without loss
of generality that the dipole in this case is aligned along the x

direction. Therefore we need to calculate

��HS
‖ = 2ω2

A|d|2ImGHS
xx (rA,rA,ωA), (24)

��HS
⊥ = 2ω2

A|d|2ImGHS
zz (rA,rA,ωA). (25)

Using the half-space Green’s function, (9), we find

GHS
zz (r,r′,ωA) = i

4π

∫ ∞

0
dk‖

k3
‖

ω2kz

eikz(z−z′)RTMe2ikzz
′
,

GHS
xx (r,r′,ωA) = i

8π

∫ ∞

0
dk‖

k‖
ω2kz

eikz(z−z′)

× e2ikzz
′(
ω2RTE − k2

zRTM
)
. (26)

Substituting these into Eqs. (24) and (25) and evaluating the
integrals in the same way as for the free-space case, one
eventually finds the following results for the decay rates near
a perfect conductor (RTE → −1, RTM → 1),

��HS
‖ = |d|2

16πz3

[(
1 − 4ω2

Az2
)

sin(2ωAz) − 2ωAz cos(2ωAz)
]
,

(27)

��HS
⊥ = |d|2

8πz3
[sin(2ωAz) − 2ωAz cos(2ωAz)], (28)

in agreement with [4] and [66]. The z dependence of �HS
‖ and

�HS
⊥ is shown in Fig. 2. This shows the well-known property

that an atom whose dipole moment is aligned perpendicular
to a perfectly reflecting surface has its decay rate enhanced
by a factor of 2 in the small-distance limit. Similarly, an atom
whose dipole moment is aligned parallel to such a surface
has its decay rate completely suppressed as it approaches the
boundary. Far away from the surface the free-space value is
recovered in both cases as expected.

We now use our modified Green’s function, (14), to produce
new results for more complicated geometries, using the above
known results as points of comparison. The new geometry
that we choose is a cube of side a and refractive index εc(ω)
deposited on a half-space, as shown in Fig. 3. This means that

Parallel polarization

Perpendicular polarization

Free space � 0�

2 4 6 8 10
Az�c

0.5

1.0

1.5

2.0
� 0

FIG. 2. (Color online) Decay rates near a simple half-space.
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a
z

FIG. 3. (Color online) Cubic deposition geometry. The cube and
substrate can be made of different materials; the only restriction on
their properties is that the cube material must be weakly dielectric in
order for the Born series to converge. We emphasize that the substrate
can be made of any desired material since it does not take part in the
perturbative approximation.

the volume integral over s in Eq. (14) becomes
∫

V

d3s →
∫ a/2

−a/2
dsx

∫ a/2

−a/2
dsx

∫ a

0
dsz. (29)

Part of the reason for choosing this shape in particular is
that, as mentioned in Sec. I, the method presented here does
not break down for geometries with sharp corners, in contrast
to other approaches to radiative corrections near perturbed
half-spaces, which rely on the surface being smooth in some
sense [32,33]. As we see later, the approach used here can
produce highly nontrivial results in the regions near sharp
objects.

Taking the modified Green’s function, (14), and transform-
ing to polar coordinates {kx,ky} = {k‖ sin φ,k‖ cos φ} (with
similar definitions for the primed coordinates), we find, for
the xx and zz components of the modified Green’s function in
the limit where the substrate is perfectly reflecting,

�Wcube
PM,xx(r,r′,ω)

= δεc(ω)

16π4

∫ ∞

0
dk‖

∫ ∞

0
dk′

‖

∫ 2π

0
dφ

∫ 2π

0
dφ′

× k‖k′
‖

ω2kzk′
z

kz cos(akz) sin(ak′
z) − k′

z sin(akz) cos(ak′
z)

(k2
‖ − k′2

‖ )(χk‖ − χ ′k′
‖)(ηk‖ − η′k′

‖)

× [(χ2 − η2 − 1)k2
‖ + 2ω2] sin[a/2(χk‖ − χ ′k′

‖)]

× [(χ ′2 − η′2 − 1)k′2
‖ + 2ω2] sin[a/2(ηk‖ − η′k′

‖)]

× ei[x(ηk‖−η′k′
‖)+y(χk‖−χ ′k′

‖)+kzz+k′
zz

′] (30)

and

�Wcube
PM,zz(r,r

′,ω)

= δεc(ω)

4π4

∫ ∞

0
dk‖

∫ ∞

0
dk′

‖

∫ 2π

0
dφ

∫ 2π

0
dφ′

× k3
‖k

′3
‖

ω2kzk′
z

kz sin (akz) cos(ak′
z) − k′

z cos(akz) sin(ak′
z)

(k2
‖ − k′2

‖ )(χk‖ − χ ′k′
‖)(ηk‖ − η′k′

‖)

Parallel polarization

Parallel polarization �half�space�

Perp. polarization

Perp. polarization �half�space�

Free space value � 0�

0 1 2 3 4
Az

c
0.0

0.5

1.0

1.5

2.0

2.5

3.0
� 0

FIG. 4. (Color online) Modified decay rates (solid lines) near a
cube of dielectric constant εc(ωA) = 1.8 deposited on a perfectly
reflecting half-space, with the decay rates for the bare half-space and
free space (dashed lines) shown for comparison. The shaded area
represents the depth of the cube added to the half-space. We do not
present results for the region interior to the cube because local field
effects [6,57,58] would come into play there, but these are beyond
the scope of this work.

× sin[a/2(χk‖ − χ ′k′
‖)] sin[a/2(ηk‖ − η′k′

‖)]

× ei[x(ηk‖−η′k′
‖)+y(χk‖−χ ′k′

‖)+kzz+k′
zz

′], (31)

where we have abbreviated

χ ≡ cos φ, χ ′ ≡ cos φ′,

η ≡ sin φ, η′ ≡ sin φ′ (32)

and immediately taken the parallel coincidence limit r′
‖ → r‖.

The perturbative approximation holds as long as both �εc =
εc(ωA) − 1 < 1 and the dimensions of the object are small
compared to the wavelength that corresponds to ωA [60]. The
latter condition can be expressed as ωAa/2π  1. As shown
in the below, we take the size of the cube to be equal to ωAz

(in natural units) so that both of these conditions are satisfied.
The quadruple integrals, (30) and (31), are straightforward

to numerically evaluate in ready-made software such as
Mathematica or Maple; no specialized numerical techniques
are required. Their ease of evaluation arises because the
angular integrals are over a finite range and the k‖ integrals
are exponentially damped at infinity. We present a selection
of results of this numerical study in Figs. 4 and 5. We note,
in particular, that Fig. 5 shows the highly nontrivial position
dependence of the decay rate; for example, the decay rate can
be enhanced or suppressed (relative to the value near a bare
half-space) depending on the precise position of the atom in
the plane above the cube. This is in qualitative agreement with
the results obtained in [34] via a different method.

IV. CASIMIR-POLDER POTENTIAL OF
A FINITE GRATING

A. Background and motivation

We now turn our attention to a more complex but ex-
perimentally relevant situation, namely, the CP potential of
an atom near a surface, as first described in [2]. The CP
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FIG. 5. (Color online) Normalized decay rate for an x-polarized
atom at a distance 0.01a above a cube of side length a = 1 (in
dimensionless units ωAz/c) and dielectric constant εc(ω) = 1.8
deposited on a perfectly reflecting half-space. The decay rate is
expressed in units of the decay rate at the same distance above
the “bare” perfectly reflecting half-space (i.e., that with no cubic
deposition).

potential results from the modification of the level structure of
a polarizable atom by a surface-dependent quantized field; it is
the surface-dependent version of the Lamb shift. The resultant
force has been measured to a high precision [67] and is of
increasing importance in emerging quantum technologies [68].
The calculation is inherently more complicated than that for
the decay rate in Sec. III A. As we shall see, this is largely
because the potential depends on a sum over all photon fre-
quencies, rather than being determined by a specific transition
frequency like the decay rate. An additional complication
is that calculation of a CP potential involves subtraction of
the contribution of the homogeneous part of the Green’s
function at each particular point in order to extract a geometry
dependence. This is necessary because, unlike the decay rate,
evaluation of a CP potential in free space (i.e., the Lamb shift)
requires a completely different full field-theoretic approach.
As detailed in Sec. I, care must be taken with CP potentials
in this Born-series approach because of the interplay between
this subtraction of a homogeneous part and the perturbative
approximation.

We calculate the CP potential in vacuum near an N -grooved
finite grating, like that shown in Fig. 6. This choice is motivated
by the structures used ongoing experiments in atom optics
and matter-wave interferometry such as [35] and [69]. There
is a body of existing literature on Casimir and CP forces
near periodic gratings [25–27], however, these works take
advantage of the Bloch theorem and so are only strictly
applicable to infinite, precisely periodic gratings, which are
not necessarily good approximations to real experiments. In
fact, as we will see later, nontrivial behavior of the CP potential
occurs outside the immediate vicinity of the grating, which
of course cannot be seen if the grating is assumed to be
infinite.

FIG. 6. (Color online) Geometry of the finite grating considered
here. Just as for the cubic deposition shown in Fig. 3, the substrate
can be made of any desired material; again, the only restriction on the
system is that the grating material must be weakly dielectric. While
our method works for any number of grooves N , we choose N = 5
here and throughout as shown.

B. Expressions for the Casimir-Polder potential

The CP potential UCP for an isotropically polarizable atom
at position rA = (xA,yA,zA) in a region with a scattering EM
Green’s function G may be written in terms of an integral over
the complex frequency ξ as [51,55]

UCP(rA) = 1

2π

∫ ∞

0
dξ ξ 2α(iξ )Tr G(rA,rA,iξ ), (33)

where α is the polarizability of a ground-to-excited atomic
state transition of frequency ωij and dipole moment dij and is
given by

α(ω) = 2

3
lim
ε→0

ωij |dij |2
ω2

ij − ω2 − iωε
, (34)

where ε is a real infinitesimal [70] related to the line width
of the atomic state [71]. The Green’s function is to be taken
with both spatial arguments equal to the position rA of the
atom; this is to be understood as a limiting value. Just as in
the decay rate calculation in Sec. III A, we use a selection
of standard results as points of comparison for later results.
The first of these is the CP potential at a distance zA from
a perfectly conducting plane in the nonretarded regime, This
regime is where the round-trip time for a photon to travel from
the atom to the surface and back is much shorter than the time
scale associated with the atomic frequency. In other words,
it is the small-distance approximation if the atomic transition
frequency is assumed to be a fixed constant. The well-known
result in this regime is [2]

UCP0(ωAzA  1) = − |dij |2
48πz3

A

. (35)

The second quantity we use as a comparison is the force that
an atom in this potential experiences, namely,

FCP0(ωAzA  1) = − ∂

∂zA
UCP0(ωAzA  1)

= − |dij |2
16πz4

A

, (36)
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which is a statement of the well-known CP force of attraction
between a polarizable atom and surface, in this case in the
nonretarded regime and for a perfectly conducting material.

Equation (8) tells us that the Green’s function that encodes
the behavior of the EM field near the grating is given by
the sum of two terms: WHS, which describes the unperturbed
half-space; and �WHS(r,r′,ω), which describes the correction
resulting from deposition of the grating on its surface. The
CP potential, (33), requires the use of a scattering Green’s
function. Since the whole Green’s function W is linear in
its two contributions WHS and �WHS(r,r′,ω), it suffices to
find the scattering parts GHS and �GHS(r,r′,ω) of these two
contributions separately, which together give the scattering
Green’s function G. Also, the linearity of the CP potential
in the scattering Green’s function means that we can find
the contributions from the two scattering parts separately.
We confine ourselves to the most physically relevant region,
z,z′ > 0, meaning that the subtraction of a homogeneous part
is achieved by setting all reflection coefficients in the Green’s
function to 0 and subtracting the resulting quantity. For the
unperturbed part GHS we have

GHS(r,r′,ω) = WHS(r,r′,ω) − WHS
Rσ →0(r,r′,ω), (37)

where WHS
Rσ →0(r,r′,ω) coincides with the Green’s function of

free space since the region near the grating is assumed to be a
vacuum.

The scattering part of the Green’s function correction, (14),
is obtained by subtracting the portion that remains when setting
all reflection coefficients to 0. Consequently, isolating the
scattering part �GHS(r,r′,ω) of �W(r,r′,ω) is trivial because
of the way it is stated in Eq. (14): all one needs to to is remove
the term independent of reflection coefficients, giving

�GHS
ij (r,r′,ω) =

∫
V

d3s
∫

d2k‖
∫

d2k′
‖P

[
KTETM

ij RTERTM

+
∑

σ

(
Kσ

ijRσ + Kσσ
ij R2

σ

)]
, (38)

with the matrix elements Kij listed in the Appendix. Now that
we have the Green’s function correction, (38), we can find the
correction to the CP potential resulting from the deposition of
the grating on the half-space from

�UCP(rA) = 1

2π

∫ ∞

0
dξ ξ 2α(iξ )Tr �G(rA,rA,iξ ). (39)

C. Grating results and discussion

The volume integral describing the N -grooved grating
shown in Fig. 6 is

∫
V

d3s →
N−1∑
n=0

∫ x0+(2n+1)w

x0+2nw

dsx

∫ L/2

−L/2
dsy

∫ h

0
dsz, (40)

with x0 = −w(N − 3/4) if the grating is such that the center
of the base of the middle groove is at sx = 0. For simplicity,
the half-space is taken as perfectly reflecting, and the grating
as nondispersive, εg(ω) = εg , with εg − 1 < 1. We choose
N = 5, which corresponds to the grating shown in Fig. 6.
The atom’s polarizability is taken to be isotropic. Using the
volume elements, (40), the integrals over s in (39) become

FIG. 7. (Color online) Nonretarded Casimir-Polder potential a
distance z = 1.01h from a grating of height h as shown in Fig. 6.
The potential is shown in units of the perfect reflector potential, (35),
which is the potential if the grating had not been deposited on the
half-space. All length scales in the problem can be expressed in terms
of a reference length which cancels out (in the nonretarded regime)
when normalizing to the bare perfect reflector result. Thus, the units
on both axes of the above plot are arbitrary; in other words, the result
remains valid whatever unit is assigned to the x and y axes as long as
the nonretarded approximation holds. The parameters describing the
grating are h = 1, w = 1, and L = 5, in the same units as the x and
y axes. The dielectric constant is εg = 1.8. Almost invisible in this
figure is a suggestion of interesting behavior “outside” the grating
along the x axis; this is shown in detail in Fig. 8.

elementary. This leaves integrals over k‖, k′
‖, ξ, θ , and θ ′,

which may be evaluated numerically. Just as for the decay
rate calculation in Sec. III A, the integration is significantly
simplified by the fact that the integrals over θ and θ ′ are
both over the finite region 0 . . . π/2, and the remaining
integrals are all exponentially damped. A selection of results
is shown in Figs. 7 and 8 The results for the CP potential
directly above the grating show qualitative agreement with the
infinite grating considered in [25], where it was observed that
the potential is reduced between the grooves and enhanced
above them,compared to the planar result. However, our results
are not directly quantitatively comparable with [25] because
the choices of materials made there are not consistent with our
perturbative expansion. Our results for the region “outside”
the grating were of course not seen even qualitatively in [25]
due to that work’s assumption of an infinite grating. Here we
have relaxed this assumption and found that the periodicity of
the CP potential continues laterally past the end of the grating,
which, to our knowledge, is previously unseen in this context.

V. CONCLUSIONS

In this paper we have considered some aspects of quantum
electrodynamics near a surface with arbitrarily shaped features
deposited on it. The main general result is the Green’s func-
tion, (14), for the perturbed half-space, which was calculated
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FIG. 8. (Color online) Top: Potential UCP near the grating shown
in Fig. 6. As in Fig. 7 the potential is plotted in units of its value UCP0

[Eq. (35)] near a simple planar perfect reflector, and all the parameters
are the same as for Fig. 7, which is reproduced as the inset and
schematically on the horizontal axes. Bottom: Lateral (x-directed)
force FCP near the grating shown in Fig. 6 for the same parameters
used in Fig. 7. In the same spirit as the other plots, we normalize
to what the force would have been if the grating were not present,
but the lateral force without the grating would of course be 0. For
this reason we use the (constant) perpendicular force, (36), as a unit
instead.

using a Born-series expansion. As an example we then have
investigated the decay rate of an atom near a cube deposited
on a half-space, finding the rich position dependence shown
in Fig. 5. Finally, we have presented the CP potential of
a finite grating deposited on a substrate and demonstrated
the previously unseen quality that the lateral periodicity of
the potential can continue beyond the grating, as shown in
Fig. 8. The Green’s function, (14), can be used to calculate
quantum electrodynamical quantities near a half-space with
any small deposition on it, so the work presented here
should have applications in a variety of ongoing and planned
experiments [35,68,69].
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APPENDIX: GREEN’S FUNCTION MATRIX ELEMENTS

There are five terms in Eq. (14), each of which is one of two
3 × 3 matrices (one for each choice of rz ≶ sz), giving a total

of 90 matrix elements that we, in principle, need to calculate.
However, there are various constraints that reduce this number
significantly. First, some matrix elements are not independent
due to the xy symmetry of the half-space. In particular,

Kτ
yy≶ = Kτ

xx≶(kx ↔ ky),

Kτ
yz≶ = Kτ

xz≶(kx ↔ ky),
(A1)

Kτ
zy≶ = Kτ

zx≶(kx ↔ ky),

Kτ
yx≶ = Kτ

xy≶,

where τ = (TE, TM, TETE, TMTM, TETM). This restric-
tion reduces the number of required matrix elements by

(4 constraints ) × (5 different τ ) × (2 for rz ≶ sz) = 40,

leaving a total of 50. This number can be further reduced by
noting that the definition of TE modes is that they have no
electric field in the z direction, which ultimately means that
any matrix element for TE polarization where at least one
index is z is in fact identically 0,

KTE
xz≶ = KTE

zx≶ = KTE
zz≶ = 0,

KTETE
xz≶ = KTETE

zx≶ = KTETE
zz≶ = 0, (A2)

and similarly,

KTETM
xz≶ = KTETM

zx≶ = KTETM
zz≶ = 0, (A3)

which together reduce the required number by 18, leaving
90 − 40 − 18 = 32 matrix elements to calculate, which can
be partitioned into two groups of 16, where each group
corresponds to one choice of rz ≶ sz. We now simply list these
matrix elements, which are obtained by application of the
differential operators, (10), to the functions Fσ (z,z′) given
by Eq. (11). For rz > sz the matrix elements representing
coefficients of terms linear in the reflection coefficients are

KTE
xx> = e−2ikzszω2k′2

y

(
k2
xk

2
z + k2

yω
2
) + primed,

KTE
xy> = e−2ikzszkxk

′
xkyk

′
yω

2k2
‖ + primed,

KTM
xx> = −e−2ikzszk′2

x k′2
z

(
k2
xk

2
z + k2

yω
2
) + primed,

KTM
xy> = e−2ikzszk2

‖k
′
xkyk

′
ykxk

′2
z + primed,

KTM
xz> = e−2ikzszkxk

′
xkzk

′
zk

2
‖k

′2
‖ − primed,

KTM
zx> = −e−2ikzszkxk

′
xkzk

′
zk

2
‖k

′2
‖ − primed,

KTM
zz> = e−2ikzszk4

‖k
′4
‖ + primed, (A4)

where “primed” is shorthand for the quantity that precedes
it with k → k′ and r → r′, with the latter replacement being
relevant only for rz < sz as we shall see. Continuing, the rz >

sz matrix elements representing coefficients of terms quadratic
in particular reflection coefficients are

KTETE
xx> = k2

yk
′2
y ω4, KTMTM

xx> = k2
xk

′2
x k2

z k
′2
z ,

KTETE
xy> = k′

xkxk
′
ykyω

4, KTMTM
xy> = kxk

′
xkyk

′
yk

2
z k

′2
z ,

KTMTM
xz> = kxk

′
xkzk

′
zk

2
‖k

′2
‖ , KTMTM

zx> = kxk
′
xkzk

′
zk

2
‖k

′2
‖ ,

KTMTM
zz> = k4

‖k
′4
‖ , (A5)
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and finally, the coefficients of the terms that mix TE and TM
reflection coefficients,

KTETM
xx> = −ω2

(
k2
xk

′2
y k2

z + k′2
x k2

yk
′2
z

)
,

KTETM
xy> = kxk

′
xkyk

′
yω

2(k2
z + k′2

z

)
. (A6)

For rz < sz the entire set of 16 coefficients can be obtained
from Eqs. (A4)–(A6) by taking sz → rz (before adding the
“primed” parts), so that, for example,

KTM
zz< = (e−2ikzrz + e−2ikzr

′
z )k4

‖k
′4
‖ . (A7)

We have now completely specified all terms in (14).
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