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Electric dipole moment of 225Ra due to P- and T -violating weak interactions
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Employing advanced methods in the relativistic coupled-cluster framework, the electric dipole moments (EDM)
of 225Ra due to parity- and time-reversal-violating tensor-pseudotensor (T-PT) and nuclear Schiff moment (NSM)
interactions are obtained as dA = −10.01 × 10−20CT 〈σn〉|e| cm and dA = −6.79 × 10−17S(|e|fm3)−1|e| cm,
respectively, with CT being the T-PT coupling constant and S being NSM. These values for the corresponding T-PT
and NSM interactions are reduced by about 45% and 23%, respectively, compared to the previous calculations.
The validity of our calculations is proved by comparing our results with the earlier studies using the zeroth-order
Dirac-Fock method and all-order random-phase approximation. The first measurement of 225Ra EDM was
reported recently [R. H. Parker et al., Phys. Rev. Lett. 114, 233002 (2015)], and in that study the authors also
anticipate obtaining the result with an improvement in systematics and the statistical sensitivity of the experiment,
which could possibly lead to the best limit for an atomic EDM. Thus, it offers considerable hope to extract more
accurate limits for the electron-quark T-PT interaction and the θQCD parameter in particle physics in the future.
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An experimental group at Argonne National Laboratory
(ANL) has recently announced its first measurement of the
permanent electric dipole moment (EDM) of 225Ra [1] after
making steady progress in the last several years [2–4]. The up-
per limit they obtained for the atomic EDM dA is |dA(225Ra)| <

5.0 × 10−22|e| cm (at 95% confidence). Although this is not
competitive with the current best limit available from 199Hg
[5], which is |dA(199Hg)| < 3.1 × 10−29|e| cm (at the same
95% confidence level), the ongoing measurement of the Ra
EDM at ANL promises to yield a limit which could surpass
that obtained from 199Hg in the future [1]. In fact, this seems
likely from both theoretical and experimental considerations.
From the theoretical point of view, the octupole deformation in
the nucleus of 225Ra can enhance EDM by two to three orders
of magnitude compared to 199Hg [6,7]. The other prominent
theoretical advantages favoring the observation of the 225Ra
EDM are that this atom has a larger nuclear charge than
199Hg and, like 199Hg, it has nuclear spin I = 1/2, due to
which the contributions from the octupole moment vanish. On
the experimental front, cold-atom techniques with very little
sensitivity to systematics [8] have been developed to measure
the Larmor spin-resonance frequency for 225Ra atoms [2,4].
Moreover, using the Facility for Rare Isotope Beams (FRIB)
for a measurement time of 100 days, the ANL research group
hopes to bring about a significant improvement in the statistical
uncertainty by increasing the number of atoms that can be
observed to 106 [1].

The EDM of a diamagnetic atom like 225Ra is sensitive
to the parity (P ) and time-reversal (T ) violating (P,T -
odd) electron-nucleon tensor-pseudotensor (T-PT) and nuclear
Schiff moment (NSM) interactions. The NSM originates pri-
marily from the distorted charge distribution inside the nucleus
caused by the P,T -odd interactions among the nucleons or
from the EDMs and chromo-EDMs of the up (d̃u) and down
(d̃d ) quarks [9]. Thus, the existence of a nonzero EDM is
a clear signature of violation of the P and T symmetries.
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T violation implies CP violation as a consequence of the
CPT theorem. All the observed CP violations to date are
consistent with the standard model (SM) of particle physics
[10,11], but the SM fails to explain the observed finite-neutrino
masses, the matter-antimatter asymmetry in the universe, the
existence of dark matter, etc. [12,13]. To answer these profound
questions many extensions of the SM, such as the multi-Higgs,
supersymmetry, and left-right symmetric models, have been
propounded [14–16]. These extensions envision additional
CP -violating couplings which magnify the EDMs of the
elementary particles, thereby resulting in large EDMs in atoms.
The NSM at the fundamental level is related to the θQCD

parameter of particle physics, and possibly, a large value of
θQCD would point to new sources of CP violation, apart from
the δ phase of the SM [14,17]. Thus, accurate estimates of the
upper limits on the T-PT coupling coefficient and the NSM of
an atom could help to explain new physics and may probe the
efficacy of certain beyond-SM models. Consequently, ongoing
efforts to improve limits on the extracted parameters from the
atomic EDMs, even with null results, are still valuable.

The limit on the 225Ra EDM is anticipated to supersede that
obtained from 199Hg EDM [1]. It is therefore now imperative
to perform the corresponding calculations accurately so that in
combination with the improved measurement, better limits on
the above-mentioned parameters can be obtained. We employ
here relativistic many-body methods in different forms at
various approximations [17–19] to determine very accurately
dA for 225Ra arising due to both the T-PT (dTPT

A ) and NSM
(dNSM

A ) interactions. We find that the correlation effects in
the calculations of these properties are remarkably large, as
a result of which the final results are reduced substantially
compared to the values reported earlier [20–22]. In order to
demonstrate the validity of our methods, we present the results
from the intermediate Dirac-Fock (DF) method and random-
phase approximation (RPA) to cross-check the consistencies
of these values with the previous calculations. We improve the
accuracies of our calculations by incorporating more physical
effects (specifically, the non-RPA correlations) systematically
through the coupled-cluster (CC) method at different levels
of truncation. We also evaluate the dipole polarizability αd of
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225Ra to compare its value with the other CC calculation [23]
to ensure the reliability of our method.

The electron-nucleus (e-N) interaction Hamiltonians due to
T-PT coupling and NSM are given by [24,25]

HT −PT
e−N = iGF CT√

2

∑
�σn · �γDρn(r), (1)

H NSM
e−N = 3 �S · �r

B4
ρn(r), (2)

respectively, where GF is the Fermi constant, CT is the
T-PT coupling constant, �σn = 〈σn〉�I/I is the Pauli spinor of
the nucleus, �γD represents the Dirac matrices, ρn(r) is the
nuclear charge density, �S = S�I/I is the NSM, and B4 =∫ ∞

0 drr4ρn(r).
In our calculations, we first obtain the DF wave function

|�0〉 for the ground state of 225Ra using the Dirac-Coulomb
(DC) atomic Hamiltonian HDC. Considering |�0〉 the reference
state, the exact state |	0〉 is determined by appending the
electron correlations in the second-order and third-order many-
body perturbation theory [denoted by MBPT(2) and MBPT(3)
respectively], RPA, and CC methods. Detailed formulations
of these methods are explained and employed in our previous
works [17–19,26]. For the reader’s sake, a brief description of
our CC method at various levels of approximation is given
here. The first-order correction to the CC wave function
|	(0)

0 〉 = eT (0) |�0〉, with T (0) being the excitation operator,
for the evaluation of dA and αd with the respective P,T -odd
interaction Hamiltonians and the E1 operator D is expressed
as [17–19,26]

∣∣	(1)
0

〉 = eT (0)
T (1)|�0〉, (3)

where T (1) is a CC operator similar to T (0) but can generate
only the odd-parity excitations acting upon |�0〉. For the
calculations of both |	(0)

0 〉 and |	(1)
0 〉, we only allow all

possible single and double excitations (T (0) = T
(0)

1 + T
(0)

2 and
T (1) = T

(1)
1 + T

(1)
2 ) in the CC method (known as CCSD).

We also consider contributions from the important triple
excitations perturbatively through the singles, doubles, and
partial triples CC [CCSD(T)] method as explained in [17]. To
substantiate the notable roles of the nonlinear CC terms, we
also determine properties considering only the linear terms in
the CCSD (referred to as LCCSD) method. The nonlinear
terms virtually conform with the triples, quadruples, etc.,
excitations. In the CC approach, both dA and αd (commonly
denoted as X ) are evaluated by [17–19]

X = 2〈�0|(D(0)
T (1))cc|�0〉, (4)

where cc stands for the closed and connected terms and D
(0) =

eT †(0)
DeT (0)

. In our previous work [17], we have described the
procedure by which we take into account contributions from
the above nontruncative series in an iterative procedure. We
also present intermediate CCSD results as CCSD(k), truncating
the series with intermediate k = 2,4, . . . degree nonlinear
terms to highlight the relevance of the higher-power terms
in the accurate determination of dA and αd (note that CCSD
without the suffix k refers to CCSD(∞)).

TABLE I. Comparison of αd , dTPT
A , and dNSM

A (in ea3
0 ,

10−20 CT 〈σn〉|e| cm, and 10−17 [S/|e| fm3]|e| cm, respectively) results
for 225Ra from various calculations. The CCSD(T) results are the
converged values from our calculations, and the RPA values for the
Breit interaction (δB ), QED correction (δQED), and truncated basis
(δbasis) are given at the end.

Method of This work Other studies

evaluation αd dTPT
A dNSM

A αd dTPT
A dNSM

A

DF 204.13 −3.46 −1.85 204.2a −3.5a −1.8a

200.6b

293.4c

MBPT(2) 230.67 −11.00 −5.48
MBPT(3) 189.53 −10.59 −5.30

RPA 296.85 −16.66 −8.12 −17a −8.3a

291.4b −16.59b

297.0d −8.5d

CI + MBPT −18a −8.8a

229.9d

LCCSD 251.88 −13.84 −8.40
CCSD(2) 253.04 −10.40 −6.94
CCSD(4) 242.02 −9.49 −6.52
CCSD(∞) 247.76 −10.04 −6.79 251.8c

CCSD(T) 241.40 −10.01 −6.79 242.8c

δB 0.19 0.06 0.06
δQED −0.43 −0.16 −0.07
δbasis −0.03 −0.08 −0.05

aReference [21].
bReference [22].
cReference [23]. Corrections from the Gaunt term are incorporated.
dReference [20]. Corrections from RPA are included.

Results for αd , dTPT
A , and dNSM

A of 225Ra using the considered
methods are given in Table I. We also give the previously
reported results from different methods for comparison.
Among these, calculations using the combined configuration
interaction and leading-order many-body perturbation theory
(CI + MBPT method) with some corrections through the
time-dependent Hartree-Fock method (equivalent to our RPA)
by Dzuba and coworkers [20,21] were presumed to be more
rigorous. This approach, however, uses a V N−2 potential
(N = 88 is the total number of electrons of 225Ra) to generate
the single-particle orbitals, in contrast to our V N potential.
Unlike our methods, this hybrid method cannot include the
correlation effects from all the electrons on equal footing,
which is essential for a strongly interacting atom like 225Ra. In
fact, Dzuba and coworkers [20,21] and Latha and Amjith [22]
have independently employed RPA with the V N potential to
report dA and αd . From the comparison in Table I, we find that
the DF and RPA results, among all these calculations, agree
quite well with each other. αd is often evaluated together with
dA and compared with its experimental value because the same
angular momentum and parity selection criteria are required
for their determination, notwithstanding their different radial
behavior, to test the potential of the method [17–22]. The
experimental result of αd in 225Ra is yet to be realized, but a
few calculations using variants of the CC methods report its
value, among which the latest calculations by Borschevsky
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FIG. 1. A few important non-RPA diagrams from the MBPT(3)
method. Lines with up and down arrows are the occupied and
unoccupied orbitals, respectively. Hint corresponds to either HT −PT

e−N ,
H NSM

e−N , or D operators in the evaluation of dTPT
A , dNSM

A , and αd ,
respectively.

et al. present DF, CCSD, and CCSD(T) results [23] and make a
comparative analysis with the previous calculations. They
use the DC Hamiltonian with the Gaunt term in a finite-field
approach and get a large DF value, whereas their CC results,
as seen in Table I, converges towards a value similar to our
CC results.

We also estimate the order of magnitude of the neglected
effects, such as corrections due to the truncated basis (δbasis),
Breit interaction (δB), and quantum electrodynamic (QED)
effects (δQED), in our calculations by using RPA in a manner
similar to that in our previous work [19]. These values are
given at the end of Table I. Assuming differences between
the CCSD(T) and CCSD results from our calculations are the
largest possible contributions from the omitted higher-level
excitations and the above corrections, our CCSD(T) results
are estimated to have uncertainties less than 2%.

The present study also highlights that the behavior of
electron correlation effects in 225Ra is different from other
closed-shell atoms such as 129Xe [18], 223Rn [19], and 199Hg
[17] for the EDM studies. For example, RPA estimates EDMs
within reasonable accuracies in 129Xe [18] and 223Rn [19],
while the CCSD method and the CI + MBPT approach of
Dzuba and coworkers give almost similar results for 199Hg
[17]. As seen from Table I, the CCSD(T) values for αd , dTPT

A ,
and dNSM

A distinctly differ by 5% (increased), 45% (reduced),
and 23% (reduced), respectively, from the CI + MBPT results
in 225Ra. The main reason for these large differences is the
significant non-RPA and core correlation contributions in the
considered properties. This is apparent from the differences be-
tween the MBPT(2) and MBPT(3) results and the LCCSD and
CCSD(2) results given in Table I since MBPT(2) corresponds
to the lower-order RPA, whereas the non-RPA contributions
start appearing in MBPT(3). For quantitative substantiation,
we present a few important non-RPA contributions (depicted
diagrammatically in Fig. 1) from MBPT(3) in Table II. We also

TABLE II. Non-RPA contributions from the MBPT(3) diagrams
shown in Fig. 1 along with their exchange parts. The units for αd ,
dTPT

A , and dNSM
A are the same as in Table I.

Contributions

αd dTPT
A dNSM

A

Diagram (i) −52.19 2.01 0.97
Diagram (ii) −25.98 1.29 0.62
Diagram (iii) −14.77 0.49 0.20

TABLE III. Individual contributions to αd , dTPT
A , and dNSM

A (same
units as in Table I) from various LCCSD, CCSD, and CCSD(T) terms
arising in Eq. (4). “Extra” corresponds to the leftover terms.

Method DT
(1)

1 T
(0)†

1 DT
(1)

1 T
(0)†

2 DT
(1)

1 T
(0)†

2 DT
(1)

2 Extra

αd (ea3
0 )

LCCSD 277.57 −22.09 −30.17 24.17 2.40
CCSD 273.09 −20.14 −32.83 30.60 −2.96
CCSD(T) 269.08 −22.60 −30.47 30.19 −2.80

dTPT
A (10−20 CT 〈σn〉|e| cm)

LCCSD −16.62 0.01 3.54 −0.41 −0.36
CCSD −13.37 −0.08 3.32 −0.19 0.28
CCSD(T) −13.34 −0.09 3.33 −0.20 0.29

dNSM
A (10−17 [S/|e| fm3]|e| cm)

LCCSD −9.37 0.06 1.63 −0.75 0.03
CCSD −7.76 0.02 1.59 −0.83 0.19
CCSD(T) −7.77 0.02 1.59 −0.83 0.21

give the contributions from the LCCSD, CCSD, and CCSD(T)
methods in Table III to affirm the importance of different elec-
tronic configurations in the accurate evaluation of the above
properties. As seen, DT

(1)
1 yields the largest contributions in

all the cases, alluding to careful inclusion of the singly excited
configurations in the calculations for achieving accurate results
in 225Ra. Nevertheless, doubly excited contributions through
T

(1)
2 are also found to be crucial. Comparing the LCCSD and

CCSD(T) results, we observe that singly excited amplitudes
are modulated in the calculation of dA, while the doubly
excited amplitudes are altered substantially in the evaluation
of αd . We also investigate proportionate contributions to
DT (1) in the CCSD(T) method from different matrix elements
of the P,T -odd interaction Hamiltonians and E1 operator
between the core and virtual orbitals; the dominant matrix
element contributions to αd and dA are shown as histograms
in Fig. 2. This figure clearly exhibits uneven contributions to
αd , dTPT

A , and dNSM
A from different matrix elements between

the low-lying orbitals of 225Ra.
Combining our CCSD(T) result for dNSM

A with the measured
dA (225Ra) value [1], we get an upper bound on NSM as
S < 7.4 × 10−6 |e| fm3. Similarly, with the knowledge of 〈σn〉
in 225Ra from nuclear calculation, an upper bound on CT

can be predicted. Two sophisticated nuclear calculations have
been carried out using the octupole deformed Woods-Saxon
potential [7] and odd-A Skyrme mean-field theory [27] to
describe the P,T -odd interactions in 225Ra in terms of the
pion-nucleon-nucleon (πNN) couplings. In a recent review,
Engel et al. gave the best value for S from these two
calculations as [28]

S = 13.5[−1.5ḡ0 + 6.0ḡ1 − 4.0ḡ2] |e| fm3, (5)

where ḡi=0,1,2 are the isospin components of the P,T -odd
πNN coupling constants. We infer bounds as |ḡ0| < 3.6 ×
10−7 and |ḡ1| < 9.1 × 10−8 using the above result with
our extracted limit on S. Again, from the relations |ḡ0| =
0.018(7)θQCD [29] and |ḡ1| = 2 × 10−12(d̃u − d̃d ) [30], we
put the upper limits as |θQCD| < 2.0 × 10−5 and |d̃u − d̃d | <

4.6 × 10−22 |e| cm. Although at present these bounds are not
competitive with the corresponding limits acquired from the
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FIG. 2. (Color online) Histograms representing the dominant matrix elements between the 7s and 6p occupied orbitals and the low-lying
virtual ms and mp orbitals, with m being the corresponding principle quantum number, of DT (1) in the CCSD(T) method. Plots for (i) αd , (ii)
the 7s ↔ mp matrix elements of dA, and (iii) the 6p ↔ ms matrix elements of dA.

199Hg EDM study [17], the limits could become more stringent
when our results are combined with the anticipated improved
225Ra EDM measurement.

We thank Professor B. P. Das for encouraging us to carry out
this study. The computations were carried out using 3TFLOP
HPC cluster of PRL, Ahmedabad.
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