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No-signaling bounds for quantum cloning and metrology
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The impossibility of superluminal communication is a fundamental principle of physics. Here we show that this
principle underpins the performance of several fundamental tasks in quantum information processing and quantum
metrology. In particular, we derive tight no-signaling bounds for probabilistic cloning and superreplication
that coincide with the corresponding optimal achievable fidelities and rates known. In the context of quantum
metrology, we derive the Heisenberg limit from the no-signaling principle for certain scenarios including reference
frame alignment and maximum likelihood state estimation. We elaborate on the equivalence of assymptotic
phase-covariant cloning and phase estimation for different figures of merit.
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I. INTRODUCTION

Nothing can travel faster than the speed of light. This
is one of the pillars of modern physics and an explicit
element of Einstein’s theory of relativity. Any violation of this
principle would lead to problems with local causality giving
rise to logical contradictions. This principle not only applies
to matter, but also to information, rendering superluminal
communication impossible. While not explicitly contained in
the postulates of quantum mechanics all attempts to construct
or observe violations of this principle have failed, leading us to
believe that this is indeed a basic ingredient of our description
of nature. In fact, modifications of quantum mechanics, e.g.,
by allowing nonlinear dynamics, would lead to signaling and
a violation of this fundamental principle [1–3]. It is therefore
natural to assume that no-signaling holds and try to deduce
what follows under such an assumption.

Indeed, the no-signaling principle has been used to derive
bounds and limitations on several physical processes and tasks.
These include the observation that a perfect quantum copying
machine would allow for superluminal communication [4–6],
limitations on universal quantum 1 → 2 cloning [7,8] and 1 →
M cloning [9], a security proof for quantum communication
[10], optimal state discrimination [11], and bounds on the
success probability of port-based teleportation [12]. However,
no-signaling alone is not restrictive enough as it allows for
stronger nonlocal correlations than possible within quantum
mechanics [13], and several attempts have been made to further
supplement the no-signaling principle in order to retrieve
quantum mechanical correlations [14–17].

Here we derive limitations on optimal quantum strategies
from fundamental principles. In particular we show the
following:

(1) Tight no-signaling bound on probabilistic phase-
covariant quantum cloning.

(2) Asymptotically tight no-signaling bound on unitary
superreplication.

(3) A derivation of the Heisenberg limit for metrology from
the no-signaling condition.

(4) Quantum protocols that achieve the bounds placed by
no-signaling.

We assume the Hilbert space structure of pure states and
show how the no-signaling principle directly leads to tight
bounds on different fundamental tasks in quantum information

processing and quantum metrology. We start by showing how
the impossibility of faster-than-light communication between
Alice and Bob can be used to provide upper bounds on Bob’s
ability to perform certain tasks, even if Bob has access to
supraquantum resources. Not only does the no-signaling prin-
ciple allow us to prove ultimate limits on these fundamentally
important tasks, it also allows us to demonstrate the optimality
of known protocols and shed light on the recently discovered
possibility of probabilistic superreplication of states [18] and
operations [19,20].

We derive a no-signaling bound on the global fidelity
of N → M probabilistic phase-covariant cloning [18]. Our
derivation is constructive, and we provide the optimal de-
terministic quantum protocol that achieves the bound [18].
In similar fashion, we derive a no-signaling bound on the
replication of unitary operations [19], which is tight in the
large M limit. Furthermore, we derive the Heisenberg limit
of quantum metrology solely from the no-signaling principle,
more specifically for phase reference alignment [21–23]. We
find a tight no-signaling bound on the maximal likelihood and
a bound with the correct scaling on the fidelity of reference
frame alignment for phase both for the uniform prior as well
as for a nonuniform prior probability distribution.

We show that the no-signaling condition can be used to
establish bounds on the performance of quantum information
tasks for which no bounds are known or for which the brute
force optimization of the tasks is hard. This demonstrates
an alternative approach to establish the possibilities and
limitations of quantum information processing, which is based
on fundamental principles rather than actual protocols. We
emphasize that this approach is not limited to the specific
tasks discussed here but is generally applicable.

We also discuss the correspondence between asymptotic
phase-covariant quantum cloning and state estimation and
establish the correspondence between different figures of merit
for the two tasks. Finally we supplement our approach by a
general argument, extending that of Ref. [3], showing that
optimal quantum protocols are at the edge of no-signaling.

II. NO SIGNALING

In this section we describe the operational setting un-
derpinning all three tasks we consider (cloning, replication
of unitaries, and metrology), as well as the no-signaling
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P. SEKATSKI, M. SKOTINIOTIS, AND W. DÜR PHYSICAL REVIEW A 92, 022355 (2015)

condition. All three tasks we consider can be described in the
following operationally generic setting. A party, Bob, possess
an N -qubit state,

|�N 〉B =
∑

v

av |v〉B =
N∑

n=0

pn

∑
|v|=n

av

pn

|v〉B︸ ︷︷ ︸
|ñ〉B

, (1)

where v runs over all N -bit strings and |ñ〉B is a superposition
over all states with Hamming weight |v| = n. Bob then
receives, via a remote preparation scenario to be described
shortly, the action of a unitary operator U⊗N

θ such that∣∣�N
θ

〉 = U⊗N
θ |�N 〉 , (2)

where Uθ = eiθH with H an arbitrary Hamiltonian acting
on two-level systems (qubits) with spectral radius σ (H ), θ

uniformly chosen from (0,2πσ (H )].
Bob has to process U⊗N

θ for some quantum information
task in an optimal way. In particular, we do not demand
that Bob’s processing be described by linear maps, nor do
we demand that the mapping from valid quantum states to
probability distributions be given by the Born rule. All that we
require of Bob’s processing outcomes is that they should be
valid inputs for someone whose processing power is limited
by quantum theory. We choose such a setting because our
goal is rather pragmatic: we wish to derive upper bounds on
quantum information tasks. Hence, throughout this work we
shall assume that all of Bob’s static resources, i.e., pure states
of physical systems, ensembles of pure states, and probability
distributions, are described within the framework of quantum
theory, but Bob’s dynamical resources, i.e., processing maps,
are not. In fact imposing no-signaling condition for quantum
static resources is equivalent to imposing quantum mechanics
(see Sec. VI), but when a direct optimization over quantum
strategies is unfeasible, the no-signaling argument can help to
show that a known strategy is optimal.

What Bob has to output varies depending on which task he
performs. For example, if the required task is the cloning of the
state |ψ(θ )〉, then Bob has to output an M-qubit state, ρM

θ , that
is a close approximation to |ψ(θ )〉⊗M . If the required task is the
replication of the unitary operator Uθ then Bob has to output a
quantum channel acting on the Hilbert space of M qubits that is
a close approximation to U⊗M

θ . Finally, if the required task is to
estimate the parameter θ , then Bob must output a probability
distribution corresponding to his updated knowledge about
parameter θ . We denote the outcome of Bob’s processing,
be it a quantum state, channel, or probability distribution, by
P(θ ).

To incorporate the no-signaling condition we consider that
Bob holds one part of a suitably chosen entangled state

|�〉AB =
N∑

n=0

pn |n〉A |ñ〉B (3)

which he shares with Alice, where Alice keeps the (N + 1)-
level system spanned by {|n〉A} and Bob holds the 2N -
dimensional system spanned by {|ñ〉B}. The state |�〉AB can
always be chosen such that Bob receives the action of U⊗N

θ

on an arbitrary input state. This is achieved by Alice first
performing (U⊗N

θ ⊗ 1) |�〉AB , followed by a measurement in

Alice Bob

FIG. 1. (Color online) Generic setting for faster-than-light com-
munication. Alice and Bob share an entangled state |�〉AB . By
applying U⊗N

θ followed by a suitable measurement Alice can
prepare any ensemble {pk |�θ |k〉〈�θ |k|}, which Bob processes into
O(θ ) = ∑

k pkP(θ |k). The no-signaling condition imposes that O(θ )
is independent of θ chosen by Alice.

the Fourier basis {|k〉 ∝ ∑
n ein 2πk

N+1 |n〉A} with k = 0, . . . ,N

(see Fig. 1). If Alice obtains outcome k, then Bob’s state
becomes ∣∣�N

θ+ 2π k
N+1

〉 = U⊗N

θ+ 2π k
N+1

|�N 〉 . (4)

As all outcomes, |k〉, are equally likely, Bob ends up with a ran-
dom state from the ensemble {|�N

θ+ 2π k
N+1

〉 , k ∈ (0, . . . ,N)}.
The no-signaling condition now requires that Bob, who

does not know which unitary Uθ, θ ∈ (0,2π ] was chosen by
Alice, cannot learn θ from the above ensemble no matter
what processing power, quantum or otherwise, Bob has at
his disposal. If this were not the case, then Alice and Bob,
who are spatially separated, can use the above construction
to perform faster-than-light communication. Denoting the
outcome of Bob’s processing by P(θ |k) the no-signaling
condition requires that the mixture

O(θ ) = 1

N + 1

N∑
k=0

P(θ |k) (5)

is independent of θ chosen by Alice.
Note that the no-signaling bound derived above is based on

a particular way to embed a quantum information processing
task into a communication scenario. The bound turns out to be
tight in the present context but is not in general. We will come
back to this point from a more general perspective in Sec. VI.

III. PROBABILISTIC PHASE COVARIANT CLONING

We first apply the no-signaling condition to the case
of phase-covariant quantum cloning (PCC). The latter task
involves cloning an unknown state from the set {|ψ(θ )〉 =
U (θ ) |ψ〉)} [18,24]. We focus on PCC of equatorial states,
|ψ(θ )〉 = 1/

√
2(|0〉 + eiθ |1〉), which play a crucial role in

proving the security of quantum key distribution [10]. Specif-
ically, we provide a bound for the optimal PCC of N qubits
into M > N qubits and show that this bound is achievable
by a deterministic quantum mechanical strategy, if one drops
the restriction of separable N -qubit input states. The latter
strategy involves the use of a suitable N -partite entangled
input state on which U⊗N

θ is applied. We stress that this task
does not correspond to the usual definition of cloning, as
in the literature cloning always assumes separable N -copy
input states. We then show how our deterministic strategy is
equivalent to the probabilistic PCC of Ref. [18], by introducing
a suitable filter operation that maps |ψ(θ )〉⊗N to the suitable
N -partite entangled state.
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A deterministic, phase-covariant quantum cloning machine
is some transformation, C, whose input is N copies of an
unknown equatorial qubit state |ψ(θ )〉 that outputs an M-qubit
state ρM (θ ) = C((|ψ(θ )〉〈ψ(θ )|)⊗N ). Optimal deterministic
cloning machines, be it state-dependent [24,25] or state-
independent [26–29], have been constructed, and tight bounds,
for the case of 1 → 2 cloning, based on the no-signaling
condition have been derived [7,8]. A probabilistic cloning
machine is more powerful in that it allows for a much higher
number of copies at the cost of succeeding only some of the
time. Indeed, probabilistic PCC, when successful, can output
up to N2 faithful copies of |ψ(θ )〉. However, the probability
of success is exponentially small [18].

If the input state to the probabilistic PCC machine is
remotely prepared by Alice, as explained in Sec. II, then the
no-signaling condition on the output of Bob’s probabilistic
PCC procedure has to be independent of θ , i.e.,

ρM = ρM (θ ) = 1

N + 1

N∑
k�0

ρM

θ+ 2π k
N+1

. (6)

Following Ref. [18], we quantify the success of the cloning
procedure by the worst case global cloning fidelity

F CN→M

wc = inf
θ

FC

(
ρM

θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M
)
, (7)

where FC(ρM
θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M ) =Tr[ρM

θ (|ψ(θ )〉〈ψ(θ )|)⊗M ]
is the global fidelity between the output of the cloner and M

perfect copies of the input state.
Recalling that the Uhlmann fidelity, FU (ρ,σ ) =

tr
√√

σρ
√

σ it follows that FC(ρM
θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M ) =

FU (ρM
θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M )2. Moreover, as the worst case

fidelity is always smaller or equal than the mean fidelity, the
following bound holds:

F CN→M

wc �
(∫

dθ

2π
FU

(
ρM

θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M
))2

.

Thus an upper bound for the worst case global cloning fidelity
can be obtained by obtaining an upper bound on the mean
Uhlmann fidelity.

In order to upper bound the mean Uhlmann fidelity we first
rewrite the latter as∫

dθ

2π
FU

(
ρM

θ ,(|ψ(θ )〉〈ψ(θ )|)⊗M
)

=
∫ 2π

0

N∑
k=0

dθ

2π (N + 1)

×FU

(
ρM

θ+ 2πk
N+1

,
(
U 2πk

N+1
|ψ(θ )〉〈ψ(θ )| U †

2πk
N+1

)⊗M)

�
∫ 2π

0

dθ

2π
FU

⎛
⎝ρM,

N∑
k=0

(U 2πk
N+1

|ψ(θ )〉〈ψ(θ )| U †
2πk
N+1

)⊗M

N + 1

⎞
⎠,

(8)

where we have used the joint concavity of the Uhlmann fidelity,
FU (

∑
i pi ρi,

∑
i piσi) �

∑
i piFU (ρi,σi) in the last line of

Eq. (8). As |ψ(θ )〉 = Uθ |+〉, and [U 2πk
N+1

,Uθ ] = 0, unitary

invariance of the fidelity, F (ρ,UσU †) = F (U †ρU,σ ), allows

us to shift the action of U (θ )⊗M onto ρM , and the integrand of
Eq. (8) reads∫ 2π

0

dθ

2π
FU

⎛
⎝U

†
θ ρ

MUθ ,

N∑
k=0

(U 2πk
N+1

|+〉〈+|U †
2πk
N+1

)⊗M

N + 1

⎞
⎠. (9)

Finally using the concavity of the Uhlmann fidelity,
F (

∑
i pi ρi,σ ) �

∑
i piF (ρi,σ ), to move the integral over θ

inside the argument for the Uhlmann fidelity, and defining
the maps GZN+1 [·] ≡ 1

N+1

∑N
k=0 U⊗M

2πk
N+1

(·) U
†⊗M
2πk
N+1

and G†
U(1)[·] ≡

1
2π

∫ 2π

0 dθ U
†⊗M

θ (·) U⊗M
θ , we obtain the desired upper bound

for the worst case global cloning fidelity:

F CN→M

wc � FU

(
G†
U(1)[ρ

M ],GZN+1 [(|+〉〈+|)⊗M ]
)2

. (10)

We now proceed to give an explicit expression for the upper
bound of Eq. (10). The maps G impose a block-diagonal
structure on any density matrix on which they act, making
it it easy to find ρM that maximizes Eq. (10). As the
state (|+〉〈+|)⊗M is symmetric under permutations it suffices
to maximize over all symmetric ρM . For any permutation
symmetric ρM , G†

U(1)[ρ
M ] is diagonal and can be written as

G†
U(1)[ρ

M ] =
M⊕

n=0

pn |n,M〉〈n,M| , (11)

where {|n,M〉}Mn=0 is an orthonormal basis spanning the
symmetric subspace of M qubits with n qubits in state |1〉
and M − n qubits in state |0〉. Correspondingly, we may write

GZN+1 [(|+〉〈+|)⊗M ] =
N⊕

λ=0

|φ(λ)〉〈φ(λ)| , (12)

where |φ(λ)〉 = ∑
n| n mod (N+1)=λ

√
( M

n
)

2M |n,M〉 are unnormal-
ized pure symmetric states with the sum running over all n

that have a reminder λ after division by N + 1. The states
|φ(λ)〉 have nonzero overlap with the symmetric states |n,M〉
whenever n mod (N + 1) = λ.

Because of the block-diagonal structure we rewrite the
mean Uhlmann fidelity as

FU

(
G†
U(1)[ρ

M ],GZN+1 [(|+〉〈+|)⊗M ]
)

=
N∑

λ=0

√
〈φ(λ)|GU(1)[ρM ] |φ(λ)〉. (13)

Denoting by pλ = ∑
{n|n mod (N+1)=λ} pn the probability of

projecting G†
U(1)[ρ

M ] on the sector with a given λ we can
maximize the Uhlmann fidelity by optimizing each sector
λ independently. This is achieved by finding the n in each
sector λ such that the overlap 〈φ(λ)|n,M〉 is maximized. The
maximum Uhlmann fidelity then reads

max
pn

FU (
M⊕

n=0

pn |n,M〉〈n,M| ,
N⊕

λ=0

|φ(λ)〉〈φ(λ)|)

= max
pλ

√
pλ max

n
|〈φ(λ)|n,M〉|2 =

√∑
λ

max
n

|〈φ(λ)|n,M〉|2.

(14)
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The probability |〈φ(λ)|n,M〉|2 = 1
2M (M

n
) is given by the

binomial distribution if n mod (N + 1) = λ and is zero oth-
erwise. Thus, it is always optimal to choose n mod (N + 1)
closest to M

2 . Doing so for all λ we find that the maximal
fidelity is given by the square root of the sum of the N + 1
largest terms of the binomial distribution 1

2M (M

n
). Hence, the

upper bound for the worst case global cloning fidelity reads

F CN→M

wc � 1

2M

N∑
λ=0

(
M


M−N
2 � + λ

)
, (15)

where 
·� denotes the floor function. Finally, noting that
the binomial distribution, 1

2M (M

n
) can be approximated by

a Gaussian N (μ = M/2,σ = √
M/2), the upper bound in

Eq. (15) can be approximated, for M � N , by

F CN→M

wc � erf

(
N + 1√

2M

)
. (16)

We note that as long as M = O(N2) the upper bound in
(16) approaches unity in the limit N → ∞. Indeed, one can
make an even stronger claim. Any replication procedure that
respects the no-signaling condition and produces a number of
replicas M = O(N2+α) does so with a cloning fidelity that
tends to zero exponentially fast.

We now show how one can achieve the no-signaling bound
of Eq. (16) using a deterministic quantum mechanical strategy,
as depicted in Fig. 2. Instead of N copies of |ψ(θ )〉, suppose
Bob prepares the entangled state

|�N 〉 ∝
N∑

λ=0

√(
M


M−N
2 � + λ

)
|N,λ〉 . (17)

Bob now applies the cloning map C : |N,λ〉 �→
|M,
M−N

2 � + λ〉 that maps totally symmetric N -qubit
states to totally symmetric M-qubit states. This strategy
achieves the bound of Eq. (16) as the latter is valid for all
input states. We pause to note that the above result does not
contradict the well-known limits for deterministic cloning, as
in the latter Bob is forced to input N copies of a qubit state.

The bound of Eq. (16) is the ultimate bound that can be
achieved even by a probabilistic strategy. Indeed, the best
probabilistic quantum mechanical PCC attains precisely the
no-signaling bound of Eq. (16) [18]. In fact, there is an easy
way to see how the probabilistic strategy of Ref. [18] and the
deterministic strategy described above are related. Starting
from N copies of the state |ψ(θ )〉, the probabilistic PCC
of Ref. [18] has Bob first apply the probabilistic filter that

Filter

FIG. 2. (Color online) Equivalence between probabilistic PCC
and deterministic PCC using arbitrary states. The filter in the proba-
bilistic cloning can be viewed as part of a probabilistic preparation of
a general state from a separable N -qubit state. Allowing for arbitrary
input states makes the preparation process deterministic.

projects onto the state |�N 〉 of Eq. (17) and succeeds with
probability pyes = |〈�N |+〉⊗N |2. As such a filter commutes
with the unitary U⊗N

θ it can be seen as part of the overall
state preparation. The advantage, then, of probabilistic PCC
can be simply understood as a passage from the standard
quantum limit in quantum metrology, achieved for separable
input states, to the Heisenberg limit achieved by entangled
input states. Notice that no probabilistic advantage exists for
the case of 1 → M cloning. For the latter, the fidelity of
Eq. (16) takes the simple form F C1→M = 1

2M−1 ( M
M−1

2
) for M

odd and F C1→M = 1
2M ( M+1

M
2 +1 ) for M even and is known to be

achievable by a deterministic strategy [23].

IV. REPLICATION OF UNITARIES

We now consider the task where Bob has to output an
approximation, Vθ , of U⊗M

θ having received only N uses of the
black box implementing the unitary transformation Uθ [19,30].
The figure of merit that one uses is the global Jamiołkowski
fidelity (process fidelity) [31],

F
(
U⊗M

θ ,Vθ

) = 〈
ψU⊗M

θ

∣∣ ρVθ

∣∣ψU⊗M
θ

〉
, (18)

averaged over all θ , where |ψU⊗M
θ

〉 = (1 ⊗ U⊗M
θ ) |�+〉 and

ρVθ
= 1 ⊗ Vθ (|�+〉〈�+|), with |�+〉 = 1/

√
2M

∑
n |n〉 |n〉,

where n are the M-qubit bit strings, are the corresponding
Choi-Jamiołkowski states [32] for U⊗M

θ and Vθ , respectively.
It was shown in Ref. [19] that when M < N2 Bob can
approximate U⊗M

θ almost perfectly, i.e., with process fidelity
approaching unity in the large N limit. We now show that the
protocol in Ref. [19] saturates the no-signaling bound.

In order to apply the no-signaling condition for the
case of unitary replication in an easy way we consider the
following communication scenario. Alice prepares the Choi-
Jamiołkowski state corresponding to U⊗N

θ , |ψU⊗N
θ

〉, at Bob’s
side, which he can then use to probabilistically implement
U⊗N

θ on an arbitrary input state [33]. Consequently, the proto-
col for which we shall derive a no-signaling bound is inherently
probabilistic. We note that a bound for a probabilistic protocol
is automatically a bound for a deterministic protocol as well,
as the former are less restrictive than the latter.

The no-signaling constraint for unitary replication takes the
form

RM
N = 1

N + 1

N∑
k=0

1 ⊗ Vθ+ 2πk
N+1

(|�+〉〈�+|) (19)

and is independent of θ . As the worst case process fidelity
[Eq. (18)] is identical to the worst case global cloning fidelity
used for PCC [Eq. (7)] the no-signaling bound for probabilistic
replication of unitaries reads

Fwc

(
U⊗M

θ ,Vθ

)
� 1

2M

N∑
λ=0

(
M


M−N
2 � + λ

)
. (20)

This bound is achieved, in the limit of large M , by the
deterministic strategy in Ref. [19], for which the fidelity is
independent of θ . This implies that probabilistic processes
offer no advantage in this case. Thus, the optimal deterministic
replication of unitary operations allowed by quantum mechan-
ics is at the edge of no-signaling.
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V. QUANTUM METROLOGY

We now apply the no-signaling condition to provide bounds
for quantum metrology. The latter task involves the use of N

systems, known as the probes, prepared in a suitable state
|ψ〉 ∈ H⊗N , and subjected to a dynamical evolution described
by a completely positive map, Eθ , that imprints the value of θ

onto their state, i.e., ρθ = Eθ (|ψ〉〈ψ |). Information about the
value of θ is retrieved by a suitable measurement of the N

probes. The goal in quantum metrology is to choose the initial
state |ψ〉 and final measurement such that the value of θ can
be inferred as precisely as possible.

If the N quantum probes are prepared in a separable
quantum state, i.e., |ψ〉 = |φ〉⊗N , then the mean square error
with which θ can be estimated, optimizing over all allowable
measurements, scales inversely proportional with N [34]. This
limit is known as the standard quantum limit. If, however,
the N probes are prepared in a suitably entangled state,
then the mean square error with which θ can be estimated
scales inversely proportional with N2 [34]. This limit is
known as the Heisenberg limit. By allowing for a probabilistic
strategy, the Heisenberg limit in precision can be obtained
even with separable states [35,36]. Recently, it was shown that
both the standard and Heisenberg limits are related with the
maximum replication rates corresponding to deterministic and
probabilistic PCC strategies, respectively [18,37].

We now show how the no-signaling condition implies that
the ultimate bound in precision for metrology is the Heisen-
berg limit, even if supraquantum processing is allowed. We
shall consider two particular examples of Bayesian quantum
metrology: phase alignment, where the relevant parameter to
be estimated is the phase of a local oscillator, θ ∈ (0,2π ],
which is initially completely unknown [38] (Sec. V A), and
phase diffusion, where our prior knowledge of the parameter,
initially described by a delta function around some value θ0,
diffuses over time [39] (Sec. V C). We stress that whereas
analytical bounds for phase alignment are known, for phase
diffusion bounds are known only for a small number of probes
[39]. This is due to the fact that the optimal strategy is difficult
to compute, even numerically. Nevertheless, our no-signaling
constraint allows us to place an upper bound on the optimal
fidelity of estimation for asymptotically many probe systems.
We emphasize that a similar strategy can be applied to a variety
of quantum information processing tasks, where limitations of
the processes can be gauged by fundamental principles.

In Sec. V B we establish the relationship between optimal
quantum cloning protocols and measure and prepare strategies.
In particular, we show that a measure and prepare strategy that
maximizes the alignment fidelity is asymptotically equivalent
to a quantum cloning machine that maximizes the per copy
fidelity, whereas a measure and prepare strategy that optimizes
the maximum likelihood of estimation is asymptotically
equivalent to a quantum cloning machine that maximizes the
global fidelity.

A. Metrology with uniform prior

Consider the problem of phase alignment, i.e., estimating a
completely unknown phase, θ . We will utilize two different
ways of quantifying the precision of estimation of θ : the
maximum likelihood of a correct guess, μ = p(θ |θ ) [23],

and the fidelity of alignment, given by the payoff function
f = cos2 ( θ−θ ′

2 ) [22]. For the case of phase alignment the
no-signaling condition [Eq. (5)] takes the form

p(θ ′|θ ) = 1

N + 1

N∑
k=0

p

(
θ ′|θ + 2πk

N + 1

)
(21)

and is independent of θ (the same holds for a measurement
with discrete outcomes). Note that we make no assumptions
on how Bob obtains the probability distribution of Eq. (21). In
particular we do not restrict Bob’s processing to be quantum
mechanical. We require only that the inputs and outputs
to Bob’s processing apparatus be valid quantum states and
probability distributions, respectively.

1. Maximal likelihood

For the case where the precision is quantified by the
maximum likelihood the no-signaling bound [Eq. (21)] gives
p(θ |θ ) � (N + 1)p(θ ). If the estimate θ ′ is unbiased, all
outcomes are equally likely and the no-signaling bound takes
the simple form p(θ |θ ) � N + 1. The bound is known to be
achievable using the state [23]∣∣�N

m.l.

〉 = 1√
N + 1

∑
n

|n〉 . (22)

2. Alignment fidelity

For the case where the precision is quantified by the
fidelity of alignment, for each choice of θ, θ ′ the fidelity must
be properly weighted by the joint probability distribution,
p(θ ′,θ ) = p(θ ′|θ )p(θ ). The average fidelity of alignment is
thus

f̄ =
∫

dθ

2π

∫
dθ ′ cos2

(
θ − θ ′

2

)
p(θ ′|θ ). (23)

The probability distribution that both maximizes the average
fidelity and is compatible with no-signaling is

p(θ ′|θ ) =
{

N+1
2π

if |θ ′ − θ | � π
N+1

0 otherwise
(24)

as we now show.
Our aim is to distribute the probability distribution of

Eq. (21) among N + 1 terms subject to the constraint that∫
dθ ′p(θ ′) = 1 such that the average fidelity of Eq. (23)

is maximized. Without loss of generality assume that θ ∈
(0, 2π

N+1 ). If this is not the case we can always relabel the
measurement outcomes k ∈ (0, . . . ,N) such that θ lies in
(0, 2π

N+1 ). As cos2 ( θ ′−θ
2 ) is largest when θ − θ ′ = 0 the average

fidelity is optimized by setting p(θ ′|θ + 2πk
N+1 ) = 0 for k �= 0.

As this is true for all randomly chosen θ , and using the
constraint

∫
dθ ′ p(θ ′) = 1, it follows that p(θ ′|θ ) = N+1

2π
for

|θ ′ − θ | � π
N+1 and zero everywhere else.

We now derive the maximum average fidelity [Eq. (23)]
compatible with no-signaling. As the conditional probability
distribution p(θ ′|θ ) of Eq. (24) depends only on the difference
θ ′ − θ we may write the average fidelity as

f̄ = 1 −
∫ π

−π

dθ

2π

∫ π

−π

dθ ′p(θ ′ − θ ) sin2

(
θ − θ ′

2

)
, (25)
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where we have used the identity cos2(x) = 1 − sin2(x). As the
integrand in Eq. (25) depends only on the difference θ ′ − θ we
may define φ = θ ′ − θ and dφ = dθ ′ so that

f̄ = 1 −
∫ π

−π

dφ p(φ) sin2

(
φ

2

)
. (26)

Substituting the no-signaling probability distribution of
Eq. (24) in place of p(φ) in Eq. (26) one obtains

f̄ = 1 − N + 1

2π

∫ π
N+1

−π
N+1

sin2

(
φ

2

)
. (27)

In the limit of large N the limits of integration in Eq. (27) be-
come narrower, and we can use the small angle approximation
to write sin(φ/2) ≈ φ/2. Substituting the latter into Eq. (27)
and evaluating the integral one obtains the average fidelity
f̄ ≈ 1 − π2

12N2 . The maximum average fidelity achievable by

a quantum mechanical strategy is f̄ ≈ 1 − π2

4N2 [22] achieved
by the input state

∣∣�N
a.f.

〉 ∝ ∑
n

sin

(
n + 1

(N + 2)π

)
|n〉 . (28)

This fidelity is strictly smaller than the bound achieved by
no-signaling. Nevertheless, the no-signaling bound gives rise
to the right scaling with respect to N .

B. Correspondence between asymptotic
cloning and phase estimation

Every estimation strategy can be used in a measure and
prepare cloning protocol (henceforth referred to as M&P),
where Bob first estimates the N -copy input state and, based
on his estimate, prepares an M-qubit state. There are two
free choices in every M&P protocol: (a) what is the optimal
estimation strategy, i.e., which figure of merit to chose, and
(b) which output state should we prepare, i.e., do we prepare
M-copies of |ψ(θ )〉 or some suitable M-partite entangled state.
Similarly, there are two figures used in the literature thus far,
to quantify the quality of a quantum cloning machine: (a)
the global fidelity [18] defined by the overlap of the M-qubit
output of the cloning machine, ρM , with the the ideal M-copy
state |ψ〉⊗M (this is the figure of merit that we considered in
the previous section) and (b) the per copy fidelity [7,8,24,26–
29], which is the average of the overlap of the reduced single
qubit output state ρM |n = trall\nρ

M with a perfect single-qubit
state |ψ〉.

In this subsection we discuss how the optimal M&P
strategies compare with optimal cloning when the number
of copies M goes to infinity. In particular, we will show that
the optimal M&P strategy based on the alignment fidelity is
equivalent to an asymptotic quantum cloning machine which
optimizes the per copy fidelity of the clones, whereas the
optimal M&P strategy based on the maximum likelihood
is equivalent to an asymptotic quantum cloning machine
which optimizes the global fidelity. The equivalence between
asymptotic phase-covariant cloning and M&P protocols was
known for both deterministic cloning for per copy fidelity
[40] and global fidelity [41], as well as probabilistic cloning
[37], but we believe it is still interesting to show the exact

correspondence between the different figures of merit for
cloning and phase estimation.

1. Per copy cloning fidelity and alignment fidelity

We begin by discussing the equivalence between a M&P
strategy based on the alignment fidelity and an asymptotically
optimal cloning machine that maximizes the per copy fidelity.
The asymptotic equivalence between deterministic optimal
quantum cloning for per copy fidelity and state discrimination
was proven in Ref. [40] for the general case (any input state
alphabet). Obviously this also holds for the particular case
of phase-covariant cloning and phase estimation that we are
discussing here. For the probabilistic phase-covariant cloning
it was also shown recently [37] that for any cloning strategy
with a given success probability there exists a M&P protocol
with the same success probability that leads to the same per
copy fidelity in the asymptotic limit [42]. But what does the per
copy fidelity mean for the phase estimation part of the M&P
strategy? In particular what is the estimation strategy that leads
to the asymptotic equivalence with optimal cloning?

For this case it is quite easy to see, as the per copy
fidelity directly translates into the alignment fidelity of the
estimation strategy as the optimal output state simply consists
of preparing copies of |ψ(θ ′)〉, where θ ′ is Bob’s estimate of θ .
Consequently, the best M&P average per copy cloning fidelity,
given by

∫
p(θ )p(θ ′|θ )tr |ψ(θ ′)〉〈ψ(θ ′)| |ψ(θ )〉〈ψ(θ )| dθ dθ ′,

equals the alignment fidelity
∫

p(θ )p(θ ′|θ ) cos2( θ−θ ′
2 )dθ dθ ′.

Hence, the optimal phase alignment protocol [22], achieved
for the input state Eq. (28), directly translates into the
optimal probabilistic M&P cloning with per copy fidelity
f̄ = 1 − π2

4N2 . Again this probabilistic strategy provides a
drastic improvement over the optimal deterministic cloning
strategy, where the average per copy fidelity is f = 1 − 1

N
in

the large N limit [23].

2. Global cloning fidelity and maximal likelihood

Let us now turn to the global fidelity. The naive M&P
strategy consists in preparing M copies |ψ(θ ′)〉⊗M all pointing
in the estimated direction θ ′. In this case the output state is

ρM = 1

2π

∫
dθ dθ ′p(θ ′|θ ) |ψ(θ )〉〈ψ(θ )|⊗M dθ. (29)

The cloning fidelity is now given by

FN→M
M&P =

∣∣∣∣ 1

2π

∫
dθ dθ ′ p(θ ′|θ )|〈ψ(θ ′)|ψ(θ )〉|2M

∣∣∣∣. (30)

Now in the limit M → ∞ the overlap |〈ψ(θ ′)|ψ(θ )〉|2M →
2
√

π√
M

δ(θ − θ ′) where the constant of proportionality is obtained
by integrating over the entire range of either θ or θ ′. Inserting
this expression back into Eq. (30) yields the global fidelity for
this M&P protocol of

FN→M
M&P =

√
1

πM
p(θ |θ ). (31)

The global fidelity of this M&P protocol is directly
proportional to the maximum likelihood for phase estimation.
However, we note that when one substitutes the optimal
maximal likelihood p(θ |θ ) = N + 1, achieved by the input

022355-6



No-SIGNALING BOUNDS FOR QUANTUM CLONING AND . . . PHYSICAL REVIEW A 92, 022355 (2015)

state in Eq. (22), Eq. (31) is smaller than the global fidelity
[Eq. (16)], which we proved to be the optimal fidelity
achievable by the no-signaling condition, by a factor of

√
2.

A similar discrepancy was already noted in Ref. [43] for
deterministic cloning, and in Ref. [41] the same authors
showed how to build M&P strategies that attain the optimal
asymptotic global fidelity. This was done by allowing Bob to
output more general states.

In the following we derive the optimal probabilistic M&P
strategy that attains the asymptomatic global fidelity of the
probabilistic phase-covariant cloner [Eq. (16)] for an arbitrary
number of input copies N , this result was shown in Ref. [37],
but our construction allows us to establish the correspondence
between the global cloning fidelity and the maximal likelihood
for phase estimation. We consider a M&P protocol based
on maximum likelihood estimation (we shall discuss its
optimality in the end of the section) but allow Bob to output a
general state U⊗M

θ |�M〉.
Without loss of generality let us assume that θ = 0. The

strategy discussed above would let Bob output the state

ρM&P
0 =

∫
p(θ |0)UM

θ |�M〉〈�M | UM†
θ dθ, (32)

where the probability distribution p(θ |0) =
tr |�N

m.l.〉〈�N
m.l.| E(θ ) = 1

(N+1)2π

∑N
n,n̄=0 eiθ(n−n̄). Here the

optimal POVM elements are known to be covariant
[23] and are given by E(θ ) = ∑N

n,m=0 eiθ(n−m) |n〉〈m|.
The corresponding M&P cloning fidelity is FN→M

M&P =
trρM&P

0 |ψ(0)〉〈ψ(0)|⊗M . Using the cyclic property of the trace
to shift the action of the unitaries UM

θ onto |ψ(0)〉〈ψ(0)|⊗M

and carrying out the integration the global cloning fidelity
reads

FN→M
M&P = tr |�M〉〈�M |ON

M, (33)

where

ON
M = 1

2M

M∑
m,m̄=0

√(
M

m

)(
M

m̄

)
|m〉〈m̄| N (m − m̄) (34)

with the coherence decay term N (m − m̄) given by

N (m − m̄) =
∫

eiθ(m−m̄)
〈
�N

m.l

∣∣E(θ )
∣∣�N

m.l

〉 dθ

2π

=
∫ N∑

n,n̄=0

eiθ(n+m−n̄−m̄) dθ

2π (N + 1)

= max

{
1 − |m − m̄|

N + 1
,0

}
. (35)

Having established the form of the M&P fidelity [Eq. (33)]
we can now proceed to optimize this expression and obtain
the corresponding optimal state |�M〉. First, we note that the
optimal state should have maximal support over those values

of m that lie in the interval (M
2 ±

√
M
4 ) since for this range of

values the binomial coefficients in ON
M are large. Second, |�M〉

should be roughly constant in the range [m,m + N + 1] such
that that all the coherence terms, |m〉〈m̄|, add up constructively,
i.e.,

∑
m̄−m N (m − m̄) = N + 1. In the limit M → ∞ both

of these requirements can be satisfied simultaneously. In

particular, choosing |〈m|�M〉|2 = 1√
2πσ

e
−(m−M/2)

2σ2 leads to a
M&P fidelity of

FN→M
M&P = (N + 1)

√
2√

πM

[
1 + O

(
N + 1

σ

)2

+ O

(
σ√
M

)2
]
.

(36)

We note that Eq. (36) corresponds to the asymptotic expansion
of the optimal cloning fidelity of Eq. (16). Choosing σ =
M

1
2 −ε , for 0 � ε < 1

2 yields the optimal M&P fidelity that
is equivalent to the asymptotically optimal cloning machine
whose performance is quantified by the global fidelity.

Note that the entire argument above is applicable even if
one considers a different estimation strategy, i.e., a different
figure of merit. Indeed, the only thing that changes if one
changes the estimation strategy (going to a general input
state |�N 〉) is the coherence decay N (m − m̄) in Eq. (35).
However, its contribution of the coherence terms to the cloning
fidelity

∑
m N (m) = p|�N 〉(0|0) is given by the maximal

likelihood, which establishes a correspondence between the
asymptotic global fidelity of the M&P cloner and the maximal
likelihood of the estimation [remark also that the optimal
input state Eq. (22) and Eq. (17) match for M → ∞].
Of course, the same correspondence holds for deterministic
cloning, for which the maximal likelyhood for N -copies state
|ψ(θ )〉⊗N is simply obtained as 〈ψ(θ )|⊗N E(θ ) |ψ(θ )〉⊗N =

1
2N [

∑N
j=0

√
(N

j
)]

2
and the optimal global fidelity is known to

be 1
2N+M ( M

M/2 )[
∑N

j=0

√
(N

j
)]

2
[23].

To summarize (see the table below), for phase-covariant
cloning the M&P strategy based on maximal likelihood
estimation (Sec. VA1) is optimal with respect to the global
cloning fidelity, whereas the M&P strategy based on the
alignment fidelity of estimation (Sec. VA2) is optimal with
respect to the per copy fidelity of cloning. Both M&P strategies
attain the optimal cloning for any fixed N and M → ∞,
and this is true both for optimal deterministic as well as
probabilistic cloning. We believe that same correspondence
should hold for universal cloning; however, this is beyond the
scope of this paper. The correspondence between the different
M&P strategies and optimal cloning machines is summarized
in the following table:

Estimation scenario for Optimal asymptotic cloning
M&P cloning (probabilistic or deterministic

Maximal likelihood → Global fidelity
Alignment fidelity → Per copy fidelity

C. Metrology with general prior

Let us now consider a more general metrological scenario
where Bob has some prior knowledge, p(θ ), of the parameter
θ . Following Ref. [39] we consider the prior, p(θ ; t) = 1

2π
[1 +

2
∑∞

n=1 cos(nθ )e−n2t ], that arises from a diffusive evolution of
p(θ ) = δ(θ ). The mean fidelity [Eq. (23)] now reads

f̄t = 1 −
∫

dθ ′
∫

p(θ ′|θ )p(θ ; t) sin2

(
θ − θ ′

2

)
dθ. (37)
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An efficient algorithm optimizing f̄t for moderate N was
derived in Ref. [39]. However, the optimization becomes
intractable, even numerically, when N increases. Indeed,
optimizing f̄t for large N is in general a hard task. Nevertheless
the no-signaling constraint allows us to derive an upper bound
for f̄t for large enough N as we now show.

Our goal is to minimize the integrand of Eq. (37) under the
no-signaling constraint of Eq. (21). For a fixed value of t the
product

g(θ ; θ ′,t) = p(θ ; t) sin2

(
θ − θ ′

2

)
(38)

in Eq. (37) obtains its minimum value when θ − θ ′ = 0. In
addition g(θ ; θ ′,t) is monotonically increasing so long as the
derivative of g(θ ; θ ′,t) around θ ′ = θ is greater than zero. This
is true so long as

tan2

(
θ − θ ′

2

)
<
( m

M

)2
:= tan2

(


2

)
, (39)

where m ≡ minθ p(θ ; t) and M = maxθ |∂θp(θ ; t)|. Outside
the interval [θ ′ − ,θ ′ + ] the function g(θ ; θ ′,t) is larger
than m sin2(/2). Therefore, g(θ ; θ ′,t) attains its global
minimum in the finite interval satisfying the condition

sin2

(
θ − θ ′

2

)
< m sin2

(


2

)
= m3

M2 + m2
. (40)

Now consider the narrowest probability distribution compat-
ible with no-signaling given by N+1

2π
p(θ ′), where p(θ ′) is the

probability distribution given in Eq. (21), for |θ̂� − θ | < π
N+1

and zero elsewhere. For large enough N this probability dis-
tribution is contained entirely in the interval [θ ′ − ,θ ′ + ]
where g(θ ; θ ′,t) attains its minimum and therefore minimizes
the integrant of Eq. (37). Plugging this probability into Eq. (37)
and using the condition

∫
dθ ′p(θ ′) = 1 leads to

f̄t ≈ 1 − π2

12N2
ϑ4(0,e−t ), (41)

where ϑ4(0,e−t ) = 1 + 2
∑∞

n=1(−1)ne−n2t = m is the Jacobi
theta function ranging from 0, when p(θ ; 0) = δ(θ ), to 1,
when p(θ ; ∞) = 1/2π (see Fig. 3). Again we discover that
the ultimate bound in precision scales inversely proportional
to N2.

2 4

0.1

0.3

signaling

t

FIG. 3. (Color online) The lower bound on the asymptotically
achievable error 1

2 ϑ4(0,e−t ) = 6N2

π2 (1 − f̄t ) (bottom curve) and the
error of the prior

∫
p(θ ; t) sin2(θ/2) dθ (top curve) as functions of t .

VI. DISCUSSION

A. Tightness of bounds

We have shown that the no-signaling condition can set
upper bounds on several important quantum information tasks,
such as cloning, unitary replication, and metrology. In the
case of PCC and unitary replication we have shown that
the no-signaling bound coincides with the optimal quantum
mechanical strategy, implying that quantum mechanical strate-
gies for PCC cloning and unitary replication are at the edge
of no-signaling. However, for the case of metrology, and
in particular for the average fidelity of estimation, we see
that there is a gap between the no-signaling bound and the
optimal quantum strategy. Could this gap be an indication
of the existence of a supraquantum strategy, compatible with
no-signaling, that outperforms the best quantum mechanical
strategy? The answer is no, as we now explain.

In deriving the no-signaling constraint of Eq. (5) we
considered only one particular way for Alice and Bob to
attempt for faster-than-light communication, using a suitably
entangled state |�〉AB . This, in turn, led to the sharp probability
distribution of Eq. (24). However, one can construct a
communication scenario where the probability distribution of
Eq. (24) can lead to signaling as we now show.

Let us first consider the qubit case (N = 1).
Let Alice and Bob share the entangled state
|�〉AB = cos(ε) |00〉 + sin(ε) |11〉. Alice can chose to measure
her system in either the computational basis {|0〉 , |1〉} or the x
basis {|±〉 = |0〉±|1〉√

2
} steering Bob’s state into the ensembles

E (1) = {cos2(ε) |0〉〈0| , sin2(ε) |1〉〈1|} and E (2) = { 1
2 |ε〉〈ε| ,

1
2 |−ε〉〈−ε|}, respectively, where |±ε〉 = cos(ε) |0〉 ±
sin(ε) |1〉, as shown in Fig. 4.

This construction obviously holds if all the states are rotated
by the same angle. In particular, we can always set this
angle such that the probability distribution in Eq. (24) yields
p(θ ′| |0〉) = p(θ ′||−ε〉) = 0 and p(θ ′||1〉) = p(θ ′||ε〉) = 1

π
. In

this case the two ensembles give a different probability to
observe the outcome θ ′, p(θ ′|E (1)) = sin2(ε)

π
and p(θ ′|E (2)) =

1
2π

. Hence, Bob can distinguish the two ensembles with
nonzero probability and infer Alice’s choice of measurement
instantaneously.

Let us now consider the general case. Any probabil-
ity distribution p(θ ) defines a continuous ensemble E (p) =
{p(θ ) |�N

θ 〉〈�N
θ |}, where |�N

θ 〉 = ∑N
n=0 ψne

iθn |n〉 are the

FIG. 4. (Color online) The two ensemble decompositions of ρε

for a qubit, leading to faster-than-light communication for the
probability distribution Eq. (24) (represented by the red semicircle).
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N -qubit states of Eq. (2). Without loss of generality we
consider p(θ ) such that

p(θ ) = 1

2π

[
1 + 2

∞∑
k=1

pk cos(kθ )

]
. (42)

The density matrix for the ensemble E (p) is given by ρ =∑N
n,m=0 ψnψ

∗
m |n〉〈m| p|n−m|, in such a way that it only depends

on the first N coefficients, pk , of the Fourier series in Eq. (42).
For any two distributions p1(θ ) and p2(θ ) that are identical
in the first N components of the Fourier series the ensembles
E (p1) and E (p2) give rise to the same density matrix ρ, and
therefore cannot be distinguished by Bob.

In particular, the ensemble given by the probability distribu-
tions p1(θ ) = 1

2π
and p2(θ ) = 1

2π
[1 + cos(Mθ )], for M > N ,

correspond to the same density matrix (see Fig. 4). However,
with the outcome probability distribution of Eq. (24) Bob
can distinguish the two probability distributions with nonzero

probability as p(θ ′|E (p2)) − p(θ ′|E (p1)) = N+1
2π

∫ π
N+1

− π
N+1

[p2(θ ) −
p1(θ )] dθ = sinc( Mπ

N+1 ) �= 0. Therefore, the probability distri-
bution of Eq. (24) leads to signaling when Alice can chose to
prepare E (p1) or E (p2).

More generally the above argument implies that any
outcome probability p(θ ′|θ ) compatible with no-signaling
has to satisfy

∫
p(θ ′|θ ) cos(Mθ )dθ = 0 for M > N ; i.e., the

Fourier components pk of p(θ ′|θ ) are necessarily zero for
k > N . Therefore, for finite N , probability distributions with
sharp edges such as the one in Eq. (24) are ruled out.

A tighter no-signaling bound can be obtained if we optimize
over all possible no-signaling scenarios, i.e., over all possible
bipartite entangled states |�〉AB . In fact any ensemble {pk,ρk}
corresponding to a density matrix, ρB = ∑

k pkρk , at Bob’s
side can be remotely prepared by Alice, if they initially share a
suitable entangled state |�〉AB (that depends only on ρB) and
Alice does an appropriate measurement [1,44].

B. Quantum mechanics at the edge of no-signaling

The above argument shows that the probability distribution
of Eq. (24) is valid only for one possible no-signaling scenario,
and that in order to obtain a tighter bound we should consider
all possible states shared between Alice and Bob and all
possible measurements at Alice’s side that steer Bob’s partial
state into different ensembles of pure states that correspond to
the same density matrix. Would such an optimization close the
gap between our no-signaling bound and the optimal quantum
strategy?

Following Ref. [3], we now show that such an optimization
is not even necessary, as the only processing compatible with
no-signaling is given by the Born rule, i.e., the probability of
some measurement outcome � for the input state ρ is given by
P� = trρE� for some positive operator E�.

Indeed, any ensemble leading to the same density matrix for
Bob can be remotely prepared by Alice [1,44]. This together
with the no-signaling condition implies the linearity of Bob’s
processing, P . The latter states that for any two ensembles
{pk, ρk} and {qk, σk}, corresponding to the same ρB , the
ensembles after the processing {pk,P(ρk)} and {qk,P(σk)}
cannot be distinguished with a nonzero probability. Adding

the assumption that probabilities are attributed to quantum
states via the Born rule (as it is done in Ref. [3]) the condition
above implies equality on the density matrices corresponding
to the processed ensembles:∑

k

pkP(ρk) =
∑

k

qkP(σk) ≡ P(ρB). (43)

This shows that any dynamical evolution of quantum
states that respects no-signaling is necessarily described by
a completely positive (CP) map [3]. The results of Ref. [3]
are concerned with situations where the outputs of Bob’s
processing are quantum mechanical states. In this case Ref. [3]
implies that the optimal quantum mechanical strategies are at
the edge of no-signaling.

However, in the case of quantum metrology the outputs
are probability distributions. We remark than in Ref. [3] the
validity of the Born rule was assumed and used to derive the
possibility for remote state preparation of any ensemble and
to get the linearity constraint of Eq. (43) from the indistin-
guishably of processed ensembles. In this case supraquantum
metrology is ruled out. However, if we make no assumptions
on how probabilities are assigned to measurement outcomes
of quantum states but take only remote state preparation as
an experimental fact, the no-signaling constraint implies the
Born rule already. In this case no-signaling again implies
the indistinguishably of two ensembles {pk, ρk} and {qk, σk}
corresponding to the same density matrix ρB , which in turn
implies the linearity of the probability assignment rule. The
probability P� to observe some outcome � has to satisfy∑

k

pkP�(ρk) =
∑

k

qkP�(σk) ≡ P�(ρB); (44)

i.e., outcome probabilities depend only on the density matrix
but not on a particular ensemble. Note that one can easily
construct probability assignment rules for pure states that
do not satisfy Eq. (44) (see the example from the previous
section), so it is not something one has to impose a priori.
However, as we just saw assuming no-signaling together with
the practical possibility for steering enforces linearity.

It is well known that the only probability assignment rule
compatible with linearity is the Born rule: P�(ρB) = trρBE�

for some positive operator E� [45]. For systems of dimension
d > 2 this can also be seen as a consequence of Gleason’s
theorem (it suffices to consider all ensembles of pure states
forming an orthonormal basis). Moreover, similar result for the
equivalence of CP dynamics and the Born rule being enforced
by linearity are known to hold in a more general context of
probabilistic theories with purification [46]. In summary, we
have shown that also in the case of quantum metrology the
optimal quantum mechanical strategies are at the edge of no-
signaling.

C. Probabilistic versus deterministic bounds

Notice that all the no-signaling bounds derived here are con-
cerned with probabilistic strategies. This is most transparent in
our derivation of a no-signaling bound for unitary replication.
In some cases, the optimal deterministic strategy coincides
with the optimal probabilistic one as is the case with replication
of unitaries. In other cases the optimal probabilistic strategy
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can be made deterministic if one drops some restrictions on
the input alphabet, as is the case for the cloning of states
when one allows for entangled input states U⊗N

θ |�N 〉 instead
of separable input states |ψ(θ )〉⊗N . How does one decide
if a deterministic bound still holds when one allows for
probabilistic tasks? If this is not the case, can one achieve
the probabilistic performance deterministically by allowing
for more general input states?

It is known that, in general, any probabilistic strategy can
be decomposed into a filter, F , acting on the input state and
mapping it to an output state in the same Hilbert space,
followed by a deterministic transformation [18]. Moreover,
one is usually interested in probabilistic strategies where
all states from the input alphabet {|�i〉} have the same
probability of success ps = trF |�i〉〈�i | F †. In this case what
the probabilistic advantage has to offer is the possibility to
modify the alphabet to any other alphabet reachable by a
filter {|�F

i 〉 = 1√
ps

F |�F
i 〉} [47]. So the question about the

strength of the deterministic bound is actually whether the
input alphabet {|�i〉} is the best among alphabets {|�F

i 〉} for
the particular task.

If this is not the case, then the probabilistic strategy can
always be made deterministic by starting with the optimal
alphabet. As we saw in Sec. III for the case of PCC the N -copy
input states are not optimal leaving room for probabilistic
improvement, whereas in the case of universal cloning no
probabilistic advantage exists as the symmetry group of the
input alphabet, SU (2), forces the filter to be the identity. In
fact, there is a substantial improvement in cloning fidelity if
one allows entangled N -qubit states as inputs into the cloning
machine, but such states are not reachable by any filter [18].
The entangled states that yield such a substantial improvement
are exactly those states that maximize the average fidelity of
alignment for a Cartesian frame of Ref. [48].

VII. CONCLUSION

In this paper we derived no-signaling bounds for various
quantum information processing tasks. These include phase

covariant cloning of states and unitary operations, as well as
quantum metrology. In the latter case we showed the validity
of the Heisenberg limit purely from the no-signaling condition.
In general, following Ref. [3], we have shown that the optimal
probabilistic quantum mechanical strategy is at the edge of
no-signaling also for the case of metrology. Furthermore, we
have found that for some tasks, such as PCC of states and
unitaries, the optimal probabilistic and deterministic strategies
coincide. These results show a direct connection between the
no-signaling principle and the ultimate limits on quantum
cloning and metrology. This connection provides a new insight
into the physical origin of these limits, in contrast to the
previously known limits based on optimization, using, e.g.,
semidefinte programs.

On the one hand it is clear that a bound for probabilistic
strategies is also a bound for deterministic ones. However,
it might be possible to derive tighter no-signaling bounds
for deterministic strategies. It is an interesting open question
how to incorporate the requirement that the protocol be
deterministic in a no-signaling scenario.

On the other hand, there are several tasks for which the
optimal quantum strategy is not known. In such cases the tech-
niques and methods we provide here can be particularly useful
in deriving limitations to these tasks based on no-signaling. We
have demonstrated one such example for Bayesian metrology
for arbitrary prior; however, the methods we introduce are
applicable in a broader context. This provides an alternative
approach to study the possibilities and limitations of quantum
information processing.
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