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We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a linear chain of
quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic Bell-state measurements,
multimode quantum memories, and classical-only error correction. Assuming perfect sources, we find an exact
expression for the secret-key rate, and an analytical description of how errors propagate through the repeater
chain, as a function of various loss-and-noise parameters of the devices. We show via an explicit analytical
calculation, which separately addresses the effects of the principle nonidealities, that this scheme achieves
a secret-key rate that surpasses the Takeoka-Guha-Wilde bound—a recently found fundamental limit to the
rate-vs-loss scaling achievable by any QKD protocol over a direct optical link—thereby providing one of the first
rigorous proofs of the efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum
state generated by the repeater chain, which could be useful for analyzing the performance of other non-QKD
quantum protocols that require establishing long-distance entanglement. We evaluate that shared state’s fidelity
and the achievable entanglement-distillation rate, as a function of the number of repeater nodes, total range,
and various loss-and-noise parameters of the system. We extend our theoretical analysis to encompass sources
with nonzero two-pair-emission probability, using an efficient exact numerical evaluation of the quantum state
propagation and measurements. We expect our results to spur formal rate-loss analysis of other repeater protocols
and also to provide useful abstractions to seed analyses of quantum networks of complex topologies.
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Shared entanglement underlies many quantum information
protocols such as quantum key distribution (QKD) [1],
teleportation [2], and dense coding [3] and is a fundamental
information resource that can boost reliable classical and
quantum communication rates over noisy quantum channels
[4,5]. Optical photons are arguably the only candidate for
distributing entanglement across long distances. However, they
are susceptible to loss and noise in the channel, which is
the bane of practical realizations of long-distance quantum
communication. The maximum entanglement-generation rate
over a lossy optical channel with no classical-communication
assistance is zero when the total loss exceeds 3 dB [6].
With two-way classical-communication assistance, the rates
achievable for entanglement generation, as well as those for
reliable quantum communication and secret-key generation
(i.e., QKD) over a lossy optical channel must decay linearly
with the channel’s transmittance (i.e., exponentially with
optical fiber length), regardless of the specific protocol used,
for loss exceeding ∼5 dB [7], while the rate plunges to zero at a
maximum loss threshold that is determined by the excess noise
in the channel and detectors. In order to generate entanglement
over long distances at high rates, intermediate nodes equipped
with quantum processing power must be interspersed along
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the lossy channel. Quantum repeaters are one example of
such nodes that can help circumvent the aforesaid linear
rate-transmittance falloff of the unassisted lossy channel—
henceforth referred to as the Takeoka-Guha-Wilde (TGW)
bound [7]. However, not all quantum devices, for example,
quantum-limited phase-sensitive amplifiers, can serve as effec-
tive intermediate nodes for improved quantum communication
performance over the unassisted pure-loss channel [8].

Several quantum repeater protocols have been proposed,
most of which use entanglement swapping by Bell-state
measurements and quantum memories of some form (see [9]
for a recent review). The basic quantum repeater protocol
probabilistically connects a string of imperfect entangled qubit
pairs by using a nested entanglement swapping and purification
protocol, thereby creating a single distant pair of high fidelity
[10]. If used for QKD, those final distant entangled pairs are
measured by Alice and Bob in randomly chosen mutually
unbiased bases, followed by sifting, error-correction, and
privacy amplification over a two-way authenticated classical
channel, to generate a shared secret.

The original repeater protocol [10] relied on purifying
multiple long-distance imperfect shared-entangled pairs (into
fewer pairs of high fidelity), a procedure known as entangle-
ment distillation. As an alternative to entanglement distillation,
several forward-quantum-error-corrected protocols, which can
afford a better rate performance at the expense of more frequent
memory-based repeaters capable of universal quantum logic,
have been proposed and analyzed [11,12]. Some of the more
recently proposed forward-coded protocols do not even need
any matter quantum memories, but come at the expense of
requiring fast quantum logic and feedforward at all-optical
center stations, as well as a potentially huge overhead in
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terms of the number of photons used for error correction
[13,14].

There is therefore a lot of interest in simpler approaches to
quantum repeaters that do not use entanglement purification or
quantum error correction. The seminal work in this area was
the DLCZ protocol [15], which uses single-photon interference
to create entanglement between distant atomic ensemble
quantum memories. This entanglement is swapped via linear
optics and single-photon detections and finally converted
into two-photon entanglement at the two end points using
the same basic ingredients. The DLCZ protocol triggered
a lot of experimental and theoretical activity [9]. It has
two key shortcomings from a practical point of view. First,
the achievable entanglement distribution rate is very low.
Second, its reliance on single-photon interference means that
interferometric stability over long distances is required. A
lot of subsequent work has focused on addressing these two
points. One promising approach that addresses the first point
is multiplexing. References [16] and [17] proposed the use of
spatial and temporal multiplexing, respectively. The second
point can be addressed by using two-photon interference
instead of single-photon interference. Proposals based on
two-photon interference include Refs. [18–21]. The reader
is also encouraged to see Ref. [9] for a detailed review of
Refs. [16–18,20,21] and related work.

A more recent proposal by Ref. [22] promises high
entanglement distribution rates by combining two-photon
interference and spectral multiplexing. It uses photon-pair
sources, multimode quantum memories [23,24], linear-optic
Bell-state measurements [25,26], and classical-only error
correction. This protocol does not rely on purification and
does not require hierarchical connection of the elementary
links (i.e., multiple connections can proceed simultaneously),
and thus the memory coherence time requirements and the
system’s clock speed are not driven by long-distance classical
communication delays. The protocol allows the fidelity (of the
end-to-end shared-entangled state) to deteriorate as the chain
lengthens and finally uses classical error correction on a long
sifted sequence of correlated pairs of classical data generated
by measurements by Alice and Bob to extract quantum-secure
shared secret keys.

Despite the practical appeal of the architecture proposed
in [22], a rigorous calculation of its achievable rate-vs-loss
performance—both entanglement-distillation and secret-key-
generation rates—in the presence of various loss and noise
detriments; showing that it can fundamentally outperform
the TGW bound is the primary purpose of this paper. We
provide explicit calculations of the rate-vs-loss function of any
quantum repeater protocol, and hence a rigorous achievability
proof that this repeater protocol can beat the TGW bound,
even with lossy and noisy components. Our compact scaling
results could help abstract off the rate-loss function of a linear
repeater chain to seed future network theoretic analyses of
quantum networks of more complex topologies. We hope
that our work will incite similar detailed rate-loss analysis
of other repeater protocols, which will enable quantitative
resource-performance tradeoff studies and comparisons of the
various protocols.

A big challenge that faces practical designs of long-
distance quantum repeater architectures is the quantitative

understanding of how the shared-entangled state evolves
across concatenated swap operations across multiple repeater
nodes, which would enable calculating the rates of various
quantum communication protocols that may consume the
generated shared entanglement. Some recent studies were
done to analyze linear chains of quantum relays [27] and
memory-based repeaters [22,28], which have either used
extensive numerical simulations or proposed semianalytic
or approximate theoretical models. Another paper did an
elaborate analysis of various prominent quantum repeater
protocols from the perspective of evaluating the minimal
required parameters to obtain a nonzero secret key at a given
range [29]. Finally, a recent study of a relay architecture
constructed using spontaneous parametric downconversion
(SPDC) sources and concatenated entanglement swapping
[30] suggests the need of quantum memories to beat the TGW
bound.

In this paper, we present a complete analytical character-
ization of the evolution of the end-to-end shared-entangled
state in a concatenated quantum repeater chain and evaluate
its performance for QKD. We analyze the scheme proposed
in [22]. We analyze QKD using the aforesaid repeater chain
as an example application and obtain an exact expression
for the secret-key rate as a function of loss, number of
swap stages, and various loss-and-noise parameters of the
channel and detectors. We account for fiber loss, detector dark
counts, detector inefficiency, multipair emission rates of the
entanglement sources, and loss in loading (readout) into (from)
the quantum memories. We find a compact scaling law for how
the quantum bit error rate (QBER)—the probability that Alice
and Bob obtain a mismatched sifted key bit despite measuring
their halves of the entangled state in the same bases—scales
up with an increasing number of swap levels. This analytical
scaling has practical importance, since an experimentally
measured QBER on a single elementary link can be used
to predict the QBER (and hence the key rates) practically
obtainable over a long-distance channel that is constructed
with multiple elementary links made with identical imperfect
devices. Our calculation involves a detailed analysis of the
Bell-swap operations by modeling imperfect single-photon
detectors with appropriate positive-operator-valued-measure
(POVM) elements and solving a variant of the logistic map,
a nonlinear difference equation whose solutions are known
to be chaotic in general [31]. Our calculations show that the
aforesaid repeater chain, even if built using lossy and noisy
devices, attains an overall rate-loss scaling for QKD that
outperforms the TGW bound, the best performance achievable
by any QKD protocol that does not employ quantum repeaters.
To be precise, if η ∈ (0,1] is the end-to-end transmittance of the
Alice-to-Bob channel, we show that by dividing up the channel
into an optimum number of repeater nodes, the secret-key
rate achieved by the repeater chain, R = Aηξ . The prefactor
A and the power-law exponent ξ , 0 < ξ < 1, are constants
that are functions of various loss-and-noise parameters of the
system. This beats the TGW bound’s rate-loss scaling, i.e.,
R � log2[(1 + η)/(1 − η)] ≈ 2.89η bits/mode, for η � 1 [7].
Furthermore, since we calculate the exact quantum state after
every swap stage, our results can be used to calculate any other
quantity of interest, such as fidelity (see Appendix D 1), for
other applications of long-distance shared entanglement.
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We also do an exact evaluation of the repeater chain
numerically—using an efficient routine that employs sparsified
matrix representations of bosonic operations—which enables
us to go beyond sources with zero two-pair emissions, i.e.,
p(2) > 0. Even for sources with p(2) > 0, our analytical
prediction of QBER propagation through the repeater chain is
shown to hold, albeit with a p(2)-dependent modification to a
prefactor. Using the above phenomenological model of QBER
propagation, we show that positive two-pair probability p(2)
is shown to deteriorate the rate-distance function, but in the
following way: At any given value of p(2), there is a maximum
number Nmax(p(2)) ≈ 1 + c/p(2) of elementary links such
that for N < Nmax links, the rate-loss envelope achieved by
the repeater chain remains almost identical to what is achieved
by a p(2) = 0 source (c is a constant) and thus continues to
beat the TGW bound’s scaling limit. However, for a chain with
N links with N � Nmax(p(2)), the key rate becomes worse at
all range L compared to when fewer than N elementary links
are employed. Conversely, for a given N , as long as p(2) is
less than the inverse of the function Nmax(p(2)), the rate-loss
envelope remains practically unaffected.

The paper is organized as follows. We begin with a
description of the repeater architecture and set notations in
Sec. I. In Sec. II, we state our main results, followed by
a high-level description of the key steps of our theoretical
analysis. All the detailed proofs are deferred to the appendixes.
We then summarize our main numerical results in Sec. III and
an empirical analysis of the effect of source imperfections on
the scaling of the secret-key rate. Finally, we conclude the
paper in Sec. IV, with thoughts on open questions and future
work.

I. THE REPEATER ARCHITECTURE

The architecture [22] is depicted schematically in Figs. 1,
2, and 3. The total Alice-to-Bob range, L km of lossy fiber, is
divided into N = 2n elementary links.

The elementary links. Entangled photon-pair sources (E)
at the two ends of each elementary link produce an M-fold
tensor product maximally entangled Bell state, i.e., |M±〉⊗M ,
|M±〉 � [|10,01〉 ± |01,10〉]/√2, where M is the number of
orthogonal frequency modes. The sources then send halves of
this entangled state towards the link’s center. The other halves
are loaded to multimode atomic quantum memories (QMs)

FIG. 1. (Color online) Schematic of quantum repeater architec-
ture [22].

FIG. 2. (Color online) Concatenated linking of N = 2n elemen-
tary links. Each black dot is one qubit, comprising two temporal
modes at one standard center frequency.

at each end of the elementary link [23,24] (see Fig. 1). Each
qubit of the Bell pair is encoded in two time-resolved bins
({|10〉,|01〉}). Each qubit (over all M orthogonal frequency
modes) occupies Tq seconds and undergoes lossy transmission
with transmittance λ = 10−(αL/2N)/10, where α (in dB/km) is
the fiber’s loss coefficient. At the center of the link, linear-optic
Bell-state measurements (BSMs) [25] act on the M qubit pairs.
The BSM comprises a 50-50 beam splitter followed by a pair
of single-photon detectors (which acts in sequence on each
of the two time bins of the qubit) that can spectrally resolve
M frequency modes. We assume, however, that the detectors
have no photon number resolution. The detection efficiency
and dark-click probability (per frequency mode and time bin)
for each detector is taken to be ηe and Pe, respectively. A
linear-optic BSM is successful with at most 50% probability
[26]. The sources E are assumed to be deterministic [32,33];
i.e., they generate a copy of |M±〉⊗M , every Tq seconds, over
the M orthogonal frequency modes. This suffices since any
zero-photon emission probability can be subsumed into the
detection efficiency ηe, as we see later. Nonzero two-pair
emission probability p(2) is addressed in Sec. III. Upon
successful projection by the BSM on one of the Bell states
in at least one of the M frequencies, which happens with
probability Ps(1) = 1 − (1 − Ps0)M , the BSM communicates
the which-frequency-was-successful information to both ends.
Ps0 is the success probability for a single frequency. We denote
the (two-qubit four-mode) quantum state of a successfully
created elementary link, ρ1.

Connecting elementary links. The two memories at a
repeater node, upon receipt of a pair of which-frequency
information from the adjoining elementary links, translate
their qubits to one predetermined common frequency. A
BSM at a single frequency is then performed on this pair
[22]. The BSMs at the elementary-link centers all proceed
simultaneously, and so do the repeater-node BSMs. This
is unlike the DLCZ protocol, where BSMs are performed
hierarchically, necessitating longer-lifetime memories. We
assume that a universal synchronized clock is available. The
clock rate of the system (T −1

q ) is limited by the time it takes to
perform the BSMs at the elementary-link centers (τBSM) and
those at the repeaters (τ ′

BSM) and the time for loading (readout)
of the qubits to (from) the memories, τmem. There is a latency
between entangled-pair emissions and secret-key generation,
but the clock rate is not tied to this latency (see Fig. 3 for
the timing diagram). We denote the efficiencies and dark-click
probability for each detector used for the repeater-node BSMs,
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FIG. 3. (Color online) Timing diagram for the operation of the repeater architecture. At times t = kTq , k = 0,1, . . ., the sources
synchronously generate and send M-mode Einstein-Podolsky-Rosen (EPR) halves towards centers of elementary links (which ideally take time
L/2Nc to arrive at the links’ centers assuming c to be the speed of light in fiber), while they load the other entangled halves into local QMs.
The elementary-link BSMs take time τBSM, and the (classical) which-frequency-succeeded information takes time L/2Nc to arrive back at the
repeater nodes. At this point, each repeater node (synchronously) attempts a local BSM at a common frequency across the two qubits held in
the two memories linked to the elementary links on its two sides, which takes time τ ′

BSM. The one-bit classical results of these BSMs take up to
τend = L/c seconds to reach Alice and Bob. Synchronously with the repeater-node BSMs, Alice and Bob measure the qubits in their respective
QMs, which takes time τd � τ ′

BSM, we assume. Once the one-bit (success or failure) outcomes from all the repeater nodes arrive at Alice and
Bob, they begin their classical processing. This involves first discarding the instances when they did not use matching measurement bases,
those when they did use the same bases but did not get a successful sift event, and those when not all repeater nodes succeeded. Thereafter they
use error correction to sieve out shared secret bits.

ηr and Pr , respectively. Let λm denote the subunity efficiency
in loading (and retrieving) the photonic qubit into (and from)
the memories and that of frequency shifting and filtering. If
this BSM is successful, two elementary links are connected
to form a two-qubit entangled state ρ2. Two copies of ρ2 are
connected (probabilistically) to produce ρ3, etc. (although,
as noted above, the connections do not have to proceed in
this hierarchical manner). Given two identical successfully
heralded copies of ρi−1, the probability that a repeater-node
BSM successfully heralds a ρi is Ps(i), and, as we see later,
Ps(i) = Ps , ∀ i ∈ {2, . . . ,n + 1}.

Error probabilities and key rate. Say Alice and Bob make
measurements on the two-qubit shared state ρi , in either
the computational basis (single-photon detection on each of
the two modes of their respective qubits) or the 45◦ rotated
basis (realized by a 50-50 beam-splitter action on the two
modes of their respective qubits, followed by single-photon
detection on each mode). The detection efficiency and dark-
click probability of their detectors are denoted ηd and Pd .
Alice and Bob then share their detection outcomes over an

authenticated public channel. This detection of one copy of
ρi produces one of 16 possible outcomes. As an example,
the detection outcome “1,0; 1,1” means Alice gets a click
and a no-click outcome on her qubit, and Bob gets clicks on
detection of both modes of his qubit (it is instructive to note
here that the “1,1” outcome is possible only if Pd > 0). The
sift probability P1 is the probability that neither Alice nor
Bob get zero clicks on both their detectors (i.e., 9 of the 16
possible outcomes), given they both measure their qubits in
the same basis.1 Upon a successful sift, Alice interprets her
sifted bit as “0,1” → 0, “1,0” → 1, and “1,1” → 0 or 1 with
equal probability, whereas Bob interprets his sifted bit as:

1Note that this definition of sifting clearly suggests that, if the
entanglement sources have a nonzero two-pair-emission probability
p(2), then an improved sifting performance could be obtained if
Alice’s and Bob’s detectors have photon number resolving (PNR)
capability, since that will help postselect out erroneous multiphoton
events. We explore and analyze this further in [35].
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“0,1” → 1, “1,0” → 0, and “1,1” → 0 or 1 with equal
probability. One may wonder why Alice and Bob do not simply
discard all the two-click events as errors (in which case the
sift would happen conditioned only on 4 of the 16 possible
measurement outcomes). Doing so exposes them to a security
vulnerability that was identified by Lütkenhaus in [34]. Condi-
tioned on a successful sift, we denote Qi , the QBER, to be the
probability that the sifted bits Alice and Bob infer are different.
The error-correcting code used to extract keys must code
around this error rate. If all detectors are noiseless (i.e., Pe =
Pr = Pd = 0), Qi = 0, 1 � i � n + 1. The overall success
probability in creating the shared state ρn+1, Psucc = Ps(n +
1)(Ps(n))2 . . . (Ps(2))2n−1

(Ps(1))2n = P N−1
s Ps(1)N , N = 2n.

Let us assume Alice and Bob make the aforesaid measurement
and sifting on K identical copies of the qubit-pair ρn+1, i.e., a
shared state created by connecting N = 2n elementary links. In
the limit of large K , and assuming an optimal error correcting
code, Alice and Bob can extract P1PsuccR2(Qn+1)/2 uncon-
ditionally secure secret-key bits per qubit pair. Therefore, the
secret-key rate is given by

R = P1PsuccR2(Qn+1)/2Tq secret-key bits/s, (1)

where the factor of 2 in the denominator accounts for
the probability that Alice and Bob use the same basis
choice, R2(Q) = 1 + 2(1 − Q) log2(1 − Q) + 2Q log2(Q) is
the secret-key rate of BB84 in bits per sifted symbol [36],
with Q the error probability in the sifted bit. Figure 3 shows
a pictorial description of the entire process described in this
section. References [37,38] generalized (1) for the case when
Alice and Bob use a d-dimensional encoding (d > 2), and g

mutually unbiased measurement bases, 2 � g � d + 1.

II. THEORETICAL ANALYSIS OF THE QUANTUM
REPEATER CHAIN

In Sec. II A, we summarize our results on the full analytical
characterization of the end-to-end shared-entangled state ρi ,
1 � i � n + 1, generated by the repeater chain (which could
be useful in analyzing other non-QKD applications as well).
We summarize explicit formulas for Psucc, P1, and Qn+1,
using which we calculate the secret-key rate using Eq. (1). In
Sec. II B, we show that the key rate RN (L) vs the Alice-to-Bob
range L when N equal-length elementary links are employed,
is described approximately by a three-segment plot. Using
this characterization of RN (L), we derive the rate-vs-distance
envelope R(L) attained by the repeater chain when an optimal
number of elementary links is employed for any given total
range and show that the rate achieved by the repeater protocol
is given by R(L) = Aηξ , where η = e−αL, and ξ < 1, hence
proving that it beats the TGW bound’s scaling limit, the best
rate-loss scaling achievable without assistance of quantum
repeaters (which translates to, ξ = 1). Throughout Sec. II, we
provide proof sketches, deferring all detailed calculations to
the appendixes.

A. Shared state propagation and secret-key rate

Theorem 1. We assume Alice and Bob make a measurement
on ρi in the same basis.

(1) Sift probability. The probability that Alice and Bob use
the same measurement bases is 1/2. Conditioned on them
using the same bases, the probability of a successful sift
(i.e., them deeming their measurement outcomes usable for
further processing) is given by P1 = (q1 + q2 + q3)2, where
q1 = (1 − Pd )Ad , q2 = (1 − Ad )Pd , q3 = PdAd , Ad ≡ ηd +
(1 − ηd )Pd , are defined in terms of loss-and-noise parameters
of Alice’s and Bob’s detectors.

(2) QBER. Conditioned on a successful sift, the error
probability Qi , i.e., the probability that Alice and Bob obtain
mismatched bits, is given by

Qi = 1

2

[
1 − td

tr
(tr te)2i−1

]
, 1 � i � n + 1, (2)

where te = (1 − 2w1)/(1 + 2w1), tr = (1 − 2wr )/(1 + 2wr ),
and td = [(q1 − q2)/(q1 + q2 + q3)]2 are functions of loss-
noise parameters of detectors in the elementary links, memory
(repeater) nodes, and Alice-Bob, respectively. The parameters
tx become one when the respective detectors (x = e,d,r) have
zero dark-click probability, i.e., Px = 0 (but may have subunity
detection efficiency, i.e., ηx < 1). 2w1 = 2ce/(ae + be), is the
relative probability of classical correlations to that of pure Bell
states in the elementary-link state, ρ1. 2wr = 2c/(a + b) is the
fractional probability spillovers to the classically correlated
states at each repeater connection. See Proposition 1 for
definitions of ae, be, ce, a, b, and c in terms of various
loss-and-noise parameters.

(3) Successful connection probabilities. The success prob-
ability Ps(i), to prepare ρi from two copies of ρi−1, is given
by Ps(1) = s1 = ae + be + 2ce, and Ps(i) = s = a + b + 2c,
for 2 � i � n + 1. The overall success probability is Psucc =
P N−1

s Ps(1)N ;

Psucc = 1

4s
{4s[1 − (1 − 4s1)M ]}2n

. (3)

Proof. The proof of Theorem 1 involves a detailed analysis
of how the quantum states ρi evolve through successive
connections of elementary links (sketched in Fig. 2) and
finding the exact solution of a variation of the so-called logistic
map, whose solutions are chaotic in general. With the Qi as
defined above, it is easy to see that the following recursive
relation holds:

(1 − 2Qi+1) = tr

td
(1 − 2Qi)

2, 1 � i � n. (4)

The prefactor tr/td in the above error-propagation law equals
1 if the detectors at the memory nodes have zero dark clicks
(Pr = 0 ⇒ tr = 1) and if the detectors used to measure the
end points of ρi have zero dark clicks (Pd = 0 ⇒ td = 1).
The constant tr is only a function of the fractional probability
transferred to classical correlations (2c) to that which goes to
one of two Bell states (a + b), when two pure Bell states are
connected by a linear-optic BSM with lossy-noisy detectors
(see Proposition 1 ). We note that the constant tr/td does not
depend upon the parameters that specify the quality of the
elementary link, but Q1, the QBER of the elementary link,
does depend upon the elementary-link parameters.

We now describe the steps leading up to the proof of
the expressions in Theorem 1. We defer several details to
Appendixes A, B, C, D, and E. We assume without loss of
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generality that the sources always produce the state |M+〉⊗M .
In reality, the sources may produce |M+〉 or |M−〉 in each mode
probabilistically, but if the signs are known a posteriori (as in
an SPDC source), they can be accounted for in postprocessing
at the error-correction stage. In fact, as long as the sources
produce any one of the four Bell-basis states in each Tq

second, if it is known which one was produced, it can be
accounted for in classical postprocessing. Let us first consider
calculating ρi , the two-qubit state after successfully connecting
2i−1 elementary links.

Proposition 1. The quantum state ρi obtained after i

connection levels, 1 � i � n + 1, is given by

ρi = 1

si

[ai |M+〉〈M+| + bi |M−〉〈M−| + ci |ψ0〉〈ψ0|
+ di |ψ1〉〈ψ1| + di |ψ2〉〈ψ2| + ci |ψ3〉〈ψ3|], (5)

where |ψ0〉 = |01,01〉, |ψ1〉 = |01,10〉, |ψ2〉 = |10,01〉,
|ψ3〉 = |10,10〉, |M±〉 = [|ψ2〉 ± |ψ1〉]/

√
2, si = ai + bi +

2(ci + di) is a normalization constant, and the coefficients of
the state ρi+1 are recursively given as

ai+1 = 1

s2
i

[
aa2

i + (a + b)aibi + bb2
i

]
, (6)

bi+1 = 1

s2
i

[
ba2

i + (a + b)aibi + ab2
i

]
, (7)

ci+1 = 1

s2
i

{
c(ai + bi)

2 + 2(a + b)ci(ai + bi + 2di)

+ 4c
[
di(ai + bi) + c2

i + d2
i

]}
, (8)

di+1 = 1

s2
i

{
4cci(ai + bi + 2di)

+ 2(a + b)
[
di(ai + bi) + c2

i + d2
i

]}
, with (9)

si+1 = ai+1 + bi+1 + 2(ci+1 + di+1), (10)

where the parameters

a = 1

8

[
P 2

r (1 − Ar )2 + A2
r (1 − Pr )2], (11)

b = 1

8
[2ArPr (1 − Ar )(1 − Pr )], (12)

c = 1

8
Pr (1 − Pr )[Pr (1 − Br ) + Br (1 − Pr )], (13)

with Ar = ηrλm + Pr (1 − ηrλm) and Br = 1 − (1 − Pr )(1 −
ηrλm)2, are functions of the system’s loss-and-noise param-
eters. For i = 1 (the elementary link), we have the initial
conditions, a1 = ae, b1 = be, c1 = ce, and d1 = 0, with s1 =
ae + be + 2ce, where ae,be,ce are defined exactly as a,b,c,
with (Pe,Ae,Be) replacing (Pr,Ar,Br ) in Eqs. (6), (7), (8),
where Ae = ηeλ + Pe(1 − ηeλ) and Be = 1 − (1 − Pe)(1 −
ηeλ)2, defined similar to Ar , Br . Here λm is the efficiency
of loading (reading) the photonic qubits into (from) the
memories, and λ = e−αL/2N is the channel transmittance of
half of an elementary link.

Proof. A detailed proof is given in Appendix A, where
we calculate the state ρi (i.e., the coefficients ai,bi,ci,di)
explicitly for all i explicitly in terms of the loss-and-noise

parameters. The key steps are (i) to realize that λ and λm

can be subsumed in the detector efficiencies ηe and ηr of the
BSMs, respectively, thereby rendering all qubit transmissions
lossless; (ii) realizing that a single-photon detector of effi-
ciency η and dark-click probability P —when the impinging
light is guaranteed to have no more than two photons—is
accurately described by the POVM elements (see Fig. 14 in
Appendix F ), F0 = (1 − P )	0 + (1 − P )(1 − η)	1 + (1 −
P )(1 − η)2	2 and F1 = I − F0, with 	i = |i〉〈i|, i = 0,1,2,
being projectors corresponding to the vacuum, single-photon,
and two-photon outcomes of an ideal PNR measurement;
and (iii) carrying out the mathematics of the linear-optic
BSM operation on ρ⊗2

i while accounting for the appropriate
postselections as derived in Ref. [26]. �

Once we have the state ρi , defined recursively in terms
of ρi−1, we calculate the success probabilities, Ps(i) = 4si ,
where si = s = a + b + 2c, ∀ i � 2. The success probability
of creating ρ1, Ps(1) = 1 − (1 − Ps0)M , where Ps0 = 4s1,
where s1 = ae + be + 2ce, is the probability of successful
creation of an elementary link ρ1 in one of the M frequencies
(see Appendix B for details).

We next prove that the sift probability P1 = (q1 + q2 +
q3)2, ∀ i, where q1 = (1 − Pd )Ad , q2 = (1 − Ad )Pd , and q3 =
PdAd , with Ad = ηd + (1 − ηd )Pd (which are all functions of
the loss-and-noise parameters of Alice’s and Bob’s detectors).
An intuitive explanation is as follows: q2 is the probability
that the noisy detectors “flip” the outcome [|10〉 detected as
(no-click, click), or |01〉 detected as (click, no-click)]; q1 is
the probability that the detectors do not flip the outcome [|01〉
detected as (no-click, click), or |10〉 detected as (click, no-
click)]; and q3 is the probability that the detectors generate the
(click, click) outcome (regardless of whether |10〉 or |01〉 are
detected. Since the flip, no-flip, and click-click probabilities
are symmetric in the inputs |01〉 and |10〉, and each half of
ρi has exactly one photon (in two modes), regardless of the
relative fractions of |01〉 and |10〉 in Alice’s and Bob’s share
of the joint state, the probability of a successful sift is the
probability they both get one of the above three events; hence,
P1 = (q1 + q2 + q3)2. See Appendix C for a more detailed
argument.

The final step is to obtain the error probability

Qi = 1

P1
{Tr[ρi(M0101 + M1010

+ 1

2
{M1101 + M1110 + M0111 + M1011 + M1111})]},

where P1 = Tr[ρi(M0101 + M0110 + M1001 + M1010 +
M1101 + M1110 + M0111 + M1011 + M1111)] and Mijkl ≡
Fi ⊗ Fj ⊗ Fk ⊗ Fl . It is simple to argue that Qi is a function
only of 2ci/si (see Appendix D for detailed proof). The
intuitive argument is that a bit error only arises from 2ci/si ,
the fractional probability of the classical correlation terms
in ρi , whereas (ai + bi) is the sum fractional probability
of the two Bell states |M+〉 (ai) and |M−〉 (bi), with
si = (ai + bi) + 2ci . Even if the BSM results accidentally in
a |M−〉 to be formed, there would be no bit error. In order to
calculate ci , we calculate ci + di ≡ yi and ci − di ≡ ui by
adding and subtracting Eqs. (8) and (9) and writing recursions
for yi and ui . The solution to yi comes out as yi = (si − zi)/2,
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with zi = [s2/(a + b)][(1 + 2w1)(1 + 2wr )]−2i−1
, where

wr = c/(a + b) and w1 = ce/(ae + be). The solution to ui

requires us to solve the following variant of the chaotic
logistic map: wi+1 = wr + 2(1 − 2wr )wi(1 − wi), where
wi = ui/zi . We derive the exact solution of this quadratic
recursion (see Appendix E for proof) and are thus able to
evaluate Qi = [1 − td (1 − 2ci/si)]/2, which simplifies to the
form shown in Eq. (2) of Theorem 1. �

It is easy to account for a probabilistic entanglement source
to account for a finite probability of vacuum in each time slot
(the numerical calculations in Sec. III further accounts for a
nonzero two-pair-generation probability). Such a probabilistic
entanglement source can be modeled as generating ρ =
(1 − p)|0〉〈0| + p|M±〉〈M±| in each frequency mode and
in every Tq second slot. Since ρ can be regarded as the
quantum state obtained by passing |M±〉 through a beam
splitter of transmittance p, we can “push” p through the BSM
at the centers of elementary links and apply our formulas
after replacing ληe by ληep and accordingly modifying the
parameters: ae, be, and ce.

Finally, even though all the above analysis was done for
N = 2n elementary links (with n an integer), we believe that
the final formula for Q and rate also hold for any integer N .
In other words, with an end-to-end optical fiber channel with
N elementary links, N ∈ Z+,

RN (L) = P1PsuccR2(Q(N ))/2Tq key bits/s, (14)

where, Q(N ) = 1
2 [1 − (td/tr )(tr te)N ]. Since R(Q) = 1 −

2h2(Q), with h2(x) = −x log2(x) − (1 − x) log2(1 − x) the
binary entropy function, the maximum range for which QKD is
possible at a nonzero rate is determined by when Q(N ) exceeds
Qth, where h2(Qth) = 1/2 and Qth ≈ 0.1104. One can invert
Q(N ) to derive the maximum range as a function of number
of elementary links N , and all the detector loss-and-noise
parameters:

Lmax =
(

20N

α

)

× log10

{
ηe

[√
2(1 − 2Pe)H − 2(1 − 2Pe)

]
4Pe

}
, (15)

where H = 1 + tr/[(1 − 2Qth) tr
td

]
1
N and α is the fiber’s loss

coefficient, expressed in dB/km units.

B. Rate-vs-loss performance of the repeater chain

We defined RN (L) to be the secret-key rate achievable with
N equal-length elementary links dividing up the total range L.
Let us define R

(0)
N (L) to be the secret-key rate achieved with all

the dark-click probabilities set to zero, i.e., Pe = Pr = Pd = 0.
It is reasonable to expect that nonzero-dark-click probabilities
can only decrease the secret-key rate (See Appendix F 1 for
a more detailed discussion), and hence, RN (L) � R

(0)
N (L).

Assuming this to be true, the secret-key rate RN (L) can be
upper bounded, to a very good approximation, by a three-
segment rate plot (see Fig. 4): a constant-rate segment, a linear
rate-vs-transmittance segment, and a zero-rate segment. More
specifically, we prove the following.

FIG. 4. (Color online) A “three-piece” upper bound to the rate-
vs-distance RN (L) achieved by a repeater chain consisting of N

elementary links over the range L km. We assume the following
parameters: N = 4, Pe = Pr = Pd = 3 × 10−5, ηe = ηr = ηd = 0.9,
M = 1000, λm ≡ 1 dB, α ≡ 0.15 dB/km, Tq = 50 ns.

Theorem 2. The rate-vs-distance function RN (L), achieved
by a repeater chain comprising N equal-length elementary
links, can be upper bounded as

RN (L) � R
(UB)
N (L) =

⎧⎨
⎩

Rmax, for 0 � L � L′,
η(ABN ), for L′ < L < Lmax,

0, for L � Lmax,

(16)
with L′ = − log2(η′)/α, η′ = (2/Mη2

e )N , and Rmax =
A (η2

r λ
2
m/2)N , where the constants A and B are given by A =

η2
d/(η2

r λ
2
mTq) and B = η2

r λ
2
mη2

eM/4, assuming that nonzero
detector dark-click probabilities cannot improve the key rate
achievable by this repeater protocol, i.e., RN (L) � R

(0)
N (L).

Proof. See Appendix F 1. The proof proceeds by upper
bounding R

(0)
N (L) individually by Rmax and by η(ABN ). The

third segment is trivial since RN (L) = 0 for L � Lmax, as we
showed earlier. �

The third segment in Eq. (16) disappears when Pe = Pr =
Pd = 0, since Lmax → ∞. It is straightforward to solve for
the envelope of the points {XN }, N = 1,2, . . ., where the first
two segments of R

(UB)
N (L) intersect (see Fig. 4), and to prove

that this envelope R(UB)(L), is an upper bound to the actual
rate-loss envelope R(L).

Theorem 3. Assuming RN (L) � R
(0)
N (L) holds for all N �

1, the rate-vs-distance function R(L) achieved by the repeater
chain, once optimized over the choice of the number of
elementary links N as a function of the range L, can be upper
bounded as

R(L) � R(UB)(L) = Aηt , (17)

where the power-law exponent t is given by

t = log2

(
η2

r λ
2
m/2

)
log2

(
2/Mη2

e

) . (18)
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Proof. See Appendix F 2 for the proof. We first show
that RN (L) � R

(0)
N (L), ∀ N implies R(L) � R(0)(L), where

R(0)(L) is the overall rate-distance envelope, when Pe = Pr =
Pd = 0. We then derive an upper bound to R(0)(L) by using
the result in Theorem 2. �

The above upper bound already suggests a power-law
scaling of the true rate-loss envelope R(L). It is actually
possible to derive the zero-dark-click-probability rate-distance
envelope R(0)(L) exactly, and, as we show next, it is indeed
given by a power law in the total Alice-to-Bob channel
transmittance, η.

Theorem 4. The rate-vs-distance R(0)(L) achieved by a
repeater chain when all detector dark-click probabilities are
zero and an appropriate number of elementary links are used
for a given range L is exactly given by

R(0)(L) = Aηξ , (19)

where A = η2
d/(η2

r λ
2
mTq), and the exponent ξ is given by

ξ = log2{β[1 − (1 − γ z)M ]}
log2 z

, (20)

where z is the unique solution of the following transcendental
equation in the interval (0,1),

[1 − (1 − γ z)M ] log2{β[1 − (1 − γ z)M ]}
= γMz log2 z(1 − γ z)M−1, (21)

with, β = η2
r λ

2
m/2, and γ = η2

e/2.
Proof. See Appendix F 3. �
In Fig. 5, we plot RN (L) as a function of L for N = 2n ele-

mentary links, with n = 0,1,2,3,4. All the system parameters
(listed in the figure caption) are kept the same for each plot. We
also plot the three-piece upper bounds R

(UB)
N (L) (dotted blue

lines), the envelope of those upper bounds R(UB)(L) = Aηt

(solid blue line), the rate-loss envelope R(0)(L) = Aηξ with all
detector dark-click probabilities set to zero (black dashed line),
and the true (numerically evaluated) rate-loss envelope R(L)
(black thin solid line). Figure 5 also shows the TGW bound
corresponding to using all M frequency modes (dash-dotted
orange line) and the rate obtained by an ideal parallel BB84
implementation (perfect single-photon sources and detectors)
over all M modes, R = ηM/Tq bits/s (dash-dotted green line).
These two plots show that this repeater protocol’s rate-loss
performance fundamentally outperforms what is achievable
without the assistance of quantum repeaters. Following are the
main observations from Figs. 5 and 6.

Effect of losses to the rate-loss envelope. As noted in
Theorem 4, the exact power-law exponent ξ of the true zero-
dark-click-rate rate-loss envelope R(0)(L) has a complicated
dependence on the system’s loss parameters. On the other
hand, the rate-loss envelope of the three-piece upper bounds
to RN (L) has a simple expression, R(UB)(L) = Aηt , with A =

η2
d

η2
r λ

2
mTq

and t = log2 (η2
r λ

2
m/2)

log2 (2/Mη2
e ) , which makes its exponent t useful

to study the effects of various losses in the absence of dark
clicks. Note that both the numerator and the denominator in
the expression for t are negative for typical parameters. When
the efficiency of the repeater node ηrλm decreases, t increases
(thus making the rate-loss scaling worse, t = 1 being the
TGW limit; performance attainable without repeaters). Note

FIG. 5. (Color online) Secret-key rates RN (L) as a function
of range L for N = 1, 2, 4, 8, and 16 elementary links. The
rate-distance envelope is seen to outperform what is theoretically
achievable by any repeaterless QKD protocol that uses the same
time-slot length (Tq ) and number of frequency channels (M) for L �
260 km. The figure also shows the exact zero-dark-click-probability
rate-distance envelope, R(0)(L) = Aηξ , where ξ = 0.284 (black
dashed line). The envelope of the three-piece rate-distance upper
bounds, RUB(L) = Aηt , is also shown (solid blue line), where
t = log2(η2

r λ
2
m/2)/ log2(2/Mη2

e ) = 0.227. The parameters used are
Pd = Pr = Pe = 3 × 10−5, ηd = ηr = ηe = 0.9, λm = 1 dB (mem-
ory loss), M = 1000 (frequency modes), α = 0.15 dB/km (fiber
loss), Tq = 50 ns.

that (ηrλm)2 can be roughly interpreted as the probability of
success (for the two memories and two detectors) at a repeater
node. On the other hand, Mη2

e can be roughly interpreted as the
probability of success (for at least one of M spectral modes and
the two detectors) at the center of an elementary link. When
Mη2

e increases, t decreases (thus making the rate-loss scaling
better). Finally, note that the efficiency of Alice’s and Bob’s

FIG. 6. (Color online) This figure captures the effect of detector
dark-click probability on the rate-loss scaling. It is seen that, for
a given number of elementary links N , increasing the dark-click
probabilities drastically reduces the maximum range Lmax; however,
the overall rate-distance envelope of the repeater chain remains
largely unaffected over a significant, and practically feasible, range
of detector dark-click probability values (see the rate-loss-envelope
traces as Pd is varied from 10−8 to 10−4).
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detectors ηd does not affect the rate-loss scaling, but η2
d is an

overall multiplier to the rate via the prefactor A (as expected,
due to a η2

d multiplicative reduction in the number of usable
time slots for key generation).

Effect of dark-click probability. To examine the effect of
detector dark-click probabilities to the secret-key rate, we
set Pd = Pr = Pe. The effect of Pd to RN (L) is captured
primarily by the maximum range Lmax, i.e., the third segment
of R

(UB)
N (L) in Eq. (16). The envelope of the three-piece upper

bounds, R(UB)(L), is, however, completely unaffected by Pd ,
since the envelope is the locus of the corner points {XN },
N = 1,2, . . ., while being unaffected by the corner points
{YN }. We numerically fit the exact rate-distance envelope to the
power law R(L) = Aηζ , and show that the exponent ζ remains
largely unaffected over a significant (and practically feasible)
range of Pd [see Fig. 6(a)]. In other words, ζ (Pd ) ≈ ξ , the
exact power-law exponent when Pd = 0, given in Eq. (20),
over a significant range of Pd [see Fig. 6(b)]. The maximum
range Lmax achieved by a given number of elementary links
N , however, drastically decreases with increasing Pd [see
Fig. 6(a)]. In the regime that Pd � 1 and the deviations
from ideal detection efficiency (εd ≡ 1 − ηd ) and memory
efficiency (εr ≡ 1 − ηrλm) are small, one can show that, to
first order in Pd,εd,εr , we have tr ≈ tr/td ≈ 1 − 4Pd . This
yields a simpler expression for the maximum range, Lmax ≈
(20N/α) log10 ({

√
2[1 + (1 − 2Qth)−1/N ] − 2}/4Pe), which

shows that the first-order dependence of Lmax to detector dark
clicks is via a subtractive term, −(20N/α) log10(4Pe), which
makes Lmax to go to infinity as Pe → 0, as expected.

Optimal choice of the number of repeaters. For a given
Alice-to-Bob range L, it should be divided up into an optimum
number of equal-length elementary links, in order to maximize
the key rate. At a short range, using too many repeaters
diminishes the end-to-end key rate, due to the 50% heralding
efficiencies of the linear-optic BSMs at the repeater nodes.
Employing higher-efficiency BSMs (by injecting ancilla single
photons for instance [39]) will increase Rmax in Fig. 4, and will
hence increase N∗(L) at any given range L.

Beating the TGW bound. The secret-key rate of any QKD
protocol that does not use quantum repeaters is upper bounded
by the TGW bound, R(UB)

TGW(η) = log2 [(1 + η)/(1 − η)] bits per
mode [7], η being the total channel transmittance. R

(UB)
TGW(η) ≈

2.88η, when η � 1 (high loss). The BB84 protocol—both the
single-photon-based and the weak coherent state implementa-
tion employing decoy states—as well as continuous-variable
(CV) QKD with a Gaussian input modulation, attain key
rates, R ≈ η bits/mode [40], thereby leaving little room for
improvement by any other protocol. With M orthogonal
frequency channels available, and a qubit duration of Tq

seconds, a parallel implementation of an ideal QKD protocol
on each of those frequency channels cannot exceed a key rate
of MR

(UB)
TGW(η)/Tq bits/s, a plot shown in Fig. 5 (see dash-dotted

orange line). The rate-loss function R(L) attained by our
repeater architecture distinctly outperforms this fundamental
repeaterless rate-loss limit, as is also clear from the power-law
dependence R(L) = Aηζ , with ζ < 1, whereas the TGW limit
corresponds to ζ = 1.

Choice of the number of frequency modes. An important
part of the design of the repeater architecture is choosing M ,

FIG. 7. (Color online) Here we plot the power-law exponent ξ of
the zero-dark-click rate-loss envelope R(0)(L) = Aηξ , as a function
of the number of frequency modes M . In order to obtain a desired
performance improvement over the TGW rate-loss scaling (ξ = 1),
the lower the detector efficiencies ηe and ηr , the higher is the level of
frequency multiplexing needed.

the number of frequency modes that the elementary links use
for multiplexing. In Fig. 7, we plot the power-law exponent
ξ of the zero-dark-click rate-loss envelope R(0)(L) = Aηξ , as
a function of M . In order to obtain a desired performance
improvement over the TGW bound’s scaling limit (i.e., ξ = 1),
the lower the detector efficiencies ηe and ηr , the higher is the
level of frequency multiplexing needed. Note that ξ does not
depend upon the efficiency ηd of Alice’s and Bob’s detectors
(see Theorem 4 ). Furthermore, it is intuitively clear, and
apparent from comparing the ξ (M) plots for ηe = 0.5,ηr = 0.9
and ηe = 0.9,ηr = 0.5, that it is more important for the
repeater-node detectors to have high efficiency as compared
to the detectors at the middle of the elementary links, since
frequency multiplexing “helps” the latter detectors. Next, we
note that there is a minimum number of frequency modes Mmin

needed for this repeater protocol to be useful (i.e., barely beat
the TGW bound’s scaling limit), which increases as ηe and ηr

decrease. An interesting, yet intuitive, thing to note is that the
blue solid and the black dashed (as well as the red diamonds
and the magenta dash-dotted) curves pairwise come close
to one another as M increases. This happens because when
M becomes sufficiently large, the probability of successful
creation of an elementary link Ps(1) = 1 − (1 − Ps0 )M ≈ 1,
which has a weak dependence on ηe, and hence ξ depends more
strongly on the losses at the repeater nodes, i.e., ηr . The exact
expression for the power-law exponent of R(UB)(L)—which is

a lower bound to the true exponent ξ , i.e., t = log2 (η2
r λ

2
m/2)

log2 (2/Mη2
e ) =

1+2 log2(1/ηrλm)
log2 M−[1+2 log2(1/ηe)] < ξ—provides a useful guideline for the
choice of M , as well as illustrates the aforesaid effect (of the
dependence of the power-law exponent being primarily on ηr

when M is high enough).
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C. Entanglement distillation rates

The actual end-to-end shared quantum state after suc-
cessfully connecting 2i−1 elementary links is given by (see
Appendix D 1 for proof)

ρi = 1

si

[
ai |M+〉〈M+| + bi |M−〉〈M−| + ci |ψ0〉〈ψ0|

+ di |ψ1〉〈ψ1| + di |ψ2〉〈ψ2| + ci |ψ3〉〈ψ3|], (22)

where |ψ0〉 = |01,01〉, |ψ1〉 = |01,10〉, |ψ2〉 = |10,01〉,
|ψ3〉 = |10,10〉, |M±〉 = [|ψ2〉 ± |ψ1〉]/

√
2, si = ai + bi +

2(ci + di), and the coefficients given as

ai = 1

2

[
1 +

(
a − b

a + b

)i−1(
ae − be

ae + be

)]
zi,

bi = 1

2

[
1 −

(
a − b

a + b

)i−1(
ae − be

ae + be

)]
zi,

ci = si

4

{
1 − zi

si(1 − 2wr )
[(1 − 2wr )(1 − 2w1)]2i−1

}
,

di = si

4
− zi

2

{
1 − 1

2(1 − 2wr )
[(1 − 2wr )(1 − 2w1)]2i−1

}
,

with w1 = ce/(ae + be), wr = c/(a + b), s1 = ae + be + 2ce,
si = s = a + b + 2c, 2 � i � n + 1, and zi given by

zi =
(

s2

a + b

)[
1

(1 + 2w1)(1 + 2wr )

]2i−1

, i � 2, (23)

with z1 = ae + be. The expressions for ai , bi , ci , and di reduce
to ae, be, ce, and 0, respectively, for i = 1.

The fidelity of the N = 2n elementary-link state ρn+1 ≡
ρAB(N ) with respect to |M+〉, 〈M+|ρi |M+〉,

FN (L) = (an+1 + dn+1)/s. (24)

In Fig. 8, we plot FN (L) as a function of the range L for
N = 1,2,4, . . . ,32 elementary-link concatenations. Note that
the plots show the fidelity of the actual heralded state (the
probability Psucc of generating ρAB

n+1 successfully is not being
accounted for). It is seen that the maximum range Lmax for
the secret-key-generation rate RN (L) roughly corresponds to
a state fidelity of FN (L) ≈ 0.86 for all N .

If Alice and Bob have many copies of the state ρAB , with no
restriction on their actual quantum measurements and postpro-
cessing, and only using one-way classical communication over
the public channel, the rate at which they can generate shared
entanglement ED(ρAB)—measured in ebits (clean EPR pairs)
per copy of ρAB initially shared—is lower bounded by the
coherent information I (A〉B) = H (B) − H (AB), also known
as the hashing bound [41]. The hashing bound for the N -link
shared rate ρAB(N ) can be evaluated to yield

IN (A〉B) = 1 − H

(
cn+1

s
,
cn+1

s
,
an+1 + dn+1

s
,
bn+1 + dn+1

s

)
,

where H (·) is the Shannon entropy function. Since ρAB(N ) is
heralded with probability Psucc, and since each qubit occupies
Tq seconds, the achievable entanglement-distillation rate is
given by

EN (L) = PsuccIN (A〉B)/Tq, (25)

FIG. 8. (Color online) Fidelity of the 2n-link state, ρn+1 for 2n =
N = 1,2,4,8,16,32, with respect to the pure EPR state |M+〉. We used
Pe = Pr = Pd = 3 × 10−5, ηe = ηr = ηd = 0.9, M = 1000, λm ≡ 1
dB, and α ≡ 0.15 dB/km.

which is plotted in Fig. 9 for N = 1,2, . . . ,16. It is instructive
to compare this with the expression for the secret-key-
generation rate,

RN (L) = P1PsuccR2(Qn+1)/2Tq, (26)

where R2(Qn+1) = 1 − 2H (Qn+1,1 − Qn+1). When Pd =
Pr = Pe = 0 (all detector dark-click rates are zero), ai =
a, and bi = ci = di = 0, and therefore ρi = |M+〉〈M+| for
all 1 � i � n + 1. Thus, the QBERs, Qi = 0, resulting in

FIG. 9. (Color online) Achievable entanglement-distillation rate
(measured in pure EPR pairs per second) using an N -link repeater
chain, for N = 1,2,4,8,16,32. We used Pe = Pr = Pd = 3 × 10−5,
ηe = ηr = ηd = 0.9, M = 1000, λm ≡ 1 dB, α ≡ 0.15 dB/km, and
Tq = 50 ns long qubits.
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R2(Qn+1) = 1, and IN (A〉B) = 1. Therefore, EN (L) and
RN (L) differ only by a factor of P1/2 = η2

d/2, as intuitively
expected. Clearly, the same is true for the zero-dark-click
rate-distance envelopes, E(0)(L) and R(0)(L), i.e., E(0)(L) =
(2/η2

r λ
2
mTq) ηξ , where ξ is given by Eq. (20). Similar to the

secret-key-generation rates, when the dark-click probabilities
are nonzero (however small), there is a finite maximum range
for entanglement distillation with N links, but the rate-loss
envelope E(L) is only slightly affected. In Fig. 9, we plot
EN (L) for N = 1,2, . . . ,16 for Pd = Pe = Pr = 3 × 10−5,
along with the zero-dark-click envelope E(0)(L), showing that
the rate-distance envelope is practically the same for this
dark-click level.

The maximum range for secret-key-generation results from
the condition R2(Qn+1) = 0, which gives the expression for
LQKD

max given in Eq. (15). The maximum range for entan-
glement distillation derives from the condition IN (A〉B) =
0, i.e., H ( cn+1

s
,
cn+1

s
,
an+1+dn+1

s
,
bn+1+dn+1

s
) = 1. Unlike the key-

generation rate, which depends cleanly on one parameter,
the QBER, the entanglement-distillation rate depends in a
more complicated fashion on the shared state ρAB

n+1, through
the parameters an+1,bn+1,cn+1,dn+1, and hence an analytic
formula for the maximum range Lent-dist

max is not possible to
obtain. The maximum ranges for entanglement distillation,
evaluated numerically, work out to be somewhat higher
compared with the those for secret-key generation, for identical
system parameters. For the parameters considered in Figs. 5
and 9, for N = 1,2,4,8,16, we get (rounded to a km)

LQKD
max = [401, 716, 1267, 2208, 3772], (27)

Lent-dist
max = [411, 761, 1389, 2488, 4367]. (28)

In evaluating the above range numbers for the QKD case,
we assumed zero-dark-click rates for the Alice-Bob detectors
(i.e., Pd = 0, Pe = Pr = 3 × 10−5), in order for an unbiased
comparison; i.e., for both cases above, Alice and Bob start
with many copies of the noisy EPR state ρAB

n+1. It is instructive
to note that an achievable shared entanglement-generation
rate is automatically an achievable secret-key-generation rate.
Therefore, our results show that the QKD protocol we analyzed
is (ever so slightly) suboptimal, in the sense that if Alice and
Bob held many copies of the noisy EPR pairs ρAB

n+1 in perfect
QMs, and applied an ideal entanglement-distillation protocol
[41], and then converted those EPR pairs to shared secret-key
bits, the resulting secret-key rates, and the maximum ranges
would be slightly higher compared to what we got. It is
remarkable, however, how close to that ultimate limit a QKD
protocol even with a simple measurement and postprocessing
can get.

III. THE EFFECT OF TWO-PAIR EMISSIONS

The entire theoretical analysis in Sec. II, as well as all
the calculations in the appendixes, assume that the entangled-
photon-pair sources have a zero probability of multipair
emission, which is usually not the case in practice, particularly
when one employs SPDC to generate entangled pairs. The
purpose of this section is to extend our analysis to sources
whose two-pair probability, p(2) > 0. Even though one could,

in principle, attempt a fully analytical calculation of the
entangled-state propagation through the repeater chain (along
the lines of our derivations in Appendix A), such a calculation
would be extremely tedious. We instead set up an exact
numerical calculation of the quantum states of the elementary
link and the states resulting from successful BSM connections,
where we evolve the quantum states in the Fock basis, and use
the sparse matrix toolbox of MATLAB to create time-efficient
subroutines for beam splitters, partial trace operations, and
PNR detectors. We continue to assume, however, that all
detectors in the system have single-photon resolution.

We use this numerical code to evaluate RN (L) for a
particular form of source with p(2) > 0 [see Eq. (29)]. We
find that for a given p(2), up to a certain maximum number
of elementary links, the rate-distance performance remains
almost identical to what is attained by an ideal [p(2) = 0]
source (i.e., that evaluated in Sec. II). However, the rate
becomes close to zero at any range, when N � Nmax(p(2))
(see Fig. 10). Our numerical calculations also show that
the scaling law in Eq. (4) for error propagation through
the repeater chain continues to hold—with an appropriate
p(2)-dependent modification to the prefactor (tr/td )—even for
nonideal sources (see Fig. 12).

This section is organized as follows. In Sec. III A, we
show the empirical effect of p(2) on the rate-loss behavior
of the repeater architecture. In Sec. III B, we develop a
phenomenological model for QBER scaling [an extension of
Eq. (4) when p(2) > 0], which we use, in turn, to develop
an approximate model to understand the functional form of
Nmax(p(2)).

A. Rate-loss behavior with nonideal sources

In Fig. 10, we plot the secret-key rates RN (L) for N =
1,2,4,8 elementary links (n = 0,1,2,3) with all parameters
held constant, p(1) = 0.9 and several choices of p(2) ranging
from 0.001 to 0.015. We model the nonideal entanglement
source as generating the state [42]

|ψ〉 =
√

1 − p(1) − p(2) |00,00〉 +
√

p(1) |M+〉
+

√
p(2)/3 (|20,02〉 − |11,11〉 + |02,20〉), (29)

where |M+〉 = [|10,01〉 + |01,10〉]/√2. This particular form
of the entangled photon-pair state, and in particular the
form of the four-photon term, is motivated by parametric
downconversion sources [43]. If p(2) is small, the exact form
of the two-pair term does not seem to affect the results,
notwithstanding that our simulation is easily able to take into
account any particular form of the two-pair term, depending
upon the physical model of the actual source of entanglement.
Finally, we assume that the higher-order multipair emission
terms (three-pair or higher) have significantly lower probabil-
ities compared to the two-pair term and that p(2) effectively
captures the effect of multipair emissions to the secret-key
rates. One other difference in the rate-loss behavior compared
with the p(2) = 0 theoretical analysis in Sec. II is that the
QBER can be now nonzero even when the detector dark-click
rates are zero. This is because errors in the sifted bit may
now be caused by the multipair events generated by the
entanglement sources.
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FIG. 10. (Color online) Secret-key rate R (bits/s) vs distance L (km), evaluated for n = 0,1,2,3 (N = 1,2,4,8 elementary links), for
sources with two-pair emission probability p(2) ranging from 0.001 to 0.055. At any given value of p(2) there is a certain number of
elementary links up until which the rate-loss envelope achieved by the repeater architecture remains almost identical to what is achieved
by a p(2) = 0 entanglement source. However, as soon as N � Nmax(p(2)), the rate goes to zero an any range. The parameter values used
are Pd = Pr = Pe = 10−6, ηd = ηr = ηe = 0.9, λm = 1 dB (memory loss), M = 1000 (frequency modes), α = 0.15 dB/km (fiber loss), and
Tq = 50 ns. The plots show that, for these parameters, for p(2) = 0.035, it is best to have a single elementary link between Alice and Bob over
the entire range. The rate-loss trade-off for 2 elementary links is worse at all range values. Similarly, at p(2) = 0.013, using four elementary
links does not yield a better rate compared to what is attained with two elementary links at all range values. Interestingly, however, the
rate-distance plots come crashing down from higher N values to lower (number of elementary links) one at a time as p(2) is increased, while
the rate-distance tradeoffs for the lower N values stay almost at their p(2) = 0 levels. Note that the N = 1 plot has no perceivable change from
p(2) = 0.001 to p(2) = 0.055. Similarly, the N = 2 plot has no perceivable change from p(2) = 0.001 to p(2) = 0.019.

At a given p(2), there is a maximum number of elementary
links up until which the rate-loss envelope achieved by the
repeater architecture remains almost identical to what is
achieved by a p(2) = 0 entanglement source. When N �
Nmax(p(2)), the rate R(L) = 0, ∀ L � 0. Seen differently, the
rate-distance plots in Fig. 10 come crashing down from higher

to lower values of N values (number of elementary links)
one at a time as p(2) is increased from 0 [with p(1) = 0.9
held constant], while the rate-distance plots for the lower
N values stay unaffected, i.e., almost at its p(2) = 0 level,
until p(2) becomes high enough to make the next lower
value of N unsustainable. As an example, the N = 1 plot has
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FIG. 11. (Color online) The purpose of this figure is to gauge the
p(2) values where a certain length N (and higher) of the repeater
chain becomes ineffective, as depicted in Fig. 10. We choose two
fixed maximum range values: one a number close to zero (10 km)
to assess Nmax(p(2)) and the other a little below the range of a
single elementary link (590 km). We divide an overall range L of (a)
10 km and (b) 590 km into N = 1,2,4, and 8 elementary links
and plot the end-to-end QBER for each case, as a function of
the two-pair-emission probability p(2). The black horizontal line
corresponds to Qth = 0.1104. The secret-key rate goes to zero when
the end-to-end QBER exceeds Qth. It is instructive to tally the p(2)
values where Qn+1 crosses the Qth line for n = 0,1,2,3, with the plots
in Fig. 10. We assume, ηe = ηr = ηd = 0.9, Pe = Pr = Pd = 10−6,
α = 0.15 dB/km, and λm = 1 dB.

no perceivable change from p(2) = 0.001 to p(2) = 0.055.
Similarly, the N = 2 plot has no perceivable change from
p(2) = 0.001 to p(2) = 0.019.

B. Phenomenological model for QBER scaling and maximum
usable number of elementary links

Before we develop a phenomenological model for
Nmax(p(2)), let us get a feel for the dependence by extracting
estimates of Nmax(p(2)) from the rate-loss plots shown in
Fig. 10. A good estimate can be obtained by assessing the
value of p(2) when an N -link concatenation becomes next
to useless, one way to quantify which is when the maximum
range for the N -link concatenation becomes less than 10 km.
Another way to quantify Nmax would be to use the value of
p(2) for which the N -link concatenation’s maximum range
falls below the maximum range obtained with N = 1 (that
range threshold could be used as 590 km for the parameters
used in Fig. 10, since the maximum range with N = 1 is
600 km).

In Figs. 11(a) and 11(b), we plot the end-to-end QBER
when a fixed overall range L (of 590 and 10 km, respectively)
is divided up into 1, 2, 4, or 8 elementary links. The color
convention is the same as the one used for the secret-key rate
plots in Fig. 10. The black horizontal lines correspond to Qth =
0.1104. The secret-key rate goes to zero when the end-to-end
QBER exceeds Qth. It is instructive to tally the p(2) values
where Qn+1 crosses the Qth line for n = 0,1,2,3, with the plots

FIG. 12. (Color online) (a) Schematic showing the chain with 1,
2, 4, and 8 links. Qi is the QBER if Alice and Bob were to make
measurements across a 2i-link chain. (b) Qi+1 vs two-pair-emission
probability p(2), for different numbers of swaps (i = 0,1,2,3) at
a fixed distance of L = 50 km [a short range is chosen to ensure
that for all four cases the elementary-link quality is very good
for the entire p(2) range we consider, so that we cleanly capture
the effect of p(2) on the QBER]. (c) Here we plot the ratio
ri = (1 − 2Qi+1)/(1 − 2Qi)2 as a function of p(2), which shows
that the ratio ri remains unchanged over i = 1,2,3, hence suggesting
that the QBER scaling law in Eq. (4) holds even when p(2) > 0.
For all plots, we assume, ηe = ηr = ηd = 0.9, Pe = Pr = Pd = 10−6,
M = 1000, α = 0.15 dB/km, λm = 1 dB, and Tq = 50 ns.

in Fig. 10. The p(2) value when the 8-elementary-link chain’s
maximum range is 590 km, is 0.0054, and that when it is 10 km
is 0.0084, both of which match well with plots (c) and (d) of
Fig. 10. Similarly, the p(2) value when the 4-elementary-link
chain’s maximum range is 590 km is 0.0116, and that when it
is 10 km is 0.0195, which match well with plot (g) of Fig. 10.
Finally, the p(2) value when the 2-elementary-link chain’s
maximum range is 590 km is 0.0347, and that when it is 10
km is 0.0577, which match well with plots (j), (k), and (l) of
Fig. 10. In the table in Fig. 11(c), we record the values of p(2),
using the 10-km estimate rule, corresponding to Nmax = 8, 4,
and 2. Our goal for the remainder of this section is to extract a
phenomenological model for Nmax(p(2))—by quantifying how
the QBER propagation law in Eq. (4) must be modified when
p(2) > 0—that closely matches the estimates in Fig. 11(c).

QBER propagation. In Fig. 12(a), we depict our L-km-
range, N = 2n elementary-link construction for n = 3. The
Alice-to-Bob range L is divided up into N = 2n elementary
links, and Qi is defined as the error probability if Alice
and Bob were to measure the state ρi (which is formed
after successfully connecting 2i−1 elementary links, each of
length L/N), 1 � i � n + 1. In Fig. 12(b), we plot Qi as a
function of p(2), when p(1) = 0.9 is held fixed, with p(0) =
1 − p(1) − p(2), for N = 2n, with n = 3. At each value of
i ∈ {0,1,2,3}, the respective QBER Qi+1 seems to grow
almost linearly with p(2) when p(2) is small for chosen system
parameters as mentioned in the caption of Fig. 12. In Fig. 12(c),
we plot the ratio C(p(2)) = (1 − 2Qi+1)/(1 − 2Qi)2 for i =
1,2,3 as a function of p(2). For the ideal source [p(2) = 0],
we proved that the QBER ratio C(p(2)) = tr/td , which is
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FIG. 13. (Color online) (a) Plot of 1 − 2Q1, where Q1 is the
QBER of one elementary link (of range Lelem = L/N , chosen in the
range 50 to 550 km), as a function of p(2). It is seen that 1 − 2Q1 �
td te − 1

2 p(2). (b) Plot of te, the “quality” of one elementary link, as
a function of Lelem, for Pe = 10−6, ηe = 0.9, and α = 0.15 dB/km.
For Lelem < 400 km, te is seen to remain close to 1.

independent of i; see Eq. (4). For the aforesaid loss-and-noise
parameters, tr/td = 1 − ε, with ε = 1.39 × 10−5. We see here
numerically, that C(p(2)) is independent of i, even for an
imperfect source, for any value of p(2) ∈ [0,0.055]. The ratio
has a good fit to the line C ≈ (tr/td ) − 4p(2) for the above
range of p(2). The p(2) dependence of C deviates from linear
as p(2) becomes higher. This is quite interesting as this gives us
a way to predict the end-to-end QBER on long repeater chains
by making a physical measurement on one noisy elementary
link, if similar devices are used to construct each elementary
link.

QBER of one elementary link. In Fig. 13(a), we plot 1 −
2Q1, with Q1 the QBER of one elementary link (of range
Lelem = L/N , chosen in the range 50 to 550 km), as a function
of p(2). It is seen that

1 − 2Q1 � td te − 1

2
p(2). (30)

This linear approximation seems good for Lelem � 400 km,
and for p(2) < 0.02. We next put this together with the linear
approximation of the constant in the QBER scaling law; i.e.,

1 − 2Qi+1 �
[

tr

td
− 4p(2)

]
(1 − 2Qi)

2, i � 1. (31)

FIG. 14. Two equivalent models of a lossy-noisy single-photon
detector. X,Y,Z ∈ {0,1} are binary-valued random variables, and “�”
is the logical OR operation.

Simplification of the recursion in Eq. (31) yields

1 − 2Qi �
[

tr

td
− 4p(2)

]20+21+···+2i−2

(1 − 2Q1)2i−1

=
[

tr

td
− 4p(2)

]2i−1−1

(1 − 2Q1)2i−1
, (32)

which, combined with Eq. (30), yields

1 − 2Qi �
[

tr

td
− 4p(2)

]2i−1−1 [
td te − 1

2
p(2)

]2i−1

. (33)

Taking logarithms, rearranging the terms, and noting that each
of the three terms log2(1 − 2Qi), log2[tr/td − 4p(2)], and
log2[td te − 1

2p(2)] are negative, we get the following:

2i−1 �
∣∣log2(1 − 2Qi) + log2[tr/td − 4p(2)]

∣∣∣∣log2[td te − 1
2p(2)] + log2[tr/td − 4p(2)]

∣∣ . (34)

Note now that Qi ≡ Q(N ) is the QBER if Alice and Bob were
to make an end-to-end measurement on N = 2i−1 elementary
links [see Fig. 12(a)]. Hence, the condition on 2i−1 to be the
maximum total number of elementary links (i.e., N = Nmax)
for which a barely nonzero key rate can be obtained is that
Q(N ) = Qth.

Phenomenological model for Nmax. Substituting log2(1 −
2Qi) = log2(1 − 2Qth) ≈ −0.25, log2(1 − x) ≈ −x − x2/2,
and tr = td = te = 1 (in order to capture the Nmax(p(2))
dependence, and do so in the low-noise regime of the
elementary links) in Eq. (34) and ignoring the O(p(2)2) terms,
we obtain the following approximate lower estimate to Nmax,

Nmax � (8/9) + 1/18

p(2)
, (35)

which is roughly a shifted inverse-proportional dependence in
p(2). The above interpretation of Nmax is that it is the maximum
number of length Lelem elementary links that can be connected
before the concatenation becomes useless for QKD (while
using N < Nmax links is capable of attaining the p(2) = 0
rate-distance function RN (L) derived in Sec. II). The “quality”
of the elementary link is captured by the parameter te—defined
for the p(2) = 0 analysis in Sec. II—which is 1 when the dark-
click probability of the detectors at the center of the elementary
link, Pe = 0. In Fig. 13(b), we plot te as a function of the length
of the elementary link Lelem ≡ L/N , for Pe = 10−6, ηe = 0.9,
and α = 0.15 dB/km. For Lelem < 400 km, te is seen to remain
close to 1. This justifies substituting te = 1 in order to arrive
at Eq. (35). The table in Fig. 11(c) shows that the Nmax(p(2))
lower estimate we obtained indeed matches pretty well with
the exact values obtained numerically shown in Figs. 11(a) and
11(b). We must note here that we do not consider the effect of
the number of modes M on Nmax (which we hold fixed for the
above development).

IV. CONCLUSIONS

Long-distance entanglement distribution at high rates is
of paramount importance to many quantum communication
protocols, the realization of which requires building a network
of quantum repeaters. Several quantum repeater protocols
have been proposed [9–11,14,15,22], all of which use some
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source of entanglement, some form of QMs, and linear-optics-
based BSMs. We analyzed the architecture proposed in [22],
which is a repeater protocol that has a superior classical
communication overhead and does not rely on purification of
noisy shared-entangled pairs [44]. We believe that our analysis
technique would carry over to other repeater architectures in a
straightforward manner.

We exactly solved for the quantum state after connecting a
given number of elementary links in a concatenated quantum-
repeater chain that uses frequency multiplexing to create
two-qubit four-photon elementary-link states and heralded
linear-optic BSMs at a predetermined frequency across two
qubit memories at repeater nodes. We exploited the fact that
if we start with an ideal single-pair entanglement source, the
postselected state after a successful BSM remains in a subspace
spanned by only single-photon terms, and we recursively
evaluated the end-to-end entangled state using a POVM to
model lossy-noisy single-photon detectors. This calculation
required us to exactly solve a variant of the logistic map from
chaos theory. Using our expression for the quantum state,
we determined quantities such as the success probability of
entanglement swapping at any given swap level, the error
rate of the raw bits obtained by Alice and Bob in a QKD
application if they were to measure this state in the same bases,
and the sifting probability. One can find any other quantity of
interest from the quantum state, such as the entanglement of
formation or the fidelity with a maximally entangled state
(see Appendix D for the exact expression of fidelity of the
N -elementary-link end-to-end state). Our analysis took into
account all major imperfections of the detectors (such as
subunity detection efficiencies and dark-click probabilities)
and the channel (such as transmissivity and thermal noise,
where the latter can be included in an effective dark-click
probability term). We also evaluated an exact scaling law for
how the QBER evolves from one swap level to the next, which
is of great practical importance since it gives us a way to
predict the QBER on long repeater chains by making a physical
measurement on one noisy elementary link.

We evaluated the rate-vs-loss envelope attained by this
repeater-chain architecture and showed that the secret-key
rate achieved can be expressed as R = Aηξ , where η is
the overall Alice-to-Bob channel transmittance and A and
ξ < 1 are constants that depend upon various loss-and-noise
parameters of the system. This, in turn, proved that the repeater
chain’s performance beats the TGW bound, a fundamental
rate-loss upper bound that no QKD protocol can exceed
without the use of quantum repeaters [7], which imposes a
linear rate-transmittance decay (i.e., ξ = 1).

We then extended our theoretical analysis to the case when
the entangled-photon-pair sources have a nonzero two-pair
emission probability, p(2). For this, we used an efficient
numerical model we developed for simulating bosonic states,
linear-optic unitaries, and noisy measurements. We found
that when p(2) > 0, the rate-distance trade-off plots—with
N elementary links dividing up the entire range L km—are
almost unaffected [i.e., remain almost at their p(2) = 0 levels
at any range L], for all N up to below a maximum value
Nmax, where Nmax(p(2)) decreases as p(2) is increased. If
Nmax(p(2)) or more elementary links are used, the key rate is
worse at all range L compared to when fewer elementary links

are used. Finally, we developed a phenomenological model for
Nmax(p(2)) by an empirical extension of the aforesaid QBER
scaling law for the p(2) > 0 case. One of the most commonly
employed optical entanglement sources uses SPDC devices
heralded by single-photon detectors [42]. SPDC sources have
a high-enough nonzero p(2) to render them ineffective as
sources for the repeater protocol as described in this paper.
In a subsequent paper [35], we show how PNR detectors
can be employed to obtain an improved sifting performance
by postselecting out erroneous multiphoton events stemming
from nonzero p(2) and thereby making it possible to retrieve
the good rate-vs-distance scaling.

One can, in principle, replace the linear-optic entanglement
swapping scheme with more advanced schemes with improved
heralding efficiencies, such as the one proposed in Ref. [45]
that injects entangled states into a beam splitter network
and heralds the total number of clicks from an array of
PNR detectors, one that uses inline squeezers to beat the
50%-efficiency limit of a linear-optic BSM [46], and another
proposal that can attain 75% or higher heralding efficiencies
via linear optics and injection of (unentangled) single photons
[39]. Our theoretical technique can be readily used to analyze
the repeater chain when the BSMs are replaced by one of the
aforesaid schemes. At each swap stage, after the postselection
by the BSM, the projected shared state will still lie in the
span of the 4-mode 2-qubit “dual-rail” basis, but there will
be two extra coefficients to track, since the advanced BSMs
can identify all four Bell states (as opposed to only two by
the linear-optic scheme [26]). It is quite likely that the final
expression for Qi , and the error-propagation law will still
depend upon td , tr , and te, where the latter two are the same
functions of the fractional probability transfer to classical
correlations at each swap stage (which should be smaller
compared to when the linear-optic BSM is used). Finally,
our numerical model allows us to evaluate these enhanced
schemes as well, and also introduce other nonidealities
such as finite memory times at the repeaters, nonlinearities
in the fiber and memories, and temporal nonidealities of
single-photon detectors such as timing jitter and after-pulsing
probabilities. The analysis of quantum repeater protocols that
use these advanced BSM schemes, a possible extension where
multiplexing extends across elementary links (i.e., using more
than one connection between elementary links), and protocols
that may use quantum purification at intermediate stages are
left for future work. Furthermore, we hope that the compact
rate-loss scaling results we developed in this paper for a linear
repeater chain will help seed future network theoretic analyses,
for instance, optimal rate regions for multiflow routing, traffic
scheduling, and resource allocation, in a quantum network with
more complex topologies. Finally, we expect our work to incite
similar rate-loss analysis of other quantum repeater protocols,
which will enable quantitative resource-performance tradeoff
studies and meaningful comparisons of different protocols.
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APPENDIX A: PROOF OF PROPOSITION 1—QUANTUM
STATE OF THE ELEMENTARY-LINK AND

ENTANGLED-STATE PROPAGATION THROUGH A
SEQUENCE OF SWAP STAGES

1. The elementary link

We first prove Proposition 1 for the case i = 1 and derive
the postselected quantum state of the elementary link. Let us
first consider how we should model nonideal photodetectors.
Ideally, we would like to say that each of the four detectors
required for the BSM individually measures a Hermitian
operator with eigenprojectors {	0,	1,	2}, the 	n = |n〉〈n|
signifying the presence of n photons. Next we note that we are
allowed to limit ourselves to a three-dimensional subspace of
the Fock space because we know we will never have more than
two photons at a detection site [since we limit the theoretical
part of analysis to the case when the sources have p(2) = 0 and
assume that any thermal noise in the channel is negligible at
typical optical frequencies]. The detectors are assumed to have
a subunity detection efficiency ηe—which may be thought of
as arising from a beam splitter with transmissivity ηe just in
front of an ideal detector—and independently there may also
be a probability Pe for the detector to trigger in the absence
of a photon. This means the “no-click” and “click” events in
the individual detectors really correspond to a two-outcome
POVM {F0,F1}, with

F0 = (1 − Pe)	0 + (1 − Ae)	1 + (1 − Be)	2, (A1)

F1 = Pe	0 + Ae	1 + Be	2, (A2)

where we take

Ae = 1 − (1 − Pe)(1 − η), (A3)

Be = 1 − (1 − Pe)(1 − η)2. (A4)

The way to understand F0, the no-click signal, for instance, is
this: If there are no actual photons present, one will get this
outcome with probability 1 − Pe, the probability for no false
alarm at the detector. On the other hand, if there is a single
photon present both it must disappear and there must still be
no false alarm; hence, a coefficient (1 − Pe)(1 − η) in front of
	1. Finally, for the case that two photons are present, both of
them must be lost and yet no false alarm must appear; hence,
a coefficient of (1 − Pe)(1 − η)2.

We next note that we may incorporate the channel trans-
mittance λ (corresponding to propagation loss of each of the
halves of the Bell pairs from two ends of the elementary link)
directly into the detection efficiency ηe by defining an effective

detection efficiency ηeλ while assuming the channel is lossless,
rather than accounting for the channel loss in our description of
the quantum states arriving at them. One can see this through
a simple bosonic mode-operator analysis including two stages
of loss, but the intuition should be clear. Consequently, at the
center of an elementary link we can assume the state it will
attempt to link is a clean |M+〉|M+〉, while the four detectors
in the BSM are working at efficiency

η = ηeλ. (A5)

This greatly simplifies the analysis by not having to treat the
states to be linked as mixed states.

For the purposes of the derivations in this section, let us
label the four spatial modes involved in an elementary link by
a, b, c, and d, so that the initial quantum state is more explicitly
|M+

ab〉|M+
cd〉. The BSM will be applied to modes b and c. What

this entails is that the modes first impinge on a 50-50 beam
splitter, which enacts a mode transformation

b
†
j −→

√
1

2
(b†j + c

†
j ) and c

†
j −→

√
1

2
(b†j − c

†
j ). (A6)

The consequence of this is that the state presented to the photo
detectors is a massively entangled one:

| swap〉 = 1

4
[|10,11,00,01〉 − |10,01,10,01〉

+
√

2|10,02,00,10〉 + |10,10,01,01〉
− |10,00,11,01〉 −

√
2|10,00,02,10〉

+
√

2|01,20,00,01〉 + |01,11,00,10〉
− |01,10,01,10〉 −

√
2|01,00,20,01〉

+ |01,01,10,10〉 − |01,00,11,10〉]. (A7)

Ideally, then, if one were to obtain a 1-2 coincidence or a
3-4 coincidence in the detectors at the four dual-rail modes,
a successful entanglement swap would be declared and a new
state |M+

ad〉 would be ascribed to the photons in QM. However,
with noisy detectors, one should use Lüders’ rule for the
POVM above to get the new state. For instance, suppose we
were to detect a 1-2 coincidence in the detectors. Then this is
signified by the POVM element

F1 ⊗ F1 ⊗ F0 ⊗ F0

= P 2
e

(
1 − P 2

e

)2
	0 ⊗ 	0 ⊗ 	0 ⊗ 	0

+P 2
e

(
1 − P 2

e

)
(1 − Ae)	0 ⊗ 	0 ⊗ 	0 ⊗ 	1 + · · · ,

(A8)

and the new state for the a-d system will be

ρ ′
ad = 1

Prob(F1 ⊗ F1 ⊗ F0 ⊗ F0)
trbc(

√
F1 ⊗ F1 ⊗ F0 ⊗ F0

× |swap〉〈swap|
√

F1 ⊗ F1 ⊗ F0 ⊗ F0). (A9)

From here on out is just a question of brute-force calcula-
tion. At the end of it, one finds

ρ ′
ad = 1

8s1

{[
A2

e(1 − Pe)2 + P 2
e (1 − Ae)2

] |M+
ad〉〈M+

ad |

+ 2AePe(1 − Ae)(1 − Pe)|M−
ad〉〈M−

ad |
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+ Pe(1 − Pe)[Pe(1 − Be) + Be(1 − Pe)]

× (|01,01〉〈01,01| + |10,10〉〈10,10|)}, (A10)

where the success probability to herald an elementary link ρ1,
Ps0 = Prob(F1 ⊗ F1 ⊗ F0 ⊗ F0) = 4s1, where

s1 = 1
8 [(Ae + Pe − 2AePe)2

+Pe(1 − Pe)(Be + Pe − 2BePe)]. (A11)

Thus, one has mostly the swap expected. However, with
some probability one gets an unexpected swap and with
some probability an induced classical correlation between the
photons in the memory. By symmetry one has the same result
for a 3-4 coincidence, as well as for 1-4 and 2-3 coincidences;
one just interchanges the roles of |M+

ad〉 and |M−
ad〉 in this

expression. We therefore have the state of an elementary link
given by

ρ1 = 1

s1
[a1|M+〉〈M+| + b1|M−〉〈M−| + c1|ψ0〉〈ψ0|

+ d1|ψ1〉〈ψ1| + d1|ψ2〉〈ψ2| + c1|ψ3〉〈ψ3|], (A12)

where |ψ0〉 = |01,01〉, |ψ1〉 = |01,10〉, |ψ2〉 = |10,01〉,
|ψ3〉 = |10,10〉, |M±〉 = [|ψ2〉 ± |ψ1〉]/

√
2, s1 = a1 + b1 +

2(c1 + d1) is a normalization constant, and the coefficients
a1, b1, c1, d1 are given by

a1 ≡ ae = 1
8

[
P 2

e (1 − Ae)2 + A2
e(1 − Pe)2

]
,

b1 ≡ be = 1
8 [2AePe(1 − Ae)(1 − Pe)],

c1 ≡ ce = 1
8Pe(1 − Pe)[Pe(1 − Be) + Be(1 − Pe)],

d1 ≡ de = 0,

where Ae = ηeλ + Pe(1 − ηeλ) and Be = 1 − (1 − Pe)(1 −
ηeλ)2.

2. Connections through swap stages at the quantum
repeater nodes

Next we consider the case i � 2. The proof proceeds
as follows. We first realize, by term-by-term evaluation of
connecting two copies of ρ1, that the state ρi never goes outside
the span of |ψ0〉,|ψ1〉,|ψ2〉,|ψ3〉. It is convenient to express the
state ρi as

ρi = 1

si

[
r

(i)
1 |M+〉〈M+| + r

(i)
2 |M−〉〈M−| + r

(i)
3 |ψ0〉〈ψ0|

+ r
(i)
4 |ψ1〉〈ψ1| + r

(i)
5 |ψ2〉〈ψ2| + r

(i)
6 |ψ3〉〈ψ3|

]
, (A13)

where si = ∑6
l=1 r

(i)
l . Then, we realize that each subsequent

connection evolves the state as

r
(i+1)
l =

6∑
j=1

6∑
k=1

Cj,k,lr
(i)
j r

(i)
k , (A14)

with the matrix C given by (each term of which is calculated
by brute-force algebra)

C(1,1, :) = [a,b,c,0,0,c],

C(1,2, :) = [b,a,c,0,0,c],

C(1,3, :) = [0,0,a + b,0,2c,0],

C(1,4, :) = [0,0,0,a + b,0,2c],

C(1,5, :) = [0,0,2c,0,a + b,0],

C(1,6, :) = [0,0,0,2c,0,a + b],

C(2,1, :) = [a,b,c,0,0,c],

C(2,2, :) = [b,a,c,0,0,c],

C(2,3, :) = [0,0,a + b,0,2c,0],

C(2,4, :) = [0,0,0,a + b,0,2c],

C(2,5, :) = [0,0,2c,0,a + b,0],

C(2,6, :) = [0,0,0,2c,0,a + b],

C(3,1, :) = [0,0,a + b,2c,0,0],

C(3,2, :) = [0,0,a + b,2c,0,0],

C(3,3, :) = [0,0,4c,0,0,0],

C(3,4, :) = [0,0,0,4c,0,0],

C(3,5, :) = [0,0,2(a + b),0,0,0],

C(3,6, :) = [0,0,0,2(a + b),0,0],

C(4,1, :) = [0,0,2c,a + b,0,0],

C(4,2, :) = [0,0,2c,a + b,0,0],

C(4,3, :) = [0,0,2(a + b),0,0,0],

C(4,4, :) = [0,0,0,2(a + b),0,0],

C(4,5, :) = [0,0,4c,0,0,0],

C(4,6, :) = [0,0,0,4c,0,0],

C(5,1, :) = [0,0,0,0,a + b,2c],

C(5,2, :) = [0,0,0,0,a + b,2c],

C(5,3, :) = [0,0,0,0,4c,0],

C(5,4, :) = [0,0,0,0,0,4c],

C(5,5, :) = [0,0,0,0,2(a + b),0],

C(5,6, :) = [0,0,0,0,0,2(a + b)],

C(6,1, :) = [0,0,0,0,2c,a + b],

C(6,2, :) = [0,0,0,0,2c,a + b],

C(6,3, :) = [0,0,0,0,2(a + b),0],

C(6,4, :) = [0,0,0,0,0,2(a + b)],

C(6,5, :) = [0,0,0,0,4c,0],

C(6,6, :) = [0,0,0,0,0,4c], (A15)

where the “:” sign indicates all entries C(j,k,l) for 1 � l � 6.
The rest is just writing out r

(i+1)
l explicitly and realizing that

r
(i)
3 = r

(i)
6 , and (A16)

r
(i)
4 = r

(i)
5 , (A17)
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and hence the fact that we can rename the coefficients as
r

(i)
1 = ai, r

(i)
2 = bi, r

(i)
3 = r

(i)
6 = ci , and r

(i)
4 = r

(i)
5 = di .

APPENDIX B: EVALUATING THE SUCCESS
PROBABILITIES

It is easy to realize from the derivation of the states ρi that
the success probability (to connect two copies of ρi−1 to obtain
one copy of ρi) is simply given by Ps(i) = 4si , for i � 2. The
probability that an elementary link is successfully created is
Ps(1) = 1 − (1 − Ps0)M , where Ps0 = 4s1 is the probability
of successful creation of an elementary link ρ1 in one of the
M frequencies at the center of the elementary link, where
s1 = ae + be + 2ce. It is simple now to calculate the success
probabilities Ps(i) by proving that si = s, ∀ i � 2. We thus
have the following proposition.

Proposition 2. The success probability of connecting two
copies of ρi−1 to produce a usable copy of ρi is Ps(i) = 4si ,
where

si = a + b + 2c � s, 2 � i � n + 1. (B1)

Proof. Denoting xi = ai + bi + ci + di and yi = ci + di ,
using Eqs. (6), (7), (8), and (9), we have

xi+1 = 1

s2
i

[
(a + b + c)

(
x2

i + y2
i

) + 2cxiyi

]
, (B2)

yi+1 = 1

s2
i

[c(xi − yi)
2 + 2(a + b + 2c)xiyi], (B3)

with si = xi + yi by definition. It is easy to now see that
xi+1 + yi+1 = a + b + 2c ≡ s for all i ∈ {2,3, . . . ,n + 1}.
Note that Ps(1) = 1 − (1 − 4s1)M , with s1 = ae + be + 2ce

for the elementary link. �

APPENDIX C: EVALUATING THE SIFT PROBABILITY

In this appendix, we derive P1, the probability that Alice and
Bob get a successful “sift,” i.e., they decide to use their click
outcomes for further processing to extract a key when they
measure their halves of the shared-entangled state ρn+1 (given
N = 2n elementary links have been connected successfully).

Let us first assume Alice and Bob share the state ρi , and
they make a measurement (in the same basis). We proceed as
follows.

Proposition 3. The sift probability P1 is the probability that
Alice and Bob both get clicks on at least one of each of their
detectors (i.e., neither gets a no-click event on both detectors).
Regardless of the value of i,

P1 = (q1 + q2 + q3)2, (C1)

where q1 = (1 − Pd )Ad , q2 = (1 − Ad )Pd , q3 = PdAd , with
Ad = ηd + (1 − ηd )Pd , functions of the detection efficiency
(ηd ) and dark-click probability (Pd ) of each of the four single-
photon detectors involved (two of Alice’s and two of Bob’s).

Proof. This can be shown rigorously by simply evaluat-
ing P1 = Tr[ρi(M0101 + M0110 + M1001 + M1010 + M1101 +
M1110 + M0111 + M1011 + M1111)], and Mijkl ≡ Fi ⊗ Fj ⊗
Fk ⊗ Fl , where the POVM elements of a lossy-noisy single-
photon detector, F0 and F1, are defined above, using the
expression of ρi in Eq. (D12). Here we sketch a more

intuitive proof. Note that ρi ∈ span(|ψ0〉,|ψ1〉,|ψ2〉,|ψ3〉),
with |ψ0〉 = |01,01〉, |ψ1〉 = |01,10〉, |ψ2〉 = |10,01〉, |ψ3〉 =
|10,10〉, since |M±〉 = [|ψ2〉 ± |ψ1〉]/

√
2. Therefore, Alice’s

and Bob’s reduced-density operators always have exactly one
photon in one of two modes. Let us define q1 � P [noflip]
to be the probability that a |01〉 state is detected as “(0,1)”
by the lossy-noisy detector, where (0,1) stands for (no-click,
click). Clearly, q1 is also the probability that |10〉 is detected as
“(1,0)”. In order for “no flip” to happen, no dark click should
appear in the mode in the vacuum state (this happens with
probability 1 − Pd ), and either the photon in the other mode
should either be detected by the lossy detector (happens with
probability ηd , in which case it does not matter whether a dark
click appears) or the photon is not detected and a dark click
appears [which happens with probability (1 − ηd )Pd ]. There-
fore, q1 = (1 − Pd )Ad , with Ad = ηd + (1 − η)Pd . Similarly,
we define q2 � P [flip] to be the probability that |01〉 is
detected as “(1,0)” [or |10〉 is detected as “(0,1)”]. For a
“flip” event to happen, a dark click should appear in the
vacuum mode (probability Pd ) and the photon-containing
mode should not be detected and a dark click must not appear
[happens with probability, (1 − ηd )(1 − Pd )]. Therefore, q2 =
(1 − ηd )(1 − Pd )Pd = (1 − Ad )Pd . Finally, define q3 to the
probability that the “(1,1)” detection is obtained (for either
a |10〉 or a |01〉 input). This is given by the probability
that a dark click appears in the vacuum mode (Pd ) and
the probability that the single photon generates a click,
i.e., ηd + (1 − ηd )Pd = Ad . Therefore, q3 = PdAd . Clearly,
q1 + q2 + q3 need not add up to 1 in general, since one
of two detectors may output the “(0,0)” outcome, which
is when Alice and Bob discard the measurement—a failed
sift event. Therefore, (q1 + q2 + q3)2 is the probability that
Alice and Bob obtain a usable detection outcome; i.e., both
of them collectively obtain one of the nine detection out-
comes: (0,1; 0,1), (0,1; 1,0), (1,0; 0,1), (1,0; 1,0), (0,1; 1,1),
(1,0; 1,1), (1,1; 0,1), (1,1; 1,0), (1,1; 1,1). This is true re-
gardless of the actual fraction of |10〉 and |01〉 in Alice’s and
Bob’s states. Hence, P1 = (q1 + q2 + q3)2. �

APPENDIX D: THE QBER AND SECRET-KEY RATE

In this appendix, we evaluate the explicit formula for Qi ,
the QBER, which is the probability that Alice and Bob obtain
a mismatched raw key bit, despite the fact that they make
measurements in the same bases on a successfully created
copy of ρi and that they both get exactly single clicks (on the
two modes of their respective qubits). The first step in doing so
is to solve for the quantum state ρi more explicitly than what
the recursions in Proposition 1 give us.

1. Explicit solution for the quantum state, ρi

Recall that we proved above that si = a + b + 2c � s, 2 �
i � n + 1, by defining xi = ai + bi + ci + di and yi = ci +
di and using Eqs. (6), (7), (8), and (9), to obtain xi+1 +
yi+1 = a + b + 2c ≡ s for all i ∈ {2,3, . . . ,n + 1} and that
s1 = ae + be + 2ce for the elementary link. Let us now proceed
to calculate the coefficients ai , bi , ci , and di , all explicitly as a
function of i, 1 � i � n + 1, and the system’s loss-and-noise
parameters.
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Proposition 4. ai + bi ≡ zi is given by

zi = ν

(
z1

ν
× s

s1

)2i−1

, i � 2, (D1)

where z1 = ae + be, s1 = ae + be + 2ce, ν = s2/(a + b), and
s � si for i � 2.

Proof. The proof follows by realizing that with the defini-
tions in Eqs. (B2) and (B3), xi − yi = ai + bi , and

xi+1 − yi+1 = 1

s2
i

(a + b)(xi − yi)
2. (D2)

�
Remark 1. Note that since xi + yi = si and xi − yi = zi ,

we have

yi = ci + di = 1

2

[
si − ν

(
sz1

s1ν

)2i−1]
. (D3)

As we see in the next section, the error probability Qi depends
only on 2ci/si , the fractional probability of the classical
correlations when two copies of ρi−1 are connected. Note
that (ai + bi) is the sum fractional probability of the Bell
states |M+〉 (ai) and |M−〉 (bi) when two copies of ρi−1 are
connected, and si = (ai + bi) + 2ci . Since we already have
ci + di explicitly available, let us calculate ci − di ≡ ui .

Proposition 5. The difference ci − di ≡ ui can be found as
the solution to the quadratic difference equation

wi+1 = wr + 2(1 − 2wr )wi(1 − wi), (D4)

where wi � ui/zi , wr = c/(a + b), and w1 = ce/(ae + be).
Proof. The proof follows from simply writing ci+1 −

di+1 using Eqs. (8) and (9), substituting wi = ui/zi , and
simplifying. �

Remark 2. The difference equation (D4) reduces to the
famous logistic map, when wr = 0. The solution to the logistic
map wi+1 = Rwi(1 − wi), wi ∈ (0,1), is, in general, chaotic,
but for R = 2 [which is exactly what (D4) reduces to when
wr = 0] was found exactly by Schröder in 1870 as

wi = 1
2 [1 − (1 − 2w1)2i−1

]. (D5)

Theorem 5. The quadratic difference equation, wi+1 =
wr + 2(1 − 2wr )wi(1 − wi), which is a variant of the logistic
map wi+1 = Rwi(1 − wi), with R = 2, can be exactly solved,
and the solution is given by

wi = 1

2

{
1 − 1

β
[β(1 − 2w1)]2i−1

}
, (D6)

where β = 1 − 2wr . This correctly reduces to (D5) when
wr = 0.

Proof. See the next section for the proof. �
Next we find ci . We add two expressions,

ci + di = (si − zi)/2, and (D7)

ci − di = ui = zi

2

{
1 − 1

β
[β(1 − 2w1)]2i−1

}
, (D8)

and divide by 2 to obtain

ci = si

4

{
1 − zi

βsi

[β(1 − 2w1)]2i−1

}
. (D9)

At this point, since we have ci , it is sufficient to calculate Qi

(see the next section). However, let us go ahead and evaluate
ai and bi as well, so that we have a complete characterization
of the quantum state ρi , which can be used to calculate other
quantities of interest, such as the fidelity, entanglement of
formation, etc.

Since we already have ai + bi = zi from Proposition D 1,
we need to calculate ai − bi .

Proposition 6. ai − bi ≡ vi is given by the recursion

vi = 1

s2
i

(a − b)zivi, (D10)

which can be solved to obtain

vi =
(

a − b

a + b

)i−1(
ae − be

ae + be

)
zi, (D11)

where zi is given by Eq. (D1).
Proof. The proof follows simply by subtracting the expres-

sions for bi+1 from that of ai+1, given in Proposition 1, and
simplifying. �

With that, we finally have the state ρi as

ρi = 1

si

[ai |M+〉〈M+| + bi |M−〉〈M−| + ci |ψ0〉〈ψ0|
+ di |ψ1〉〈ψ1| + di |ψ2〉〈ψ2| + ci |ψ3〉〈ψ3|], (D12)

where |ψ0〉 = |01,01〉, |ψ1〉 = |01,10〉, |ψ2〉 = |10,01〉,
|ψ3〉 = |10,10〉, |M±〉 = [|ψ2〉 ± |ψ1〉]/

√
2, si = ai + bi +

2(ci + di), and the coefficients given as

ai = 1

2

[
1 +

(
a − b

a + b

)i−1(
ae − be

ae + be

)]
zi,

bi = 1

2

[
1 −

(
a − b

a + b

)i−1(
ae − be

ae + be

)]
zi,

ci = si

4

{
1 − zi

si(1 − 2wr )
[(1 − 2wr )(1 − 2w1)]2i−1

}
,

di = si

4
− zi

2

{
1 − 1

2(1 − 2wr )
[(1 − 2wr )(1 − 2w1)]2i−1

}
,

with w1 = ce/(ae + be), wr = c/(a + b), s1 = ae + be + 2ce,
si = s = a + b + 2c, 2 � i � n + 1, and zi given by

zi =
(

s2

a + b

)[
1

(1 + 2w1)(1 + 2wr )

]2i−1

, i � 2, (D13)

with z1 = ae + be. The expressions for ai , bi , ci , and di

correctly reduce to ae, be, ce, and 0, respectively, for i = 1.
As an example calculation, the fidelity of ρi (with respect to
|M+〉), Fi = √〈M+|ρi |M+〉, is given by Fi = √

(ai + di)/si .

2. Evaluating the formula for QBER

Proposition 7. Assume that Alice and Bob have made a
measurement on ρi , i ∈ {1, . . . ,n + 1}. Conditioned on the
fact that they get exactly one click each on their qubits (which
happens with probability P1, as proven in Proposition 3 ), the
probability Qi that they obtain a mismatched bit (a bit error)
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is given by

Qi = 1

2

[
1 − td

tr
(tr te)2i−1

]
, 1 � i � n + 1, (D14)

where te = (ae + be − 2ce)/(ae + be + 2ce), tr = (a + b −
2c)/(a + b + 2c), and td = [(q1 − q2)/(q1 + q2 + q3)]2 are
loss-noise parameters of detectors in the elementary links,
memory nodes, and Alice-Bob, respectively.

Proof. The first step is to show that Qi can be expressed as

Qi = 1

2
[1 − td (1 − 2ζi)], (D15)

where ζi = 2ci/si , td = [(q1 − q2)/(q1 + q2 + q3)]2. Since we
have shown that si = s = a + b + 2c, i � 2, and s1 = ae +
be + 2ce, we only need to solve for ci in order to evaluate Qi .
In order to prove (D15), we need to evaluate

Qi = 1

P1

{
Tr

[
ρi(M0101 + M1010

+ 1

2
{M1101 + M1110 + M0111 + M1011 + M1111})

]}
,

where the denominator P1 = Tr[ρi(M0101 + M0110 + M1001 +
M1010 + M1101 + M1110 + M0111 + M1011 + M1111)] = (q1 +
q2 + q3)2. We first note that ρi is of the form

ρi = r1|M+〉〈M+| + r2|M−〉〈M−| + r3|ψ0〉〈ψ0|
+ r4|ψ1〉〈ψ1| + r5|ψ2〉〈ψ2| + r6|ψ3〉〈ψ3|, (D16)

with
∑6

i=1 ri = 1. Noting that the relative contributions of
|ψ0〉, |ψ1〉, |ψ2〉, and |ψ3〉 in ρi are r3,r4 + (r1 + r2)/2,r5 +
(r1 + r2)/2, and r6 respectively, we now evaluate each of the
seven terms in the expression for Qi as follows:

Tr(ρiM0101) = q2
1 r3 + q1q2

[
r4 + 1

2
(r1 + r2)

+ r5 + 1

2
(r1 + r2)

]
+ q2

2 r6,

Tr(ρiM1010) = q2
2 r3 + q1q2

[
r4 + 1

2
(r1 + r2)

+ r5 + 1

2
(r1 + r2)

]
+ q2

1 r6,

1

2
Tr(ρiM1101) = 1

2

[
r3q3q1 + r4q3q2 + r5q3q1 + r6q3q2

+
(

r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM1110) = 1

2

[
r3q3q2 + r4q3q1 + r5q3q2 + r6q3q1

+
(

r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM0111) = 1

2

[
r3q3q1 + r4q3q1 + r5q3q2 + r6q3q2

+
(

r1 + r2

2

)
q3q1 +

(
r1 + r2

2

)
q3q2

]
,

1

2
Tr(ρiM1011) = 1

2

[
r3q3q2 + r4q3q2 + r5q3q1 + r6q3q1

+
(

r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM1111) = 1

2

[
r3q

2
3 + r4q

2
3 + r5q

2
3 + r6q

2
3

+
(

r1 + r2

2

)
q2

3 +
(

r1 + r2

2

)
q2

3

]
.

Adding the above, and substituting P1 = (q1 + q2 + q3)2, we
get

Qi = (q1 − q2)2(r3 + r6) + 2q1q2 + (q1 + q2)q3 + q2
3

2

(q1 + q2 + q3)2
.

(D17)
Substituting r3 = r6 = ci/si , defining ζi = 2ci/si , we get

1 − 2Qi = 1

(q1 + q2 + q3)2

[
(q1 + q2 + q3)2 − 2ζi(q1 − q2)2

− 4q1q2 − 2(q1 + q2)q3 − q2
3

]
= 1

(q1 + q2 + q3)2
[(q1 + q2 + q3)2 − 2ζi(q1 − q2)2

− (q1 + q2 + q3)2 + (q1 − q2)2]

= (1 − 2ζi)

(
q1 − q2

q1 + q2 + q3

)2

. (D18)

Defining td = [(q1 − q2)/(q1 + q2 + q3)]2, Eq. (D15) follows.
We now divide 2ci [from Eq. (D9)] by si to obtain

ζi = 2ci

si

= 1

2

{
1 − zi

βsi

[β(1 − 2w1)]2i−1

}
. (D19)

Substituting the expression for zi above, and realizing that
si = s, i � 2, and s1 = ae + be + 2ce, it is easy to obtain
the expression for Qi in Eq. (D14) after some algebraic
manipulations. The i = 1 case must be handled separately
(since s1 �= si,i � 2), but the final expression in Eq. (D14) is
valid for all i = 1,2, . . . ,n + 1. �

The following corollary is an interesting consequence of
Eq. (D14).

Corollary 1. The following law for error propagation holds
through the successive connections of elementary links:

(1 − 2Qi+1) = tr

td
(1 − 2Qi)

2, 1 � i � n. (D20)

An interesting thing to note about the error propagation is the
constant tr = (1 − 2wr )/(1 + 2wr ), which is a function of the
parameter 2wr = 2c/(a + b). We saw that when two pure Bell
states are “connected” by a linear-optic BSM with lossy-noisy
detectors, 2c is the fractional probability that spills over into
classical correlations (the nonentangled part), and a + b is the
fractional probability that goes into one of two entangled Bell
states.

Putting everything together, we finally have an expression
for the secret-key rate,

R = P1PsuccR2(Qn+1)

2Tq

secret-key bits/s, (D21)
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where Psucc = {4s[1 − (1 − 4s1)M ]}2n

/4s, P1 = (q1 + q2)2,
and Qn+1 = [1 − td

tr
(tr te)2n

]/2 are all defined in terms of the
detector loss-and-noise parameters, and the total number of
elementary links N = 2n.

APPENDIX E: SOLUTION OF THE MODIFIED
LOGISTIC MAP

In this section, we prove the following new variation of
the logistic map, whose solutions are known to have chaotic
behavior in general.

Theorem 6. The quadratic difference equation, wi+1 =
wr + 2(1 − 2wr )wi(1 − wi), which is a variant of the logistic
map wi+1 = 2wi(1 − wi) with R = 2, can be exactly solved,
and the solution is given by

wi = 1

2

{
1 − 1

μ
[μ(1 − 2w1)]2i−1

}
, i � 1, (E1)

where μ = 1 − 2wr and the initial value w1 is specified.
Proof. We start with the solution to the standard logistic

map with R = 2, i.e., with wr = 0. The solution is given by

wi = 1

2
[1 − (1 − 2w1)2i−1

]. (E2)

We use the ansatz that the modified map has the solution of
the form

wi = 1

2
[1 − (1 − 2w1)2i−1+ξi ]. (E3)

Inserting this into the difference equation, we get

1

2
[1 − (1 − 2w1)2i+ξi+1 ]

= wr + (1 − 2wr )

2
[1 − (1 − 2w1)2i+ξi ]. (E4)

Letting yi = (1 − 2w1)2i+ξi and μ = 1 − 2wr , we obtain

yi+1 = μ2y2
i , (E5)

which can be solved to obtain

yi = 1

μ2
(μ2y1)2i−1

, i � 1. (E6)

Using this to solve for ξi , we get

ξi = i − log2

{
2i log2[μ(1 − 2w1)] − log2(μ2)

log2(1 − 2w1)

}
. (E7)

Finally, inserting the expression for ξi into the ansatz, we
obtain the following expression for wi :

wi = 1

2

{
1 − 1

μ
[μ(1 − 2w1)]2i−1

}
, i � 1. (E8)

�

APPENDIX F: DERIVATION OF THE
RATE-LOSS ENVELOPE

In Sec. F 1 of this appendix, we show that the key rate
achieved over a range L, when divided up into N equal
segments, RN (L) can be upper bounded by a three-piece
approximation R

(UB)
N (L). In Sec. F 2, we derive the envelope

R(UB)(L) of the three-piece upper bounds R
(UB)
N (L), which, in

turn, is an upper bound to the true rate-loss envelope. Finally,
in Sec. F 3, we derive an exact expression for the rate-loss
envelope (assuming all detector dark clicks to be zero) and
show that when an optimal number N∗(L) of elementary
links are employed at a given range L, the resulting rate-loss
envelope R(0)(L) = Aηξ , where η = e−αL.

1. Three-piece rate-loss upper bound for a given number
of elementary links

In this section, we first discuss the intuition behind why it is
reasonable to expect that nonzero detector dark clicks cannot
increase the secret-key rate achieved by the repeater protocol,
i.e., RN (L) � R

(0)
N (L). We argue why a mathematically rig-

orous proof of the above is not trivial, despite the fact that
the statement sounds intuitively obvious. In the second part
of this section, we provide a proof of Theorem 2, assuming
RN (L) � R

(0)
N (L) holds for all N � 1.

a. Nonzero dark clicks can only decrease the secret-key rate: An
intuitive argument

Let us consider the model for a nonideal single-photon
detector developed in Sec. A 1. The no-click and click events
at the output of a single-photon detector, of detection efficiency
η and dark-click probability Pd , correspond to a two-outcome
POVM {F0,F1}, with

F0 = (1 − Pd )	0 + (1 − Ad )	1 + (1 − Bd )	2, (F1)

F1 = Pd	0 + Ad	1 + Bd	2, (F2)

where

Ad = 1 − (1 − Pd )(1 − η), and (F3)

Bd = 1 − (1 − Pd )(1 − η)2. (F4)

In writing the above POVM elements, we have assumed that
the quantum state ρ impinging on the detector has no more than
two photons, which holds true for all the theoretical analysis in
Sec. II that assumed p(2) = 0. Pictorially, this detection model
is elucidated in Fig. 14(a), where the lossy-noisy detector is
modeled as outputting the Boolean OR of two binary-valued
random variables X and Y , where X is the output of an
ideal single-photon detector ({|0〉〈0|,Î − |0〉〈0|}) preceded by
a pure-loss beam splitter of transmissivity η upon which the
input state ρ is incident, and Y is a binary-valued random
variable that models dark clicks, is statistically independent
of X, and satisfies Pr[Y = 1] = Pd . It is easy to see that this
model is equivalent to the detection model shown in Fig. 14(b),
where a lossy-noiseless detector (detection efficiency η, zero
dark-click probability) is followed by a binary-input binary-
output discrete memoryless “Z” channel.

With the above two detection models applied to both single-
photon detectors of Alice and both detectors of Bob, it is easy
to see that a nonzero dark-click probability at Alice’s and Bob’s
detectors can be interpreted as a (random) local post processing
of the raw classical data obtained by Alice and Bob when they
(hypothetically) use zero-dark-click detectors. Since any local
postprocessing of their detection outcomes cannot increase
the extractable secret-key rate, one concludes that RN (L) is
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bounded above by the rate achieved with an N -link chain when
Alice’s and Bob’s detectors have zero dark clicks. However, we
need to prove RN (L) � R

(0)
N (L), where R

(0)
N (L) is the secret-

key rate when all the detectors in the system have zero-dark-
click probability. So we continue the argument above—that
of using the equivalent interpretation of lossy-noise single-
photon detection depicted in Fig. 14—for all the detectors
used at the N − 1 repeater nodes [4(N − 1) detectors] and
at the centers of N elementary links (4NM single-frequency
single-photon detectors, or 4N single-photon detectors that can
spectrally resolve the M orthogonal frequencies). Let us define
R

(0),opt
N (L) to be the rate achievable when (a) all detectors in the

system have zero dark clicks and (b) optimal postprocessing
of all the detector outputs is used (note that Eve has access to
most of these outputs as well except for those at Alice’s and
Bob’s stations). Let us define R

opt
N (L) to be the rate achievable

when (a) all detectors in the system have nonzero dark-click
probabilities (Pe,Pr,Pd , depending upon which detector) and
(b) optimal postprocessing of all the detector outputs is used.
Note that not only Eve has access to most of these detector
outputs (ones at repeater nodes and elementary-link centers),
she could in fact be using noiseless detectors and simulating
dark clicks locally. Again, we can rigorously argue that

R
opt
N (L) � R

(0),opt
N (L), (F5)

since classical postprocessing of the raw detector outputs
(which affects only Alice’s and Bob’s raw classical data)
cannot increase their extractable key rate. However, in our
repeater protocol, we use a specific postprocessing of the
vector of detection outcomes at all the single-photon detectors.
Hence, we have

RN (L) � R
opt
N (L), and (F6)

R
(0)
N (L) � R

(0),opt
N (L). (F7)

Equations (F5), (F6), and (F7) are insufficient to conclude that
RN (L) � R

(0)
N (L).

b. Proof of Theorem 2

In this section, we will prove that

R
(0)
N (L) � R

(UB)
N (L) =

⎧⎨
⎩

Rmax, for 0 � L � L′,
η
(
ABN

)
, for L′ < L < Lmax,

0, for L � Lmax,

(F8)
with L′ = − log2(η′)/α, η′ = (2/Mη2

e )N , and Rmax =
A (η2

r λ
2
m/2)N , where the constants A and B are given by A =

η2
d/(η2

r λ
2
mTq) and B = η2

r λ
2
mη2

eM/4. Assuming that RN (L) �
R

(0)
N (L) holds ∀ N � 1, the bound in Theorem 2 will follow.
The rate R

(0)
N (L) assumes that Pd = Pr = Pe = 0, which

implies Q(N ) = 0, and hence R2(Q(N )) = 1, 4s = η2
r λ

2
m/2,

and 4s1 = η2
eλ

2/2 = η2
eη

1/N/2, since λ = η1/2N . Also, P1 =
(q1 + q2)2 = η2

d . Since Ps0 = 4s1 < 1, since it is a probability
(of a BSM “success” on one of the frequency modes of
one elementary link), with M � 1 and N � 1, we have that

[1 − (1 − 4s1)M ]
N � 1. Therefore,

Psucc = (4s)N−1[1 − (1 − 4s1)M ]N (F9)

� (4s)N−1. (F10)

It is now easy to derive a constant (L-independent) upper
bound to R

(0)
N (L), the first segment of R

(UB)
N (L),

R
(0)
N (L) = P1PsuccR2(Q(N ))

2Tq

(F11)

= η2
d

2Tq

Psucc (F12)

�
(

η2
d

η2
r λ

2
mTq

) (
η2

r λ
2
m

2

)N

(F13)

= A

(
η2

r λ
2
m

2

)N

≡ Rmax, (F14)

where A = η2
d/(η2

r λ
2
mTq). Next we observe that (1 − 4s1)M �

1 − 4Ms1 for M � 1. In other words, 1 − (1 − 4s1)M �
4Ms1. Hence, we have

Psucc = (4s)N−1[1 − (1 − 4s1)M ]N (F15)

� (4s)N−1 (4Ms1)N (F16)

= (4s)N−1

(
Mη2

eη
1/N

2

)N

(F17)

= (4s)N−1

(
Mη2

e

2

)N

η (F18)

= η

(
1

4s

)(
4s

Mη2
e

2

)N

(F19)

= η

(
2

η2
r λ

2
m

)(
Mη2

eη
2
r λ

2
m

4

)N

. (F20)

Therefore, we have

R
(0)
N (L) = P1PsuccR2(Q(N ))

2Tq

(F21)

= η2
d

2Tq

Psucc (F22)

� η(ABN ), (F23)

where A = η2
d/(η2

r λ
2
mTq) and B = η2

r λ
2
mη2

eM/4, which gives
us the linear rate transmittance (second segment) of the upper
bound R

(UB)
N (L). The third segment of R

(UB)
N (L) is trivial since

RN (L) = 0 for L � Lmax.

2. Envelope of the three-piece rate-loss upper bounds

In this section, we prove Theorem 3, i.e., derive the envelope
of R

(UB)
N (L) over all N � 1. The main step is to prove (see

below) that the locus of the corner points {XN } is given
by Aηt , with t = log2 (η2

r λ
2
m/2)/log2 (2/Mη2

e ) � 1. Next we
argue that since the line segments connecting XN and YN are
proportional to η [i.e., η(ABN )], the locus of the corner points
{YN } cannot be above the locus of the corner points {XN }
(since t � 1). We thereby conclude that the envelope of the
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functions R
(UB)
N (L) over all N � 1, is given by Aηt . Finally,

since RN (L) � R
(0)
N (L) � R

(UB)
N (L), given that R(L) is the

envelope of RN (L) over all N � 1 and given that R(UB)(L) is
the envelope of R

(UB)
N (L) over all N � 1, we get the statement

of Theorem 3; i.e., R(L) � R(UB)(L) = Aηt .
Let us now prove the only step we left open above, that

the locus of the corner points {XN } is given by Aηt with
t = log2 (η2

r λ
2
m/2)/log2 (2/Mη2

e ). The proof follows simply
by calculating the coordinates of XN (η′,R′), where η′ is given
by equating the first two segments of R

(UB)
N (L), and solving

for η,

(ABN )η′ = A

(
η2

r λ
2
m

2

)N

, (F24)

which yields η′ = ( 2
Mη2

e
)N . Clearly, R′ = Rmax =

A(η2
r λ

2
m/2)N . Eliminating N from the expressions of

η′(N ) and R′(N ) by taking logarithms and dividing,
it is simple to obtain the solution of the locus of the
points {XN } as R′ = A(η′)t , where A = η2

d/(η2
r λ

2
mTq) and

t = log2 (η2
r λ

2
m/2)/log2 (2/Mη2

e ). Hence, it is proved.

3. Exact expression for the rate-loss envelope

In this section, we prove Theorem 4, i.e., derive R(0)(L) =
Aηξ , the exact solution of the envelope of R

(0)
N (L) over all

N � 1, where A = η2
d/(η2

r λ
2
mTq) and the exponent ξ is given

by

ξ = log2{β[1 − (1 − γ z)M ]}
log2 z

, (F25)

where z is the unique solution of a transcendental equation in
the interval (0,1),

[1 − (1 − γ z)M ] log2{β[1 − (1 − γ z)M ]}
= γMz log2 z(1 − γ z)M−1, (F26)

with β = η2
r λ

2
m/2 and γ = η2

e/2.

We can express R
(0)
N (L) ≡ y = P1Psucc/2Tq =

η2
dPsucc/2Tq as

y = A{β[1 − (1 − γ x1/N )M ]}N, (F27)

where x = η is the channel transmittance, A = η2
d

η2
r λ

2
mTq

, β =
η2

r λ
2
m/2, and γ = η2

e/2. Substituting t = 1/N , the envelope of
R

(0)
N (L) over N � 1 is given by the simultaneous solution of

f (x,y,t) = 0 and ∂f (x,y,t)/∂t = 0, where

f (x,y,t) =
( y

A

)t

− β[1 − (1 − γ xt )M ], (F28)

with t ≡ 1/N ∈ (0,1]. The two simultaneous equations are
thus given by

zt = β[1 − (1 − γ xt )M ], and (F29)

zt log2 z = βγMxt log2 x(1 − γ xt )M−1, (F30)

where z ≡ y/A. We next argue that the unique solution to
Eqs. (F29) and (F30) must be of the form z = xξ . To do so, let
us differentiate z with respect to x in Eq. (F29), which yields

zt−1 dz

dx
= βγM(1 − γ xt )M−1xt−1. (F31)

Substituting βγMxt (1 − γ xt )M−1 = zt log2 z/ log2 x from
Eq. (F30), we get

dz

z log2 z
= dx

x log2 x
, (F32)

taking an indefinite integral of which yields

log2 log2 z − log2 log2 z0 = log2 log2 x − log2 log2 x0,

(F33)
where z0 and x0 are constants to be determined by substituting
the solution back into f (x,y,t) = 0. Simplifying the above,
we obtain

log2

(
log2 z

log2 x

)
= log2

(
log2 z0

log2 x0

)
, (F34)

or z = xξ , with ξ = log2 z0/log2 x0. Finally, we substitute z =
xξ into Eq. (F29) and solve to obtain the expression for ξ

as shown in Eq. (F25) and hence obtaining y = Axξ . Hence,
we have R(0)(L) = Aηξ , the exact solution of the envelope of
R

(0)
N (L) over all N � 1.
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