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A universal deterministic noiseless quantum amplifier has been shown to be impossible. However, probabilistic
noiseless amplification of a certain set of states is physically permissible. Regarding quantum state amplification
as quantum state transformation, we show that deterministic noiseless amplification of coherent states chosen from
a proper set is attainable. The relation between input coherent states and gain of amplification for deterministic
noiseless amplification is thus derived. Furthermore, we extend our result to more general situation and show
that deterministic noiseless amplification of Gaussian states is also possible. As an example of application, we
find that our amplification model can obtain better performance in homodyne detection to measure the phase of
state selected from a certain set. Besides, other possible applications are also discussed.
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I. INTRODUCTION

Quantum amplification plays an essential role in quantum
measurement and quantum metrology [1,2]. In order to
measure a weak signal, improving the sensitivity of the
detector or amplifying the signal are two basic solutions.
However, constrained by physical laws, it may be very difficult
for detectors to measure a sufficiently weak signal, especially
for a quantum signal. What we usually do is amplify the signal
first and then measure it with a proper detector. Unfortunately,
the noise accompanying the signal is also amplified during the
process of signal amplification. Additionally, the added noise
may reduce the signal-to-noise ratio (SNR) after amplification.
For a linear phase-insensitive quantum amplifier, it has been
shown that there is at least (g2 − 1/2)�ω total noise (including
intrinsic noise and added noise) power per unit bandwidth
out of its output port, where g2 is the power gain [3,4].
The noiseless amplification (without introducing added noise),
which is SNR preserving, seems unlikely for a universal linear
phase-insensitive quantum amplifier.

In fact, due to the constraint of quantum commutation
condition, a universal linear phase-insensitive quantum am-
plifier which can amplify any coherent states determinately
and noiselessly is impossible [5]. However, as the no-cloning
theorem [6–9] does not rule out the possibility of probabilistic
cloning the state which is randomly chosen from a linear-
independent set of states [10], the nonexistence of a universal
deterministic noiseless quantum amplifier does not mean
the nonexistence of a specific quantum amplifier which can
noiselessly amplify a certain input set of states. The noiseless
amplification of quantum states essentially is a problem of
quantum state transformation. Both deterministic and proba-
bilistic quantum state transformations have already been dis-
cussed in detail [11–13]. Using the language of quantum state
transformation, the quantum state cloning, the unambiguous
discrimination of states, and the quantum state amplification
can be demonstrated in a unified framework [14–16]. Recently,
there have been some experimental reports on realization
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of noiseless amplification of quantum light states [17–19].
All these experimental schemes are probabilistic and can
only attain unit fidelity asymptotically. The truly probabilistic
noiseless amplification of coherent states in a certain set is thus
discussed based on quantum state transformation [16].

A natural question arises of whether there exists a specific
quantum amplifier which can determinately and noiselessly
amplify a coherent state randomly chosen from a definite set.
In this paper, we show that it is indeed possible when we regard
quantum state amplification as quantum state transformation.

We note here that there is another kind of quantum
amplifier which is based on the unambiguous identification
of input states and the preparation of desired amplified input
state [20,21]. This kind of quantum amplifier is usually called
classic-like quantum amplifier analogous to classical amplifier
working through measurement and preparation. Limited by
success probability of identification of input states (except
orthogonal input states), the classic-like quantum amplifier
can only probabilistically amplify the input states, though the
gain can be arbitrarily high.

II. QUANTUM TRANSFORMATION OF SETS
OF PURE STATES

In quantum operation theory, any physically permissible
transformation of the state of a quantum system can be
represented by a completely positive (CP), linear, trace non-
increasing map: $ : ρ → $(ρ). If any such map exists, the
transformation is realizable in principle [22]. The so-called
first representation theorem [23] states that the CP, linear, trace
nonincreasing map $ can be represented as operator-sum form
$(ρ) = ∑

k A
†
kρAk , where Ak is the Kraus operator which

satisfies
∑

k A
†
kAk � I and I is the identity operator. For

deterministic transformation
∑

k A
†
kAk = I , while for prob-

abilistic transformation
∑

k A
†
kAk < I . This process has an-

other description that the transformation can be implemented
by adding an ancillary system to the quantum system and then
a unitary transformation is applied to the composite system.
Mathematically, we have $(ρ) = trE′ [Uρ

⊗
ρEU †I

⊗
PE

′ ],
where ρE is the initial state of ancillary system and PE

′ is
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a projector in transformed ancillary Hilbert space [24]. We
begin our formal discussion by first reviewing the well-known
quantum transform theorem of sets of pure states.

Lemma 1 [13]. Suppose there is a set of N pure states
A = {|ψi〉} which is linear independent and another set of
N pure states B = {|φi〉}. A probabilistic transformation

T : A = {|ψi〉} {pi }−−→ B = {|φi〉} that transforms state |ψi〉 in
set A to the corresponding state |φi〉 in set B with probability
pi exists if and only if there exists an N × N matrix � which
satisfies the three conditions: 1 : � � 0; 2 : diag(�) = �p =
(p1,p2, . . . ,pN ); 3 : GA − � ◦ GB � 0. Here GA and GB

are Gram matrix of set A and B respectively and ◦ denotes
Hadamard matrix product.

Proof. If such a transformation exists, there must exist
complex coefficients cki such that

Aks |ψi〉 = cki |φi〉, (1)

where Aks(k = 1,2, . . . ,M) are the Kraus operators for suc-
cessful transformation. Consider these coefficients as the
elements of a M × N matrix C = [cki]. We can introduce
matrix � defined by � = C†C. It can be shown that matrix �

satisfies all three conditions [13].
Suppose there is a matrix � which satisfies all three

conditions. Positivity of the matrix enables us to factorize � as
C†C and then the transformation operators can be constructed
as

Aks =
∑

i

cki

〈ψ̃i |ψi〉
|φi〉〈ψ̃i |, (2)

where 〈ψ̃i |ψj 〉 = γiδij , γi �= 0 is a constant. State |ψ̃i〉 is
orthogonal to any state in set A except for state |ψi〉.

Physically, the above transformation can be implemented
by a specific unitary transformation operating on a composite
system consists of quantum system and ancillary system [16]:

U |ψi〉 = √
pi |φi〉|ui〉|0〉 +

√
1 − pi |Fail〉|vi〉|1〉. (3)

Taking the inner product of Eq. (3) and its complex conjugate,
we have

〈ψj |ψi〉=√
pipj 〈φj |φi〉〈uj |ui〉+

√
(1−pi)(1−pj )〈vj |vi〉,

(4)

which can be recast as

GA = GB ◦ � + K. (5)

From the positivity of Gram matrix K , it can be seen that
GA − GB ◦ � � 0 and the Gram matrix � defined as � =√

pipj 〈uj |ui〉 obviously satisfies the conditions 1 and 2.
Consider the deterministic transformation which means

pi = 1 for all states so that the second term in the right-hand
side of Eq. (4) vanishes and Eq. (5) becomes GA = GB ◦ �

with � = 〈uj |ui〉. For any two input states in the set A, we
have the following equality:

〈ψj |ψi〉 = 〈φj |φi〉〈uj |ui〉. (6)

Equation (6) implies that the overlap between two input states
is no more than the overlap between two corresponding output
states after deterministic transformation, that is, |〈ψj |ψi | �

FIG. 1. (Color online) Illustration of Wigner function contours
for probabilistic and deterministic noiseless amplification of coherent
states. (a) If the distance between two amplified coherent states is
longer than the distance between two input coherent states, then the
noiseless amplification of coherent states can only be probabilistic.
(b) If the distance between two amplified coherent states is shorter
than or equal to the distance between two input coherent states, then
the noiseless amplification of coherent states can be deterministic as
long as the gain of quantum amplifier is state dependent.

|〈φj |φi〉|. From the point of view of information, the determin-
istic transformation does not increase the distinguishability of
input states.

III. DETERMINISTIC NOISELESS AMPLIFICATION
OF COHERENT STATES

We now focus on the case of coherent states. The
distinguishability of two coherent states can be measured
by the distance of two coherent states, since |〈α1|α2〉|2 =
exp(−|α1 − α2|2). We can define the distance of two coherent
states |α1〉 and |α2〉 as

D(α1,α2) = |α1 − α2|2. (7)

The distinguishability of any two coherent states is thus
proportional to their distance. If there exists a deterministic
transformation which transforms the set of coherent states
A = {|αi〉} to another set of coherent states B = {|βi〉}, there
must be D(αi,αj ) � D(βi,βj ). However, it does not hold for
a deterministic noiseless quantum amplifier of coherent states
with gain g > 1. It is obviously that D(gαi,gαj ) = g2|αi −
αj |2 > |αi − αj |2 = D(αi,αj ). For a quantum amplifier of
coherent states with fixed gain g > 1, deterministic noiseless
amplification is thus impossible. However, a fixed gain of
amplification is actually not necessary. As shown in Fig. 1,
a deterministic noiseless quantum amplifier of coherent states
can exist as long as the gain of amplification is state dependent.
For the simplicity of discussion, we just consider the case
of only two coherent states contained in the input set in the
following.

Theorem 1. Suppose there are two sets of two coherent states
A = {|α1e

iθ1〉,|α2e
iθ2〉}, B = {|g1α1e

iθ1〉,|g2α2e
iθ2〉}; here we

explicitly show the amplitude and phase of the coherent
state. The deterministic noiseless quantum amplifier which
amplifies the coherent state randomly chosen from set A to
the corresponding coherent state in the set B exists if and
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only if the input coherent states and the gain of amplification

satisfy the condition cos η �
√

(g2
1 − 1)(g2

2 − 1)/(g1g2 − 1)
with η = |θ1 − θ2| being the relative phase between two
coherent states.

Proof. If the deterministic noiseless amplification exists
then we must have

D(g1α1e
iθ1 ,g2α2e

iθ2 ) � D(α1e
iθ1 ,α2e

iθ2 ). (8)

According to the definition of the distance, we have

|α1e
iθ1 − α2e

iθ2 |2 � |g1α1e
iθ1 − g2α2e

iθ2 |2. (9)

The calculation of Eq. (9) gives 2α1α2(g1g2 − 1) cos η �
(g2

1 − 1)α2
1 + (g2

2 − 1)α2
2 � 2α1α2

√
(g2

1 − 1)(g2
2 − 1). Elimi-

nating the same factor in both sides finally gives

cos η �

√(
g2

1 − 1
)(

g2
2 − 1

)
g1g2 − 1

. (10)

The equality holds only when
√

g2
1 − 1α1 =

√
g2

2 − 1α2.
If the input states and gain satisfy Eq. (10), we can always

construct the Kraus operator of amplification as

Ak = ck1

〈ψ̃1|α1eiθ1〉 |g1α1e
iθ1〉〈ψ̃1|+ ck2

〈ψ̃2|α2eiθ2〉 |g2α2e
iθ2〉〈ψ̃2|,

(11)

where
∑

k A
†
kAk = I and {|ψ̃1〉, |ψ̃1〉} are defined as

|ψ̃1〉 = 1

〈α2eiθ2 |α1eiθ1〉 |α1e
iθ1〉 − |α2e

iθ2〉, (12)

|ψ̃2〉 = 1

〈α1eiθ1 |α2eiθ2〉 |α2e
iθ2〉 − |α1e

iθ1〉. (13)

Notice that

〈ψ̃s |αte
iθt 〉 = 1 − |〈α1e

iθ1 |α2e
iθ2〉|2

〈αteiθt |αseiθs 〉 δs,t , (14)

where s,t = 1,2, δs,t = 1 for s = t and δs,t = 0 for s �= t . It
can be easily verified that

Ak|α1e
iθ1〉 = ck1|g1α1e

iθ1〉, (15)

Ak|α2e
iθ2〉 = ck2|g2α2e

iθ2〉. (16)

The Kraus operator Ak is the expected operator of amplifica-
tion.

The above result can be extended into the more general case
in which the input set contains more than two coherent states.
For that case, a deterministic noiseless quantum amplifier
exists if and only if any two coherent states in the set satisfy
the relation (10). There is a specific case that all the amplified
coherent states have the same amplitude. In two coherent states
case, it means g1α1 = g2α2 and the input states and gain have
to satisfy more restricted relation. We thus have the following
corollary.

Corollary 1. Suppose there are two sets of two coher-
ent states A = {|α1e

iθ1〉,|α2e
iθ2〉}, B = {|g1α1e

iθ1〉,|g2α2e
iθ2〉}

with g1α1 = g2α2. The deterministic noiseless quantum ampli-
fier which amplifies the coherent state randomly chosen from
set A to the corresponding coherent state in the set B exists if

and only if the input states and the gain satisfy the condition

cos η � (2g2
1−1)α2

1−α2
2

2g2
1α2

1−2α1α2
.

Proof. The proof is the same as in Theorem 1. The only
difference is that the input states and gain must satisfy more
restricted relations due to the requirement of g1α1 = g2α2.
Substituting g1α1 = g2α2 into the Eq. (9), we thus get

cos η �
(
2g2

1 − 1
)
α2

1 − α2
2

2g2
1α

2
1 − 2α1α2

. (17)

Among deterministic noiseless quantum amplifiers which
amplify coherent states to the same final amplitude, the best
amplifier for a definite input set can be defined as g1 has the
maximum value. The maximum value of g1 can be calculated
from Eq. (17):

g1max =
√

α2
1 + α2

2 − 2α1α2 cos η

2α2
1(1 − cos η)

. (18)

IV. DETERMINISTIC AMPLIFICATION
OF GENERAL STATES

We now extend our results of coherent states to more general
states. As coherent states are Gaussian states in phase space,
it is natural to consider Gaussian states first. A Gaussian
state is usually defined as such a state that its characteristic
function is Gaussian function and is fully characterized by
its first and second moments [25,26]. The first moments−→
d = (d1,d2) of a single-mode Gaussian state |ψ〉 are defined

as di = 〈ψ |X̂i |ψ〉, where X̂i represent quadrature operators.
The second moments −→σ which form the so-called covariance
matrix −→σ = (σij )(i,j = 1,2) are given by σij = 〈ψ |X̂iX̂j +
X̂j X̂i |ψ〉 − 2didj . The Gaussian state |φ〉 is the amplified
state of the Gaussian state |ψ〉 with gain of amplification g

means
−→
d |φ〉 = g

−→
d |ψ〉. For noiseless amplification, the second

moments should stay unchanged, which gives −→σ |φ〉 = −→σ |ψ〉.
The distance between two Gaussian states can be defined
as D(|ψ1〉,|ψ2〉) = (

−→
d |ψ1〉 − −→

d |ψ2〉)
2. It is obvious that the

distance between two coherent states is a specific case if we
rewrite it with the real and imaginary part of α. Suppose
Gaussian states |φ1〉 and |φ2〉 are amplified states correspond-
ing to Gaussian states |ψ1〉 and |ψ2〉 with

−→
d |φ1〉 = g1

−→
d |ψ1〉,−→

d |φ2〉 = g2
−→
d |ψ2〉 and −→σ |φ1〉 = −→σ |ψ1〉,

−→σ |φ2〉 = −→σ |ψ2〉. Ac-
cording to the previous discussions, the distance between
amplified states should be no longer than the distance between
input states after deterministic noiseless amplification which
means D(|φ1〉,|φ2〉) � D(|ψ1〉,|ψ2〉). A simple calculation

gives cosγ �
√

(g2
1 − 1)(g2

2 − 1)/(g1g2 − 1), which coincides
with Eq. (10), where γ denotes the relative phase of two
Gaussian states in phase space. On the other hand, if inequality

cosγ �
√

(g2
1 − 1)(g2

2 − 1)/(g1g2 − 1) is satisfied, we can
always construct a deterministic noiseless amplifier which
amplifies |ψ〉 to the corresponding state |φ〉. We thus obtain
the theorem about deterministic noiseless amplification of
Gaussian states similar to that of coherent states.

Theorem 2. Suppose there are two sets of two Gaus-
sian states A = {|ψ1〉,|ψ2〉},B = {|φ1〉,|φ2〉} with

−→
d |φ1〉 =

g1
−→
d |ψ1〉,

−→
d |φ2〉 = g2

−→
d |ψ2〉 and −→σ |φ1〉 = −→σ |ψ1〉,

−→σ |φ2〉 =
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−→σ |ψ2〉. The deterministic noiseless quantum amplifier which
amplifies the Gaussian state randomly chosen from set A to the
corresponding Gaussian state in the set B exists if and only if
the input Gaussian states and the gain of amplification satisfy

the condition cosγ �
√

(g2
1 − 1)(g2

2 − 1)/(g1g2 − 1) with γ is
the relative phase between two Gaussian states in phase space.

For non-Gaussian states, the deterministic quantum am-
plifier is also possible according to the theory of quantum
state transformation. However, since the distance between non-
Gaussian states cannot de defined definitely as Gaussian states,
the condition for deterministic noiseless quantum amplifier is
more complicated.

V. EXAMPLE OF APPLICATION

While the amplitude is increased after amplification, the
phase of coherent states is unchanged and we can exploit
this property to improve the precision of phase measurement
using a balanced homodyne detector. In balanced homodyne
detection, the difference of two photodetector measurements
is obtained and thus the output signal is determined by the
number difference operator n̂d = −i(â†b̂ − b̂†â) [27]. The
local oscillator as a reference is excited into a large amplitude
coherent state |β〉 with fixed phase. When the input is coherent
state |α〉, the mean measured signal is 〈n̂d〉 = 2|α||β|sinδ,
where δ is the relative phase between coherent states |α〉
and |β〉. The variance of the output signal is calculated as
�n̂d =

√
|α|2 + |β|2. According to error transfer formula, the

sensitivity of measured phase is �δ = �n̂d/(|∂〈n̂d〉/∂δ|) =√
1 + (|β|/|α|)2/(2|β||cosδ|). Suppose the input coherent

state is randomly chosen from a definite set of coherent
states which satisfies the condition of deterministic noiseless
amplification; then we can determinately and noiselessly
amplify it before detection. In this case, according to our
calculations, not only the mean output signal is enhanced but
also the precision of measured phase is improved. This kind of
measurement is particularly useful for the phase measurement
of weak coherent state.

VI. DISCUSSION AND SUMMARY

Besides the application of phase measurement with homo-
dyne detection, we can also conjecture some other possible
applications. For instance, in the task of continuous variable
quantum key distribution using coherent light pulses [28],
the noiseless amplification of coherent light pulses cannot
only increase the transmission distance but also may be
beneficial to the improvement of signal transmission rate [29–
31]. Other applications including loss suppression [32,33],
entanglement distillation [34,35], or quantum cloning [36]
may also be possible using our protocol of deterministic
noiseless amplification.

Though the distinguishability of coherent states does not
increase after deterministic noiseless amplification, the situa-
tion may be different in a noisy channel. Consider two coherent
states |α1e

iθ1〉 and |α2e
iθ2〉 which satisfy Eq. (10) such that they

can be deterministically noiselessly amplified to |g1α1e
iθ1〉 and

|g2α2e
iθ2〉 respectively. When the amplified coherent states

are sent through a noisy channel, then the distinguishability

of two amplified states through the noisy channel may be
larger than the two coherent states through the same noisy
channel without amplification. To see this more explicitly, use
a superoperator V (t) to describe the noisy channel such that the
state evolution of quantum system in noisy channel is ρ(t) =
V (t)[ρ(0)]. For two coherent states ρ1(0) = |α1e

iθ1〉〈α1e
iθ1 |

and ρ2(0) = |α2e
iθ2〉〈α2e

iθ2 |, the distance of two states
in noisy channel is in general decreased monotonously
D(ρ1(t),ρ2(t)) � D(ρ1(0),ρ2(0)). Define the decay rate of
distance as σ (ρ1(t),ρ2(t)) = d

dt
D(ρ1(t),ρ2(t)) [37]. Obvi-

ously, σ (ρ1(t),ρ2(t)) � 0 means the distinguishability of
two states decreases with time in noisy channel. Simi-
larly, we can obtain the decay rate of two amplified co-
herent states in the same noisy channel σ (ρg1

1 (t),ρg2
2 (t)) =

d
dt

D(ρg1
1 (t),ρg2

2 (t)), where ρ
g1
1 (t) = |g1α1e

iθ1〉〈g1α1e
iθ1 | and

ρ
g2
2 (t) = |g2α2e

iθ2〉〈g2α2e
iθ2 | are amplified states. In general,

the decay rate of distance depends on the initial states which
means the decay rate may be different for the initial states and
the amplified coherent states. It thus possible that the distin-
guishability of two amplified coherent states through the noisy
channel may be larger than the two coherent states through the
same noisy channel without amplification. Besides, the detec-
tors we use to distinguish coherent states are not truly ideal in
practice. The unavoidable dark noise will cause dark counting
in the detector which lowers our precision of distinguishing
coherent states. For a nonideal detector, the amplified coherent
states may be more distinguishable than the coherent states
without amplification. As an exactly solvable noisy model has
not been found for deeper investigation, we leave it as an open
question whether amplified coherent states can perform better
in a noisy environment with the above protocols.

In conclusion, we have shown that the deterministic noise-
less amplification of coherent states is physically attainable
when we regard the quantum state amplification as quantum
state transformation. Our results are based on two facts:
the process of deterministic noiseless amplification does not
increase the distinguishability of any two amplified states
and the gain of amplification can be state dependent. The
relation between input coherent states and gain of amplification
for deterministic noiseless amplification is thus derived.
Furthermore, we extend our results to more general states
and give an explicit formalism about deterministic noiseless
amplification of Gaussian states. We also proposed the
application of phase measurement with balanced homodyne
detection. The possible cases with noisy channel and nonideal
detection are also discussed. Our results about deterministic
noiseless amplification of coherent states not only enrich the
research of quantum amplification but also may be helpful in
quantum metrology, quantum communication, and quantum
information processing.
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