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Quantum macroscopicity versus distillation of macroscopic superpositions
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We suggest a way to quantify a type of macroscopic entanglement via distillation of Greenberger-Horne-
Zeilinger states by local operations and classical communication. We analyze how this relates to an existing
measure of quantum macroscopicity based on the quantum Fisher information in several examples. Both cluster
states and Kitaev surface code states are found to not be macroscopically quantum but can be distilled into
macroscopic superpositions. We look at these distillation protocols in more detail and ask whether they are
robust to perturbations. One key result is that one-dimensional cluster states are not distilled robustly but
higher-dimensional cluster states are.
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I. INTRODUCTION

Despite the overwhelming successes of quantum mechan-
ics, one of its greatest remaining problems is to explain why it
appears to break down at the macroscopic scale. In particular,
macroscopic objects are never seen in quantum superpositions.
The well-known thought experiment of Schrödinger’s cat
highlights the absurdity of a cat existing in a superposition
of alive and dead states, yet in principle this is possible within
quantum theory. It is therefore important to attempt to create
macroscopic quantum states in experiments, in order to probe
the boundary between quantum and classical mechanics—to
decide if a fundamental size limit exists or if the challenge
is purely a matter of isolating a system from its noisy
environment.

Some recent experiments have sought cat states in photonic
systems or similar macroscopic superpositions in supercon-
ducting circuits, molecular interferometers, and mechanical
resonators [1–5]. Due to this great variety, one needs a general
measure of quantum macroscopicity to compare experiments
in which qualitatively different states are produced. Such a
measure may also help us better understand the transition to
macroscopic classical behavior.

There is no single measure generally agreed to quantify
macroscopicity; typically, proposed measures are motivated
along the lines of the working definition 1 given by Fröwis
and Dür [6]: a quantum state is macroscopic if it is able
to display nonclassical behavior at a large scale that is not
simply an accumulation of microscopic quantum effects.
The need to rule out accumulated phenomena was originally
appreciated by Leggett [7,8]. These include, for example, bulk
properties of condensed matter systems that are explained
only by quantum physics, yet which are built up from effects
extending over the atomic scale. In other words, one expects
that a macroscopic quantum state necessarily has many-body
or long-range quantum correlations.

An appropriate measure should then describe the largest
scale to which quantum effects extend in a given state—this
is often referred to as an effective size, denoted here by
N∗. We do not impose any cutoff above which a value of
N∗ counts as macroscopic, but instead consider families of
states parametrized by some obvious size quantity N (e.g., the
number of qubits). Then the relevant property of the family is

the scaling of N∗ with N . The case N∗ = O(N ) is maximally
macroscopic [9].

In this work, we explore the consequences of viewing
macroscopicity as a statement about quantum correlations.
Thus we propose an effective size based on distilling macro-
scopic superpositions, as a way of quantifying a kind of
macroscopic entanglement. Statements about entanglement
are easiest for finite-dimensional systems, so our work
is currently restricted to these (we focus on systems of
qubits here), although characterizations of macroscopicity
exist for continuous-variable systems [10–12]. We compare
this quantity against an existing widely studied measure of
macroscopicity based on the quantum Fisher information.

In Sec. II, we first introduce the quantum Fisher information
measure of macroscopicity; we then propose a measure
of pure-state macroscopic entanglement via distillation of
Greenberger-Horne-Zeilinger (GHZ) states [13] in Sec. III
and investigate how these relate in specific examples. We
find that cluster states and Kitaev surface code ground states
have macroscopic entanglement, but this is not detected by
the Fisher information measure. In Sect. IV, we ask whether
these distillation protocols are sensitive to imperfections,
finding answers via mappings onto statistical spin models.
We conclude in Sec. V.

II. FISHER INFORMATION MEASURE
OF MACROSCOPICITY

Given a state, ρ, and an observable, A, the quantum Fisher
information can be defined by

F(ρ,A) = 2
∑
a,b

(pa − pb)2

pa + pb

|〈ψa|A|ψb〉|2, (1)

where pa and |ψa〉 are the eigenvalues and eigenstates of ρ.
We consider the class A of observables which can be written
as A = ∑N

i=1 Ai over local Ai , each acting nontrivially on a
single qubit i and with fixed norm ‖Ai‖ = 1. The effective
size proposed by Fröwis and Dür [6] is

N∗
F (ρ) := max

A∈A
F(ρ,A)

4N
(2)
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and lies in the range [1,N ]. (A may be extended to k-local
A with Ai acting on groups of k qubits, with k bounded
independent of N , in which case the denominator of equation
(2) contains the number of groups instead of N .)

Observables in A are supposed to model the kinds of
quantities that are easily measured at the macroscopic scale
with coarse-grained, noisy classical detectors. For pure states,
1
4F equals the variance, and N∗

F is seen to quantify the
largest quantum fluctuations of any macroscopic observable—
originally identified in Refs. [14,15]. It has been shown [6]
that N∗

F is more inclusive than a variety of measures [16–18]
looking at macroscopic superpositions of two states: maximal
macroscopicity according to any of these measures implies
N∗

F = O(N ).
In general, N∗

F describes the usefulness of a state for quan-
tum metrology. Consider the family of states ρθ = e−iθAρeiθA

encoding the parameter θ ∈ R. From n independent copies
of ρ, the quantum Cramér-Rao bound sets a lower limit
on the uncertainty with which θ can be estimated: δθ �
1/

√
nF(ρ,A) [19]. A macroscopic quantum state with N∗

F =
O(N ) makes δθ ∝ 1/N possible, a qualitative improvement
over the classical δθ ∝ 1/

√
N .

The authors have recently provided a motivation for this
measure as a quantifier of macroscopic coherence in a precise
sense [20]. (That work also notes some similarities between
this measure and other approaches motivated from very
different starting points [10,21].)

Furthermore, it has been demonstrated that large N∗
F is a

witness of macroscopic entanglement in the following ways.
For pure k-producible states in which blocks of up to k sites
may be entangled, 1

4F(|ψ〉〈ψ |,A) � kN for 1-local A (similar
bounds exist for mixtures) [22,23]. Also, N∗

F = O(N ) for a
pure state implies that macroscopically many [i.e., O(N2)]
pairs of sites have a nonvanishing O(1) amount of localizable
entanglement [24,25].

However, the converse is false: there are highly entangled
states with small N∗

F . To put this precisely, we introduce a
measure aiming to quantify macroscopic entanglement.

III. MEASURE OF MACROSCOPIC ENTANGLEMENT

For a pure quantum state, one can quantify the amount of
bipartite entanglement by counting the number of maximally
entangled states that can be distilled by local operations and
classical communication (LOCC) from many copies of the
given state [26].

In the multipartite case there is no unique maximally en-
tangled state [27]. To give a reasonable notion of macroscopic
entanglement, we suggest using the GHZ states |GHZn〉 :=
(|0〉⊗n + |1〉⊗n)/

√
2 as the target for distillation. |GHZn〉 is

often described as the typical qubit model of a macroscopic
superposition and is the maximally macroscopic state of n

qubits in the sense that N∗
F = n. Furthermore, it is easy to

motivate assigning an effective size of n to such a state.
To define our measure, take any pure state |ψ〉 of N

qubits and consider acting on |ψ〉 with stochastic LOCC
(SLOCC), described by measurement operators {Ma} corre-
sponding to the outcomes

√
pa|φa〉 := Ma|ψ〉 with probabili-

ties pa = 〈ψ |M†
aMa|ψ〉. We denote this kind of transformation

by |ψ〉 → {|φa〉,pa}. Now restrict these operations to the
set Dψ such that every outcome is of the form |φa〉 =
|GHZSa

〉|0〉N−|Sa |, where Sa ⊆ {1,2, . . . ,N} is some subset of
N qubits of cardinality |Sa|. We associate with each |φa〉 a size
na = |Sa| unless a trivial GHZ state of size 1 is obtained, in
which case na = 0. Our measure is

N∗
D(|ψ〉) := max

{Ma}∈Dψ

∑
a

pana. (3)

This is supposed to describe the size of GHZ-type entangle-
ment present in the state |ψ〉. We have restricted each final state
to a single GHZ, rather than a general product

⊗
i |GHZni

〉,
since we are only interested in the largest GHZ; the remaining
parts could be converted deterministically into product states.
This prescription, instead of summing the sizes, rules out the
accumulated phenomena mentioned earlier. Thus a state like
(|00〉 + |11〉)⊗n has N∗

D = O(1) instead of O(N ). In general,
N∗

D(
⊗

i |ψi〉) = maxi N
∗
D(|ψi〉).

It is simple to show that N∗
D is an entanglement monotone—

it cannot increase on average under SLOCC. Suppose |ψ〉 →
{|χμ〉,pμ} by SLOCC. Then for each μ there exists an optimal
ensemble, {|φμ,a〉,pμ,a}, distilled from |χμ〉 such that

N∗
D(|χμ〉) =

∑
a

pμ,anμ,a, (4)

where |φμ,a〉 contains a GHZ state of size nμ,a . By com-
posing the two SLOCC protocols, it follows that |ψ〉 →
{|φμ,a〉,pμpμ,a} is a valid distillation operation in Dψ , so

N∗
D(|ψ〉) �

∑
μ,a

pμpμ,anμ,a

=
∑

μ

pμN∗
D(|χμ〉), (5)

which proves the monotonicity.
The optimization involved in determining N∗

D will
generally be intractable—the best we can do is find bounds.
A lower bound must come from an explicit construction of
distillation operations, and this will be difficult except for
some particular cases. By extending a method in Ref. [28],
we present a simple upper bound for states that are symmetric
under exchange of any two sites (see Appendix A). This
comes from the geometric entanglement [29] of a single
site with the rest: EG(|ψ〉) = 1 − λmax(|ψ〉), where λmax is
the largest eigenvalue of ρ1 := Tr2,3,...,N |ψ〉〈ψ |. Using the
monotonicity of EG under SLOCC, we find

N∗
D(|ψ〉) � 2N [1 − λmax(|ψ〉)]. (6)

A. Generalized GHZ states

Generalized GHZ states [28] were our initial motivation
for considering GHZ distillation. These depend on N and
the parameter ε ∈ R and were suggested to be a reasonable
description of the macroscopic current superpositions in
superconducting qubits. They can be written as |ψε

N 〉 ∝
|ε〉⊗n + | − ε〉⊗n, where | ± ε〉 := cos(ε/2)|0〉 ± sin(ε/2)|1〉.
For ε = π

2 we recover |GHZN 〉, while ε = 0 gives |0〉⊗n. Thus
we expect ε to vary the macroscopicity smoothly between
the minimal and maximal values. Indeed, for ε � 1 � Nε2,
N∗

F ≈ Nε2 [6].
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FIG. 1. The graph used to define the cluster state |CN 〉. Measure-
ments are performed on the A sites in order to distill the B sites into
a GHZ state.

The distillation protocol constructed in Ref. [28] produces
an average distilled size of approximately Nε2/2 in the above
limit. Moreover, λmax ≈ cos2(ε/2), giving N∗

D � Nε2/2—so
the protocol is exactly optimal [30], and N∗

D(|ψε
N 〉) ≈ Nε2/2.

Here we have N∗
D ≈ N∗

F/2.

B. Cluster states

It has already been noted for cluster states that N∗
F = O(1),

but it is nevertheless possible to deterministically distill
from them GHZ states of size O(N ) [6,12]. Recall that a
d-dimensional cluster state is defined for qubits associated
with the vertices of (a subset of) a d-dimensional square
lattice. It can be constructed from (|0〉 + |1〉)⊗n by applying a
controlled-σ z gate between each neighboring pair [31].

To see the scaling of N∗
F , note that the variance quantifies the

total amount of two-point correlations [24]. In cluster states,
it can be shown that two regions are uncorrelated unless they
share a boundary. Since each region of bounded O(1) size has
a bounded number of neighbors, it follows that N∗

F = O(1).
For simplicity, we focus on the family of N -qubit cluster

states |CN 〉 defined by graphs of the type shown in Fig. 1—
these are two-dimensional cluster states with a fraction of
sites removed. A measurement of each site of set A in the
σx eigenbasis projects B into |GHZNB

〉 up to local σx gates
depending on the outcomes, where NB is the number of B sites.
Classical communication can remove these errors, making the
final state deterministically |GHZNB

〉. Therefore N∗
D(|CN 〉) �

NB = O(N ). It is simple to see that this generalizes to cluster
states of any dimension.

C. Kitaev surface code states

Kitaev’s surface code model is the simplest lattice system
displaying topological order, which is of great interest for
condensed matter physics and topological quantum com-
putation [32–34]. Its ground states are sensitive to global
topological properties of their lattice. Since they could exist on
a macroscopic lattice, this makes them interesting candidates
for macroscopicity.

The two-dimensional version is defined by a square lattice
where each edge represents a qubit, with Hamiltonian H =
−∑

s zs − ∑
p xp. Here, zs is the product of σ z operators over

a star and xp is the product of σx operators over a plaquette

s

σz1

σz3
σz2

σz4

σx6

σx7

σx8

σx5

p

FIG. 2. (Color online) A star s and plaquette p in Kitaev’s
model and their corresponding operators: zs = σ z

1 σ z
2 σ z

3 σ z
4 and

xp = σ x
5 σ x

6 σ x
7 σ x

8 .

(see Fig. 2), and the sums are over all stars and plaquettes in the
lattice. There may be a number of degenerate ground states,
depending on the topology of the lattice; however, these have
equivalent entanglement properties [35] so we concentrate on
the simplest ground state.

It is possible to describe the structure of this state explicitly.
We define a configuration of the lattice to be a product state
where the qubits lying on a certain set of curves (open or
closed) are all in the state |1〉 while the rest are |0〉. The ground
state |KN 〉 is an equal superposition of all configurations
containing only closed curves which are topologically trivial
(contractible to a point).

|KN 〉, like |CN 〉, has no correlations between non-
neighboring regions [36], so N∗

F = O(1). As a further parallel,
one can deterministically distill macroscopic GHZ states from
|KN 〉 by SLOCC: choose any topologically trivial non-self-
intersecting loop B of NB = O(N ) qubits and perform local
projective measurements on the remainder of the lattice in the
z basis. Consider the case where the outcome of each measure-
ment is |0〉—then B ends up in |GHZNB

〉 containing the only
two consistent closed-curve configurations. For different out-
comes, the final state differs by local σx operations, so we can
obtain |GHZNB

〉 deterministically. Hence N∗
D(|KN 〉) = O(N ).

D. Dicke states

Dicke states [37] have recently been studied for their
interesting multipartite entanglement properties [6,22,38–40].
The N -qubit versions |N,k〉 are defined by symmetriz-
ing |0〉⊗(N−k)|1〉⊗k . For any observable of the form A =∑

i cos(θ )σx
i + sin(θ )σy

i we obtain the maximal variance
giving N∗

F = 1 + 2f (1 − f )N , where the quantity f = k/N

controls the macroscopicity in the same way as ε for |ψε
N 〉.

Our upper bound gives N∗
D(|N,k〉) � 2 min{k,N − k}. We

are not aware of any SLOCC protocols to distill GHZ states
from |N,k〉, and so cannot provide a lower bound. We
can only state that N∗

D � 2(N∗
F − 1), using min{f,1 − f } �

2f (1 − f ). Thus N∗
F < O(N ) ⇒ N∗

D < O(N ). However we
do not know if N∗

F = O(N ) ⇒ N∗
D = O(N ).

IV. ROBUSTNESS OF DISTILLATION

In the above cases of cluster states and Kitaev surface code
states, the distillation accomplishes something of practical
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value: it extracts states which are useful for quantum metrology
from initial states which are not, without increasing entan-
glement. Equivalently, it amplifies the macroscopicity of the
states according to the measure N∗

F . If this is to be regarded as
something with practical significance, then the final states must
be robust with respect to imperfections in the protocol. Indeed,
one might doubt the physical meaning of the distillation if it
is not robust in this sense.

To be specific, we neglect environmental noise since the
GHZ states produced are maximally sensitive to decoherence
[28], so any experiment taking advantage of them must have
tolerably low noise. Instead, we suppose that the measurement
device operating on the individual qubits may couple to them
imprecisely. Therefore we say that the distillation of GHZ
states is robust if the average Fisher information of the final
state retains the same scaling with N for any small perturbation
to the measurement operators.

The definition of the perturbation will be clear from the
following examples.

A. Cluster states

For cluster states, we perturb the projective measure-
ments to generalized measurement operators {E,Ē}, satisfying
E†E + Ē†Ē = I . Via the action of controlled-σ z gates, the
initial state can be written as |CN 〉 ∝ ∑

b |a(b)xA〉|GHZ(b)zB〉,
where A and B are expressed in the x and z bases, respectively,
a ∈ {0,1}NA , b ∈ {0,1}NB , and |GHZ(b)〉 := (|b〉 + |b〉)/√2,
with bi := 1 − bi . Each value of a is determined by b, and
without loss of generality we fix b1 = 0 (see Appendix B for
details).

In the unperturbed case, projective measurements on A give
full GHZ states on B with equal probability for each outcome.
From this symmetry it is clear that we need examine only
a single branch, say the outcome E⊗NA . The final state is
|ψ〉 ∝ ∑

b[E⊗NA |a(b)xA〉]|GHZ(b)zB〉.
The most general form (up to normalization) for E†E in

the x basis is

E†E =
(

1 δ∗
δ ε

)
, δ ∈ C, ε ∈ R. (7)

For the observable ZB = ∑
i∈B σ z

i , F depends on ε but not δ:

1

4
F(|ψ〉〈ψ |,ZB) = 1

Z
∑

b

ε|a(b)|(NB − 2|b|)2, (8)

where Z = ∑
b ε|a(b)| and |a| := ∑

i ai . We interpret this by
mapping the problem onto a two-dimensional square-lattice
ferromagnetic classical Ising model. Each b maps onto a
spin configuration with individual magnetic moments of ±1
and a total magnetization M = NB − 2|b|, and a(b) is the
corresponding bond configuration. There is an energy cost of
2J for each ai = 1, so we associate ε with e−2βJ and Z with
the partition function. Therefore 1

4F(|ψ〉〈ψ |,ZB) = 〈M2〉.
This model has a low-temperature ferromagnetic phase;

from a bound by Griffiths [41] we obtain 1
4F(|ψ〉〈ψ |,ZB) �

N2
B(1 − O(ε4))—so the distillation is robust.
This fails for one-dimensional cluster states, because the

Ising model has no T > 0 phase transition in one dimension

[42]. So distillation from one-dimensional cluster states is not
robust.

B. Kitaev surface code states

|KN 〉 works similarly, and the closed-loop restriction lets us
interpret the configurations as domain walls of an Ising model
with a spin on each plaquette. The robustness of distillation
again relies on T > 0 ferromagnetic order. However, the
relevant statistical model is more complex and depends on
δ. As discussed in Appendix C, the disorder associated with
δ maps onto probabilistically turning off the bonds, giving a
dilute Ising model. This has a ferromagnetic phase [43], letting
us conclude 〈Z2

B〉 = O(N2
B) for sufficiently small δ and ε.

An important caveat is that this only works when the loop
B divides the lattice into two-dimensional regions—for the
same reason as the failure of one-dimensional cluster states.
Therefore it seems we can only conclude robustness when
NB = O(

√
N ). The distilled states, while robust, have F =

O(N ) and do not offer a metrological advantage over the initial
state.

V. CONCLUSIONS

In summary, we have proposed a notion of macroscopic
entanglement which measures the size of GHZ states that can
be extracted by SLOCC and compared this with an existing
measure of macroscopicity. We find that cluster states and
Kitaev model ground states are macroscopically entangled by
our definition but are not macroscopically quantum by the
Fisher information. However, we lack statements examining
the converse: whether N∗

F = O(N ) ⇒ N∗
D = O(N ). Exten-

sions to our measure beyond qubits are also important—
for finite-dimensional systems, one could distill |GHZk

n〉 =
1√
k

∑k−1
i=0 |i〉⊗n. We suggest ascribing the same size to this as

to |GHZ2
n〉, as |GHZ2

n〉⊗m looks like |GHZ2m

n 〉 at the m-qubit
level.

The distillation can also be interpreted as increasing
the advantage of these states in high-precision parameter
estimation. A criterion requiring the distillation to be of
practical utility, by being robust against errors, tells us that
two-dimensional, but not one-dimensional, cluster states are
useful. This dependence on dimensionality also appears in
the statement that two-dimensional cluster states are universal
for measurement-based quantum computation, while the one-
dimensional versions are not [44]. Kitaev model ground states
are robust, but this can be proved only up to a nonmacroscopic
O(

√
N ) distilled size. It is noteworthy that our analysis for

these states is very close to the proof that surface codes can be
error corrected [45]. Thus we speculate that our results might
be related to the ability of these states to encode quantum
information and do so robustly.

As suggested by others [12], it would be helpful to develop a
resource theory for macroscopicity, requiring an understanding
of the operations unable to increase the effective size. The
SLOCC distillation operations used here are not included in
the set of free operations for macroscopic coherence defined in
Ref. [20], under which the Fisher information cannot increase.
The crucial point is that the final σx gates, conditioned on
measurement outcomes, are not free in that framework and
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instead entail manipulation of coherence between eigenstates
of ZB . This is where the present notion of macroscopic
entanglement departs from macroscopic coherence.
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APPENDIX A: UPPER BOUND ON N∗
D

FOR SYMMETRIC STATES

First note that for symmetric states, we may always
construct a symmetric optimal distillation protocol: if an
asymmetric optimal protocol is found, one just needs to
probabilistically perform all its permutations with equal
weighting. As a result, the probability pa for each |GHZSa

〉 is
a function of na only. We denote by qn the total probability of
obtaining any GHZ state of size n—it is clear that qn = (N

n
)pa

for any a such that |Sa| = n.
For the distilled state |φa〉 = |GHZSa

〉|0〉⊗N−|Sa | the geo-
metric entanglement EG of a site i with the rest of the system
is 1

2 if i ∈ Sa and 0 otherwise. The number of subsets of size
n containing i is (N−1

n−1 ).
The average EG for the final ensemble is therefore

∑
a

paEG(|φa〉) =
N∑

n=2

qn

(
N−1
n−1

)
(
N

n

) 1

2

= 1

2

N∑
n=2

qn

n

N

= 1

2N
N∗

D(|ψ〉). (A1)

By the monotonicity of EG under SLOCC, we have

N∗
D(|ψ〉) � 2NEG(|ψ〉). (A2)

APPENDIX B: DISTILLATION FROM CLUSTER
STATES |CN〉

To construct |CN 〉, we define {|0x〉,|1x〉} := {|+〉,|−〉} and
write the state |+〉⊗n before applying the UCZ gates as⊗

i∈A

∣∣0x
i

〉 ⊗ ⊗
j∈B

(∣∣0z
j

〉 + ∣∣1z
j

〉) =
∑

b

∣∣0x
A

〉 ⊗ ∣∣bz
B

〉
. (B1)

The action of UCZ on two qubits, i and j , is determined by

UCZ

∣∣ax
i

〉∣∣bz
j

〉 = |(ai ⊕ bj )x〉∣∣bz
j

〉
, (B2)

where ⊕ denotes addition modulo 2. Therefore we have that

|CN 〉 ∝
∑

b

∣∣a(b)xA
〉∣∣bz

B

〉
, (B3)

where each a(b) is determined by the following rule: ai = 0
when the neighboring bi are equal, and ai = 1 when they

are different. One can see that a(b(1)) = a(b(2)) if and only if
b(2) = b(1) or b(1). This leads to

|CN 〉 ∝
∑

b

∣∣a(b)xA
〉∣∣GHZ(b)zB

〉
, (B4)

where we fix b1 = 0 without loss of generality—any single
site in B could be fixed. It is clear from this expression that a
measurement of every A site in the x basis will project B into
a GHZ state; there are 2NB−1 different outcomes.

With imperfect measurements, as discussed in the main text,
we only need to consider a single branch with the outcome E

for each measurement, so we use the final state

|ψ〉 = 1√
Z

∑
b

[
E⊗NA

∣∣a(b)xA
〉]∣∣GHZ(b)zB

〉
. (B5)

To calculate the Fisher information in the variable ZB =∑
i∈B σ z

i , we just need the variance 〈ψ |Z2
B |ψ〉 − 〈ψ |ZB |ψ〉2.

Now it is easy to see from symmetry that 〈ψ |ZB |ψ〉 = 0, while∑
i

σ z
i (|bz〉 ± |bz〉) =

∑
i

(−1)bi (|bz〉 ∓ |bz〉)

= (NB − 2|b|)(|bz〉 ∓ |bz〉) (B6)

gives Z2
B |GHZ(b)zB〉 = (NB − 2|b|)2|GHZ(b)zB〉. Therefore

〈ψ |Z2
B |ψ〉 = 1

Z
∑
b,b′

〈a(b)|(E†E)⊗NA |a′(b′)〉

× 〈
GHZ(b)zB

∣∣Z2
B

∣∣GHZ(b′)zB
〉

= 1

Z
∑
b,b′

〈a(b)|(E†E)⊗NA |a′(b′)〉

× δb,b′(NB − 2|b|)2

= 1

Z
∑

b

ε|a(b)|(NB − 2|b|)2, (B7)

given that 〈0|E†E|0〉 = 1, 〈1|E†E|1〉 = ε. Similarly, by set-
ting 〈ψ |ψ〉 = 1 we obtain Z = ∑

b ε|a(b)|.
As described in the main text, 1

4F(|ψ〉〈ψ |,ZB) can be
interpreted as 〈M2〉 for a classical Ising model with ε = e−2βJ .
Griffiths [41] establishes a bound of the form 〈|M|〉 � NB[1 −
f (T )], where f is independent of NB and limT →0 f (T ) =
0. Using 0 � 〈(NB − |M|)2〉 = N2

B − 2NB〈|M|〉 + 〈M2〉, it
follows that 〈M2〉 � 2NB〈|M|〉 − N2

B � N2
B[1 − 2f (T )]. To

leading order, f (T ) ≈ e−8βJ , which gives the bound

1
4F(|ψ〉〈ψ |,ZB) � N2

B[1 − O(ε4)]. (B8)

APPENDIX C: DISTILLATION FROM KITAEV MODEL
GROUND STATES |KN〉

As above, we need to calculate 〈Z2
B〉 and verify that

it remains O(N2
B) for sufficiently small perturbations. Our

approach again involves a map onto a statistical model where
a spin σi is placed at the center of each plaquette. B is
chosen to be a rectangular loop of size NB = O(

√
N ) which

cuts the remainder A of the lattice into two independent
two-dimensional regions. If we label each edge in B by bi = 0
or 1 with neighboring inside and outside Ising spins σ

(i)
i and
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σ(o)i σ(i)i

σ(i)j

σ(o)j

bj

bi

FIG. 3. (Color online) The highlighted loop B is the set of qubits
to be distilled into a GHZ state. Each segment bi has neighboring
Ising spins σ

(i)
i and σ

(o)
i .

σ
(o)
i = ±1 (see Fig. 3), then σ

(i)
i σ

(o)
i = 1 − 2bi and 〈Z2

B〉 will
be given by

〈(NB − 2|b|)2〉 =
〈( ∑

i∈B

σ
(i)
i σ

(o)
i

)2〉

= NB + 2
∑
i<j

〈
σ

(i)
i σ

(i)
j

〉〈
σ

(o)
i σ

(o)
j

〉
, (C1)

where the expectation value is taken with respect to the
statistical model to be defined below. Hence it will follow
that 〈Z2

B〉 = O(N2
B) if our model results in an ordered phase

where the two-point correlation functions are bounded strictly
above zero independent of N .

To define the required mapping, we recall that the premea-
surement state is a sum of (topologically trivial) closed-loop
configurations in the z basis:

|KN 〉 ∝
∑

c: ∂c=0

|cA〉|cB〉, (C2)

where ∂c is the boundary of c and cA and cB are the parts of
c existing on A and B, respectively. (For the remainder of this
section, a quantity such as c or cA will be understood to be a
vector, while ci is a single component.) Since B is a closed
loop, every distinct cA in this sum corresponds to exactly two
values of cB , which are the opposites of each other. Therefore,
by choosing to fix a single site of B, say b1 = 0 (which we do
implicitly from now on), we can write the state as

|KN 〉 ∝
∑

c: ∂c=0

|cA〉|GHZ(cB)〉. (C3)

Furthermore, for each cB we can generate all the corresponding
cA by choosing a particular representative cA(cB) and adding
to this all the possible closed loops zA lying strictly within A.
(Note that adding zA to cA creates a configuration |cA ⊕ zA〉
in which cA is deformed through the region bounded by zA.)

This provides an additional representation:

|KN 〉 ∝
∑
cB

( ∑
zA: ∂zA=0

|cA(cB) ⊕ zA〉
)

|GHZ(cB)〉. (C4)

Hence we can write the postmeasurement state E⊗NA |KN 〉 as

|ψ〉 = 1√
Z

∑
c: ∂c=0

E⊗NA |cA〉|GHZ(cB)〉 (C5)

= 1√
Z

∑
cB

( ∑
zA: ∂zA=0

E⊗NA |cA(cB) ⊕ zA〉
)

|GHZ(cB)〉

(C6)

such that Z gives the normalization 〈ψ |ψ〉 = 1. We can use
these two forms simultaneously to determine Z:

Z =
∑

c: ∂c=0

∑
c′
B

∑
zA: ∂zA=0

〈c′
A(c′

B) ⊕ zA|E |cA〉

× 〈GHZ(c′
B)|GHZ(cB)〉

=
∑

c: ∂c=0

∑
zA: ∂zA=0

〈cA ⊕ zA|E |cA〉, (C7)

where E := (E†E)⊗NA . In the second line, we have used the
fact that c′

B = cB to choose the representative c′
A(c′

B) to equal
cA. Similarly we find

〈
Z2

B

〉 = 1

Z
∑

c: ∂c=0

∑
zA: ∂zA=0

〈cA ⊕ zA|E |cA〉(NB − |cB |)2. (C8)

From the general form of E†E described in the main text, we
have [46]

〈cA ⊕ zA|E |cA〉 =
∏
i∈A

δzi εci (1−zi ). (C9)

We shall see that this calculation can be mapped onto a
statistical spin model with the following Hamiltonian:

H =
∑
〈i,j〉

Jijσiσj , (C10)

where the sum is over neighboring pairs of spins, and Jij = 0
with probability p and Jij = −J (J > 0) with probability 1 −
p. Such a model describes an Ising ferromagnet with random
disorder caused by removing some of the bonds; we take this
disorder to be annealed (as opposed to quenched), meaning
that the Jij are considered dynamical variables. It is known
that this model is in a ferromagnetic phase for sufficiently
small T and p [43].

Let us first rewrite the Hamiltonian in terms of the variables
fij = 0 or 1 with probabilities (1 − p) and p, respectively, and
bij = 1

2 (1 − σiσj ):

H (f,b) = −J
∑

e

(1 − fe)(1 − 2be), (C11)

where we replace (ij ) with e labeling the edges of the lattice
dual to the spins. Up to normalization, the probability of the
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configuration (f,b) is

P (f,b) ∝ e−βH (f,b)
∏

e

(
p

1 − p

)fe

∝
∏

e

e−βJ (fe+2be(1−fe))

(
p

1 − p

)fe

=
∏

e

[(
p

1 − p

)
e−βJ

]fe

(e−2βJ )be(1−fe). (C12)

Therefore we can make the identification 〈cA ⊕ zA|E |cA〉 →
P (f,b) as long as we map

δ →
(

p

1 − p

)
e−βJ , ε → e−2βJ ,

(C13)
zi → fe, ci → be.

The last of these is compatible with the restriction ∂c = 0
because each bond configuration b for the spins must be
formed of closed loops. However, our condition that ∂zA = 0
means that we must similarly restrict the patterns of f in the
spin model; it is nevertheless clear that this only reduces the
disorder and so must preserve the ferromagnetic phase. There
are also no bonds lying on the curve B, explaining our earlier
claim that B cuts the remainder A into two noninteracting
sections.

Therefore, to sum up, each term 〈cA ⊕ zA|E |cA〉 can be in-
terpreted as the probability of a configuration in this disordered

FIG. 4. (Color online) An example of a loop to be distilled into a
size O(N ) GHZ state.

spin model, so that Z becomes the partition function and 〈Z2
B〉

is related to the two-point correlators as described earlier. The
existence of a ferromagnetic phase then lets us conclude that
〈Z2

B〉 = O(N2
B) for sufficiently small δ and ε.

This argument assumed B to be a rectangular loop of
size O(

√
N ), such that the distilled GHZ states have Fisher

information of only O(N )—the same as the initial state |KN 〉.
If we want an improvement for metrology, we would need to
choose a loop of size O(N ). As depicted in Fig. 4, it seems to us
that any such loop will divide the lattice into one-dimensional
rather than two-dimensional regions, in which case the above
argument does not apply. By analogy with the cluster state
example, we might conjecture that no O(N ) loop is robust to
perturbations.
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