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Loss-tolerant Einstein-Podolsky-Rosen steering for arbitrary-dimensional states:
Joint measurability and unbounded violations under losses
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We show how to construct loss-tolerant linear steering inequalities using a generic set of von Neumann
measurements that are violated by d-dimensional states, and that rely only upon a simple property of the set of
measurements used (the maximal overlap between measurement directions). Using these inequalities we show
that the critical detection efficiency above which n von Neumann measurements can demonstrate steering is 1/n.
We show furthermore that using our construction and high-dimensional states allows for steering demonstrations
which are also highly robust to depolarizing noise and produce unbounded violations in the presence of loss.
Finally, our results provide an explicit means to certify the nonjoint measurability of any set of inefficient von
Neuman measurements.
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I. INTRODUCTION

Two fundamental aspects of quantum theory are entan-
glement and incompatibility of measurements, with both
aspects lying at the heart of many applications in quantum
information science. Interestingly, even in a scenario where
neither the source of entanglement nor the measuring devices
used are characterized, both the presence of entanglement
and measurement incompatibility can be simultaneously
certified. In the so-called device-independent setting, where
no measuring device of any party is trusted, this is ac-
complished by the violation of a Bell inequality [1,2]. In
a semi-device-independent setting, where only a subset of
parties’ measuring devices are untrusted, it is accomplished
by witnessing Einstein-Podolsky-Rosen (EPR) steering [3,4],
through the violation of a steering inequality [5]. In both
cases, if either the measurements performed would have been
compatible, or the state would have been separable, then
the corresponding violation could not have been obtained.
The connection between measurement incompatibility and the
violation of the Clauser-Horn-Shimony-Holt Bell inequality
was first considered in [6,7]. Recently, it was shown that
there is a very strong relationship between a notion of
incompatibility of measurements known as joint measurability
and EPR steering: a set of measurements are not jointly
measurable if and only if they can be used to demonstrate
steering [8,9].

Besides their fundamental interest, scenarios involving
a lack of trust are also of practical importance when the
provider of the devices—the source of entanglement or the
measuring devices—are untrustworthy. This is the situation
which naturally arises in quantum cryptographic scenarios,
where the provider could be an eavesdropper who naturally
wants to break the cryptosystem. It is thus crucial to develop
ways to certify steering or nonlocality in practical tests,
where both the measurements and states are naturally noisy.
In fact, loss-tolerant steering tests have been derived in the
case of qubits using precise arrangement of measurement
directions [10–13], and detection loophole free steering tests
have already been performed [13–15].

Here we show how to construct loss-tolerant linear steering
inequalities which are violated using any set of n von Neuman
measurements as long as the detection efficiency of the test
satisfies η > 1/n, where η is the probability that the detector
clicks. Crucially our construction works for all finite n,
arbitrary dimension d, and for any choice of von Neumann
measurements. Furthermore, the construction relies only upon
the maximal overlap between any two measurement outcomes
(of different measurements), a property which can easily
be calculated for any finite set. Finally, we show that by
considering mutually unbiased basis (MUB) measurements
in dimension d (i) the violation of the inequalities can also
tolerate arbitrary amounts of depolarizing noise as d increases
(ii) can produce unbounded violations even in the presence of
losses. Altogether, this should make the construction particu-
larly relevant to experimental demonstrations of loophole free
steering, especially those using higher-dimensional systems.

Finally, using the relation between EPR steering and
joint measurability, our results further provide an explicit
certificate that n inefficient von Neumann measurements
are not jointly measurable whenever η > 1/n. This matches
the lower bound below which these measurements cannot
demonstrate steering [14].

The paper is organized as follows. We first introduce
the relevant notions of EPR steering and then show how to
construct a steering inequality starting from any set of von
Neuman measurements. We then show that this inequality
witnesses steering for detection efficiencies satisfying η > 1/n

and study the tolerance to white noise when using MUB mea-
surements, and show that it produces unbounded violations.
Finally, we briefly introduce joint measurability and show
how the inequalities also witness the nonjoint measurability
of inefficient measurements.

II. EPR STEERING AND ENTANGLEMENT DETECTION

In an EPR steering test, we consider that Alice and
Bob preshare an unknown quantum state |ψ〉AB onto which
Alice performs one out of n unknown measurements {Ma|x}x
(labeled by x = 1, . . . ,n), each with d outcomes (labeled
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by a = 1, . . . ,d). The unnormalized postmeasurement states
prepared for Bob are given by

σa|x = trA((Ma|x ⊗ 1B)|ψ〉〈ψ |AB). (1)

The set {σ B
a|x}ax is called an assemblage [16], from which

one can obtain both the conditional probabilities P (a|x)
for Alice to obtain the outcome a given that she made
measurement x, P (a|x) = tr(σa|x), as well as the conditional
states themselves σ̂a|x = σa|x/P (a|x). Bob is assumed to
perform trusted measurements and therefore can perform
full state tomography to determine to arbitrary accuracy the
members of the assemblage he holds.

The interest in EPR steering derives from the fact that it
allows one to certify the presence of quantum entanglement
in this semi-device-independent scenario [4]. To see how, let
us assume that the source distributed a separable state ρAB =∑

i piρ
A
i ⊗ ρB

i . This imposes the following structure on the
assemblages created:

σa|x =
∑

i

pi trA
(
Ma|xρA

i

)
ρB

i =
∑

i

q(a|x,i)ρB
i , (2)

where q(a|x,i) = pi trA(Ma|xρA
i ). The above structure is called

a local hidden state model (LHS model) for the assemblage
{σa|x}ax , and assemblages which have a LHS model are called
unsteerable [4].

Crucially, not all assemblages have a LHS model. This can
always be certified through the violation of a linear steering
inequality, given by

β =
∑
ax

tr(Fa|xσa|x) � βlhs, (3)

where {Fa|x}ax is a collection of operators defining the
inequality and βlhs is the maximum value that an unsteerable
assemblage (2) can reach, i.e.,

βlhs = max
σ lhs

a|x∈lhs

∑
ax

tr
(
Fa|xσ lhs

a|x
)
. (4)

III. LOSSY STEERING TESTS

A crucial problem which arises when carrying out a steering
test is the overall detection efficiency. That is, whereas in an
idealized steering test the source will always create a pair of
particles and in every run the measurements performed will
give an outcome, in reality this is not the case. The particles
may be lost en route, and the detectors may produce no click
even if the particle arrives. This problem becomes especially
important in cryptographic applications, as an adversary can
use the experimental imperfections to try and trick the parties
into believing they have witnessed entanglement, although a
separable state has in fact been used [17,18].

If the detection efficiency is not unity, instead of observing
the assemblage (1), the one actually observed is given by

σ
(η)
a|x =

{
ησa|x for a = 1, . . . ,d,

(1 − η)σR for a = �,
(5)

where we have introduced the outcome a = � to denote
“no-click” events, σR = ∑

a σa|x = trA|ψ〉〈ψ |AB is the reduced
state of Bob, and η = (1 − P (�)) is the overall detection
efficiency of Alice, taking into account all of the losses,

either on the channel or at the detectors. Following previous
works [10–13,15] we do not consider the effects of losses
in Bobs side, since by assumption his devices are trusted
and cannot be used by an eavesdropper to open the detection
loophole.

Our goal is thus to derive steering inequalities which detect
steering starting from assemblages of the form (5), whenever
η > 1/n.

IV. LOSS-TOLERANT STEERING INEQUALITIES

Let us start by choosing an inequality formed of n projective
measurements of the form

Fa|x =
{
�a|x for a = 1, . . . ,d,

α1 for a = �,
(6)

where each �a|x is a rank-1 projector and at this stage α > 0 is
a positive constant which needs to be chosen in order to make
the steering inequality (3) useful. It is necessary to determine
βlhs(α), the LHS bound as a function of α, which is found by
maximizing the value of β over all LHS assemblages. This is
seen to be the solution to the optimization problem (4).

As we show in the Appendixes, we can transform this
problem in an instance of a semidefinite program [19], and
exploit its duality theory to find a simple upper bound on βlhs.
In particular, we show that by choosing

α = max
x,x ′>x,a,a′

√
tr(�a|x�a′|x ′ ) ≡ cos θ, (7)

i.e., the maximal inner product between any two measurement
directions between any two different measurements, then

βlhs � 1 + (n − 1) cos θ. (8)

Thus any assemblage which obtains a value greater than this
value demonstrates steering.

V. QUANTUM VIOLATIONS

We will now show that the above inequalities certify
steering whenever η > 1/n. Assume that the assemblage in (5)
was created by Alice performing inefficient von Neumann
measurements, i.e., Ma|x = �a|x on the maximally entangled
state |φ+〉AB = ∑

i |i〉A|i〉B/
√

d. Consider furthermore the
steering inequality of the form (6) with Fa|x = �

ᵀ
a|x for a 
= �.

A direct calculation shows that

β = tr
∑
ax

Fa|xσ
(η)
a|x = n(η + (1 − η) cos θ ), (9)

where we use the fact that tr(A ⊗ B|φ+〉〈φ+|AB) = tr(ABᵀ).
The requirement β > βlhs is satisfied whenever η > 1/n.
We note that although in the above we considered that the
maximally entangled state |φ+〉AB is distributed between
the parties, similar to [8] it is straightforward to adapt to
a situation where an arbitrary pure Schmidt-rank-d state
|ψ〉AB = ∑

i

√
λi |i〉A|i〉B, with λi > 0 and

∑
i λi = 1, is

distributed between the parties instead. Details can be found
in the Appendixes.

In conclusion, any set of n von Neumann measurements
satisfying the minimal requirement that no two measurements
share a common outcome can be used to demonstrate steering
in a loophole-free manner as long as the detection efficiency
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FIG. 1. (Color online) Region plot of w against η for demonstrat-
ing steering using the inequality (6) with d + 1 MUB measurements
and the d-dimensional isotropic state (10).

satisfies η > 1/n, i.e., in a loss-tolerant manner. A key
advantage of our construction is that the specific choice of
measurements is not important—the only relevant property of
the measurements used is the maximal overlap between any
two distinct measurement outcomes, and as long as this is not
unity1 then a steering inequality can be easily written down.

VI. ROBUSTNESS TO WHITE NOISE

Since in practice one can never generate a pure maximally
entangled state, it is important to see what level of noise can
be tolerated by the steering tests presented here. To that end,
let us consider that Alice and Bob share the isotropic state

ρ(w) = w|φ+〉〈φ+|AB + (1 − w)1/d2 (10)

and that Alice performs projective measurements �a|x as
before. In this case the assemblage created is

σ
(η,w)
a|x =

{
ηw�

ᵀ
a|x + η

d
(1 − w)1

d
for a = 1, . . . ,d,

(1 − η)1
d

for a = �.
(11)

This leads to the following requirement to demonstrate
steering:

η >
1

n

(
1 − cos θ

(1 − cos θ ) − (1 − w)(1 − 1/d)

)
. (12)

Since cos θ depends upon both n and d this bound is hard to
analyze in general. However, let us specialize to the case of
prime-power dimension and assume that Alice performs n =
d + 1 MUB measurements, in which case cos θ = 1/

√
d. For

small d we plot in Fig. 1 the region for which steering can be
demonstrated. This region grows in size with d, demonstrating
the advantage of going beyond qubits.

For large d it is possible to calculate the asymptotic behavior
of the inequalities’ violations. In particular, considering

1We note that this is not a restriction per se, since we can simply
discard m measurements, such that the remaining set of (n − m)
measurements contains no two measurements sharing a common
direction.
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FIG. 2. (Color online) Critical amount of white noise w that can
be tolerated by the isotropic state (10) as a function of dimension
for different steering and nonlocality tests. From bottom to top the
curves refer to the following. Purple lowest curve: bound below which
a LHS model for projective measurements exists [4,20]; blue curve:
critical w derived using the steering inequality (6) with d + 1 MUB
measurements. Above this curve steering can be observed; orange
curve: bound obtained using the entropic steering inequality for d +
1 MUB measurements derived in [21]; red curve: bound derived
from the inequality (6) using only two MUB measurements; green
highest curve: bound obtained by the Collins-Gisin-Linden-Massar-
Popescu Bell inequality [22], above which Bell nonlocality can be
demonstrated. We have not plotted the bounds obtained from the
inequalities derived in Ref. [5] for spin measurements as they are
only violated for d = 2 and 3.

constant w, the series expansion in d leads to the following
asymptotic behavior for η:

η � 1

wd
+ O(d−3/2). (13)

On the other hand, keeping η constant, the asymptotic behavior
of w for large d is given by

w � 1√
d

+ 1 − η

ηd
+ O(d−3/2). (14)

In Fig. 2 we show the behavior of the critical white noise
tolerance wc for η = 1, for exponentially growing system size
d, and show the comparison with the the best known LHS
bound and with other inequalities known for steering and
nonlocality.

VII. UNBOUNDED VIOLATIONS

Another feature of our inequalities is that they allow one to
observe unbounded violations of steering inequalities which
are also robust to losses. The study of unbounded violations
of steering inequalities were recently initiated in [23,24]
following on from the work which was done for the case
of nonlocality [25,26], and was observed in a setting without
losses. Following these works, we will define the normalized
violation of a steering inequality by V = |β|/|βlhs|, i.e., we
are interested in the magnitude of the difference between the
LHS bound and the quantum violation.

From Eqs. (8) and (9) we immediately see (recalling that
by construction the steering inequality only takes non-negative
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values),

V � n(η + (1 − η) cos θ )

1 + (n − 1) cos θ
. (15)

Specializing to the case of d + 1 MUB measurements in prime-
power dimension d, this becomes

V � η
√

d + O(1). (16)

Thus, whenever η scales slower than O(1/
√

d), then an
unbounded violation is obtained for sufficiently large di-
mension. This in particular includes the physically relevant
case of constant losses independent of the dimension of the
system. Note, furthermore, that in the case η = 1 we obtain
exactly the same steering inequality as in [24], and therefore
our construction can be seen as a generalization of the one
presented there, to include situations with losses.

VIII. JOINT MEASURABILITY

While for projective measurements the notion of com-
patibility of a collection of measurements is captured by
the commutativity of the POVM elements, for more general
measurements this is no longer adequate [27]. The natural
generalization for general measurements is that of joint
measurability, which amounts to the existence of a single
“parent POVM” from which, upon coarse graining, all of
the POVM elements can be obtained. More concretely, a set
of n d-outcome POVMs {{Ma|x}a}x is said to be n-jointly
measurable (n-JM) if there exists a single nd outcome parent
POVM {Ma}a, where a is an n-dit string a1 · · · an such that

Max |x =
∑
a/ax

Ma ∀ax,x, (17)

where a/ax = a1 · · · ax−1ax+1 · · · an is the string formed of all
the dits of a except ax .

As mentioned in the Introduction, EPR steering not only
certifies the presence of entanglement, but also the presence of
non-JM measurements, as it can straightforwardly be shown
that measurements of the form (17) when applied by Alice to
half of any state prepare LHS assemblages for Bob, i.e., of the
form (2).

Consider now the set of inefficient von Neumann measure-
ments M

(η)
a|x given by

M
(η)
a|x =

{
η�a|x for a = 1, . . . ,d,

(1 − η)1 for a = �,
(18)

where P (�) = (1 − η) is the probability of obtaining a “no-
click” outcome labeled by �, and {�a|x}x is a von Neumann
projective measurement for each x. These measurements can
be seen to exactly prepare assemblages of the form (5). That
is, we can think of these as the measurements actually being
performed by Alice in a lossy steering test. Since we have seen
in the previous section that (5) demonstrates steering whenever
η > 1/n, this certifies that the measurements (18) are not JM
for the same range of η. In the Appendixes we show a explicit
parent POVM for η � 1/n.

IX. DISCUSSION

We have given a general construction of experimentally
friendly loss-tolerant linear steering inequalities in arbitrary
dimension which are violated whenever Alice performs von
Neumann measurements and the losses are not worse than
η > 1/n. Moreover, the violation of these inequalities tolerates
high values of white noise. Put together, these facts promote
the inequalities derived here as strong experimental tests of
EPR steering, that are robust to losses and experimental
imperfections and are valid for any set of von Neumann
measurements in any dimension. A fundamental consequence
of our results is the fact that n inefficient von Neumann
measurements become jointly measurable only when their
detection efficiencies are below 1/n.

We would like to finish by comparing the results obtained
here with the previous state-of-the-art results concerning
steering and Bell nonlocality tests with losses. In [10,12,13] a
steering test involving a two-qubit maximally entangled state
and 16 measurements arranged in a precise way was shown
to tolerate efficiencies down to η > 1/16. The steering tests
provided here go beyond this result in several senses. First,
we have shown that any set of n measurements suffices to
demonstrate steering iff detection efficiencies are higher than
1/n. Moreover, our construction works for states in every
dimension. In fact, by increasing the dimension the present
steering tests become arbitrarily robust to white noise (see
Fig. 2). Notice that Ref. [11] shows a steering test that tolerates
arbitrary losses, although the state that has to be used in
this test approaches a separable state, thus quite fragile to
experimental imperfections. When it comes to Bell tests, the
best known Bell inequalities [28] need to increase the state’s
dimension to tolerate arbitrary losses, whereas for the steering
tests developed here arbitrary losses can be tolerated in any
dimension. Moreover, the inequalities of [28] work, once
more, for specific choices of states and measurements, and
can only tolerate low levels of noise, again in contrast to those
demonstrated here.
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for discussions. D.C. is supported by the Beatriu de Pinós
fellowship (BP-DGR 2013) and PS by the Marie Curie
COFUND action through the ICFOnest program, the ERC
CoG QITBOX and the ERC AdG NLST.

APPENDIX A: DUAL PROBLEM OF βLHS

Here we show that the problem (7) of the main text can
be transformed into an SDP, and use the duality theory of
semidefinite programming to derive its dual, which will allow
us to find an upper bound on βlhs. Let us start by noting that we
can rewrite any unsteerable assemblage [Eq. (2) of the main
text] as

σa|x =
∑

a

Da(a|x)σa ∀a,x, (A1)

where a = a1 · · · an is an n-dit string, Da(a|x) = δa,ax
are

the deterministic single-party behaviors, whereby Alice out-
puts deterministically a = ax when her input is x, and
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σa = ∑
i pip(a|i)ρB

i . This form is advantageous, since the
Da(a|x) are fixed; thus this takes the form of a set of linear
matrix inequalities (LMIs). Using this re-writing, the problem
(7) of the main text can be written as

βlhs = max
σa

tr
∑
axa

Fa|xDa(a|x)σa

such that tr
∑

a

σa = 1, σa � 0 ∀a. (A2)

which is now seen to be an SDP, since all constraints are
positive semidefinite constraints or LMIs. To obtain the dual,
we first write the Lagrangian of this problem

L = tr
∑
axa

Fa|xDa(a|x)σa +
∑

a

Haσa + γ

(
1 − tr

∑
a

σa

)

= tr
∑

a

σa

[∑
ax

Fa|xDa(a|x) + Ha − γ 1

]
+ γ, (A3)

where γ and {Ha}a are the dual variables to the first and
second (sets of) constraints, respectively. This Lagrangian is
unbounded from above unless∑

ax

Fa|xDa(a|x) + Ha − γ 1 = 0 ∀a. (A4)

Imposing this constraint enforcesL = γ . By choosing Ha � 0
we have that the following minimization problem upper
bounds the primal problem βlhs:

γ ∗ = min γ

such that
∑
ax

Fa|xDa(a|x) + Ha − γ 1 = 0 ∀a

Ha � 0, (A5)

which can be simplified to

γ ∗ = min γ

such that
∑
ax

Fa|xDa(a|x) � γ 1 ∀a. (A6)

APPENDIX B: PROOF OF UPPER BOUND ON γ ∗

By defining Ga = ∑
ax Fa|xDa(a|x) ≡ ∑

x Fax |x , prob-
lem (A6) is seen to be equal to

γ ∗ = max
a

‖Ga‖∞, (B1)

where the maximization is over the set of (d + 1)n operators
Ga, one corresponding to each deterministic strategy which
Alice can employ. Let us define for each a the number of
no-click outcomes � that the string contains, which we denote
by |a|�. Given this, we can split the set {Ga}a into sets Hk

according to the number of no-click outcomes,

Hk = {Ga||a|� = k}. (B2)

The purpose for doing this is that now each Ga inside the set
Hk has the same structure, namely

Ga =
n−k∑
i=1

�i + kα1, (B3)

where we denote an arbitrary rank-1 projector as �i . There-
fore, inside each set Hk the operator norm of each member is
given by

‖Ga‖∞ = ‖�1 + · · · + �n−k‖∞ + kα. (B4)

To proceed we make use of the following result, which will be
proved in the proceeding section:

‖�1 + · · · + ��‖∞ � 1 + (� − 1) cos ϕ,

cos ϕ = max
i,j>i

‖�i�j‖∞. (B5)

Since each Ga = ∑
x Fax |x contains only at most one measure-

ment direction from each measurement �a|x it is clear that if
we define

cos θ = max
x,x ′>x,a,a′

‖�a|x�a′|x ′ ‖∞

= max
x,x ′>x,a,a′

√
tr(�a|x�a′|x ′ ), (B6)

then cos θ � cos ϕ, since cos ϕ comes from taking a maxi-
mization over a subset of the set maximized over for cos θ .
Thus we obtain an upper bound for every ‖Ga‖∞ depending
only upon the set Hk it belongs to

‖Ga‖∞ � kα + (n − k − 1) cos θ, ∀Ga ∈ Hk, (B7)

valid except when k = n. In this exceptional case, consisting
of the single strategy a = � · · · � of n no-click outcomes,
G�···� = nα1 and ‖G�···�‖∞ = nα by inspection.

We thus finally see that by choosing α = cos θ we have

‖Ga‖∞ �
{

1 + (n − 1) cos θ, Ga /∈ Hn,

n cos θ, Ga ∈ Hn.
(B8)

Thus whenever cos θ < 1, i.e., when two measurements do
not share an outcome then n > 1 + (n − 1) cos θ > n cos θ .
We thus have

βlhs � 1 + (n − 1) cos θ (B9)

as the desired result. We end by noting that (α = 1,βlhs = n)
corresponds to a trivial inequality which can never be violated,
which is seen for example by considering the assemblage
created from perfectly efficient measurements (η = 1) on the
maximally entangled state, which obtains the value n = βlhs.

APPENDIX C: BOUNDING THE NORM
OF k RANK-1 PROJECTORS

In this section we will prove the following inequality which
holds for the sum of � rank-1 projectors acting on an arbitrary
finite dimensional Hilbert space Cd :

‖�1 + · · · + ��‖∞ � 1 + (� − 1) cos ϕ,

cos ϕ = max
i,j>i

‖�i�j‖∞. (C1)

Let us introduce an auxiliary Hilbert space C�, and define a
standard basis |i〉, i = 1, . . . ,�, for this space. Consider then
the operator X acting on C� ⊗ Cd ,

X =
∑

i

|1〉〈i| ⊗ �i, (C2)
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which is nothing but a block matrix, with the first block row
containing the projectors �i . First we will use the fact that
‖X†X‖∞ = ‖XX†‖∞. We see that

XX† = |1〉〈1| ⊗
∑

i

�i,

X†X =
∑
ij

|i〉〈j | ⊗ �i�j . (C3)

Clearly ‖XX†‖∞ = ‖�1 + · · · + ��‖∞ is what we desire to
bound. Therefore, we will use X†X to do so. First, we note
that we can write

X†X =
∑

i

|i〉〈i| ⊗ �i +
�−1∑
j=1

∑
i

|i〉〈i ⊕ j | ⊗ �i�i⊕j , (C4)

where ⊕ denotes addition modulo �. This decomposition
amounts to writing X†X as a block diagonal matrix plus a sum
of � − 1 matrices, each with a block structure and containing
only displaced diagonals (i.e., have the structure of a block
permutation matrix).

The first term of the right-hand side of (C4) has operator
norm ∥∥∥∥∥

∑
i

|i〉〈i| ⊗ �i

∥∥∥∥∥
∞

= max
i

‖�i‖∞ = 1, (C5)

since the operator norm of a block diagonal operator is the
maximal operator norm of any block, which in our case is
unity. For each of the remaining terms we can use the fact that
the operator norm, being equal to the largest singular value, is
invariant under the transformation X → UXV , where U and
V are unitary. Choosing U = 1 ⊗ 1 and Vj = ∑

i |i ⊕ j 〉〈i| ⊗
1 we see that

U
∑

i

|i〉〈i ⊕ j | ⊗ �i�i⊕jVj =
∑

i

|i〉〈i| ⊗ �i�i⊕j (C6)

and thus∥∥∥∥∥
∑

i

|i〉〈i ⊕ j | ⊗ �i�i⊕j

∥∥∥∥∥
∞

= max
i

‖�i�i⊕j‖∞, (C7)

again due to the block structure of the transformed ma-
trix. Since maxi ‖�i�i⊕j‖∞ � maxi,j>i ‖�i�j‖∞ = cos ϕ

we can place the same bound cos ϕ on each of the � − 1
terms. Finally, by using repeatedly the triangle inequality
‖X + Y‖∞ � ‖X‖∞ + ‖Y‖∞, we obtain the desired result

‖�1 + · · · + ��‖∞ � 1 + (� − 1) cos ϕ.

APPENDIX D: QUANTUM VIOLATIONS WITH
ARBITRARY PURE ENTANGLED STATES

In this section we will show that it is possible to use an
arbitrary pure entangled Schmidt-rank d state to demonstrate

steering with arbitrary losses. In particular let us assume that
the state |ψ〉AB = ∑

i

√
λi |i〉A|i〉B, with λi > 0 and

∑
i λi =

1, is distributed between the parties. Defining the matrix D =∑
i

√
dλi |i〉〈i|, then we have that |ψ〉AB = D ⊗ 1|φ+〉AB, i.e.,

we can see it as the (unnormalized state) after a local filtering
by Alice. By performing measurements on this state, Alice
prepares the assemblage

σ
(η)
a|x =

{
η(D�a|xD)ᵀ for a = 1, . . . ,d,

(1 − η)σR for a = �,
(D1)

where σR = D2/d is the reduced state of Bob. Notice that
(D�a|xD)ᵀ = p′(a|x)�

′
a|x , i.e., the action of D does not stop

Alice from preparing rank-1 states for Bob, only the directions
and normalizations have changed. It thus follows directly that
the inequality

F ′
a|x =

{
�′

a|x for a = 1, . . . ,d,

cos θ ′1 for a = �,
(D2)

where

cos θ ′ = max
x,x ′>x,a,a′

√
tr(�′

a|x�
′
a′|x ′ ) (D3)

certifies steering as long as cos θ ′ < 1 and η > 1/n.

APPENDIX E: JOINT MEASURABILITY OF n
INEFFICIENT MEASUREMENTS WHEN η � 1/n

In this section we show that any set of n inefficient
measurements (von Neumann or not, with an arbitrary number
of outcomes) is jointly measurable if η � 1/n. Consider the n

measurements {Ma|x}x for x = 1, . . . ,n and a = 1, . . . ,m. The
inefficient measurements formed from this set are {M (1/n)

a|x }x

M
(1/n)
a|x =

{
1
n
Ma|x for a = 1, . . . ,m,(
1 − 1

n

)
1 for a = �.

(E1)

Consider now the parent POVM {Ma}a, with a an n (m + 1)-
valued string given by

Ma =
{

1
n
Max |x if |a|� = (n − 1) and ax 
= �,

0 if |a|� 
= (n − 1).
(E2)

That is, all but n(m + 1) of the nm+1 POVM elements vanish,
the remaining corresponding to giving “no-click” outcomes
to (n − 1) measurements and giving an actual outcome for
the remaining one. It is clear that evaluating (16) of the
main text for this parent POVM we recover the inefficient
measurements (E1).
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