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Entangled light from driven dissipative microcavities
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We study the generation of entangled light in planar semiconductor microcavities. The focus is on a particular
pump configuration where the dissipative internal polariton dynamics leads to the emission of entangled light in
a W state. Our study is based on the nonlinear equations of motion for the polariton operators derived within the
dynamics-controlled truncation formalism. They include the losses through the cavity mirrors, the interaction with
lattice vibrations, and the external laser driving in a Langevin approach. We find that the generated entanglement
is robust against decoherence under realistic experimental conditions. Our results show that pair correlations in
solid-state devices can be used to stabilize the nonlocal properties of the emitted radiation.
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I. INTRODUCTION

Quantum entanglement is known as the essential resource
for quantum information processing [1–3]. It is defined as
a nonlocal correlation that cannot be interpreted in terms
of classical joint probabilities [4–6]. The most fundamental
examples of nonequivalent forms are Greenberger-Horne-
Zeilinger (GHZ) and W states [7,8]. The identification
and quantification of entanglement is commonly based on
entanglement witnesses [9–14]. The generation and control
of entangled states still is a challenging task for quantum
computation. In the optical domain, the implementation of
quantum algorithms relies on the availability of efficient
sources for entangled photons.

The generation of entangled photons is usually based on
parametric down conversion in nonlinear crystals [15,16]
or biexciton decay in quantum dots [17,18]. Optically ex-
cited semiconductor microcavities [19–23] are alternative
candidates for the efficient generation of entangled light on
the micrometer scale [23–28]. The exciting laser field with
frequency near the fundamental band gap coherently generates
electron-hole pairs (excitons). The dynamical evolution of ex-
citons is governed by the Coulomb interaction, and the efficient
coupling to the cavity photons leads to mixed exciton-photon
modes—so-called polaritons [29–31]. The external laser can
be tuned to stimulate parametric scattering processes between
polaritons which may cause entanglement [32,33]. A moving
polariton induces an electric polarization as a source of light
that carries the initial (internal) polariton entanglement [22].
Then, depending on the explicit pump configuration, branch
or frequency entanglement [23,32], polarization entangle-
ment [28], multipartite entanglement [33], and hyperentangled
photon pairs in multiple coupled microcavities [27] can
be generated. A very recent interesting development in the
generation of entanglement considers a microcavity coupled
to a mechanical oscillator and shows that such a hybrid system
creates exciton-mechanical mode entanglement [34].

In this work, we demonstrate that a semiconductor mi-
crocavity can be used to entangle light in a W -state con-
figuration. Beyond that, such a setup allows one to analyze
the internal polariton entanglement properties in the presence
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of dissipation. Specifically, we consider a microcavity that
is either continuously driven or excited by Gaussian pump
pulses. In previous work [33], we introduced the specific
pump arrangement for the creation of entangled light in a W

state and used multipartite entanglement witnesses to verify
the nonlocal correlations. Here, the inclusion of decoherence,
induced by the losses through the cavity mirrors, and the
coupling to lattice vibrations, within the dynamics-controlled
truncation formalism, allows us to study the emitted light
under realistic experimental conditions. Most notably, we
show that the entanglement of the generated light is robust
against dephasing.

We proceed as follows. In Sec. II we briefly recapitulate the
equations of motion obtained within the dynamics-controlled
truncation formalism and review the explicit pump configura-
tion. The tomographic reconstruction of the state of the emitted
radiation is performed in Sec. III, including the analytical
solution in the limit of continuous pumping in Sec. III A and
the numerical solution for Gaussian pump pulses in Sec. III B.
Further details for the derivation of the analytical result can be
found in the Appendix. We finally conclude in Sec. IV.

II. THEORETICAL DESCRIPTION OF
PARAMETRIC EMISSION

The theoretical description of the dynamical processes in
semiconductor microcavities is frequently based on an explicit
bosonization of the whole system Hamiltonian [22,24,35].
Alternatively, one can derive equations of motion for gen-
eralized Hubbard (transition) operators and truncate these
equations at a certain order of the external field. This approach
is called a dynamics-controlled truncation scheme [36–39].
The structure of the equations of motion is similar in both
approaches. However, the nonlinear coupling coefficients due
to fermionic phase-space filling differ [38]. In this work, we
adopt the dynamics-controlled truncation formalism because
the resulting coefficients are expected to more closely match
the experimental data [27,28]. Combining this method with the
quantum Langevin approach allows for the evaluation of corre-
lation functions needed for the tomographic reconstruction of
the state of the emitted light modes [26,28]. It is thus well suited
to study the generation of entangled light in semiconductor
microcavities under realistic experimental conditions.
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A. Nonlinear system dynamics

We begin with the equations of motion for the semiconduc-
tor exciton and cavity photon operators that are derived within
the dynamics-controlled truncation formalism [38,39],

d

dt
ak = −iωc

kak + i�Rbk, (1a)

d

dt
bk = −iωx

kbk + i�Rak − iRNL
k , (1b)

where RNL
k = Rsat

k + Rxx
k ,

Rsat
k = �R

nsat

∑
k1,k2

b
†
k1+k2−kbk1

ak2
, (2a)

Rxx
k = Vxx

∑
k1,k2

b
†
k1+k2−kbk1

bk2
. (2b)

In these equations, ak (bk) annihilates a cavity photon (semi-
conductor exciton) with in-plane wave vector k and energy
ωc

k (ωx
k). �R is the dipole coupling strength between excitons

and photons—the so-called Rabi frequency. In addition, nsat

denotes the exciton saturation density and Vxx is the exciton-
exciton coupling strength.

The unitary Hopfield transformation to polaritons [29],(
p1k
p2k

)
=

(
X1k C1k
X2k C2k

)(
bk
ak

)
, (3)

which is tuned to diagonalize the linear part of the equations
of motion (1), leads to the equations of motion in the polariton
basis,

d

dt
p1k = −iω1kp1k − iRNL

1k , (4a)

d

dt
p2k = −iω2kp2k − iRNL

2k , (4b)

with RNL
jk = XjkR

NL
k . Here, pjk annihilates a polariton with

dispersion ωjk in the lower (j = 1) or upper (j = 2) branch.

B. External driving and dissipation

To include losses through the mirrors, the interaction
with lattice vibrations and the external laser driving, we
couple the system dynamics to the environment. As shown
in Ref. [38], combining the dynamics-controlled truncation
scheme with the nonequilibrium quantum Langevin approach,
the incoherent system dynamics decouples from parametric
scattering processes. In particular, we have to add the damping
rates �

(tot)
jk and Langevin noise source operators F with proper

statistics and moments to the equations of motion (4). This
yields

d

dt
p1k = −iω̃1kp1k − iRNL

1k + Fp1k , (5a)

d

dt
p2k = −iω̃2kp2k − iRNL

2k + Fp2k , (5b)

where ω̃jk = ωjk − i�
(tot)
jk /2. The operators F are charac-

terized by vanishing expectation values, 〈Fμ〉 = 0, where

μ = p
(†)
jk , and by the second-order moments

〈Fμ(t)Fν(t ′)〉 = 2〈Dμν(t)〉 δ(t − t ′) (6)

with diffusion coefficients

2〈Dμν(t)〉 = d

dt
〈μ(t)ν(t)〉 − 〈μ̇(t)ν(t) + μ(t)ν̇(t)〉. (7)

In Eq. (7), the dot denotes the time-derivative following from
Eqs. (4), i.e., without noise source operators F .

Equations of motion for the expectation values 〈μ(t)ν(t)〉—
the so-called polariton photoluminescence—are given in
Ref. [38]. They are derived in the framework of a second-order
Born-Markov approach. Important for us is the final result:
Due to the decoupling of incoherent dynamics and parametric
processes the diffusion coefficients in Eq. (6) can be used as
input when we calculate multitime correlation functions of
polariton operators. We stress that the damping rates �

(tot)
jk

follow from this treatment too.

C. Explicit pump scenario

Let us now consider the experimental setup introduced in
Ref. [33], where four pump lasers drive the lower polariton
branch at wave vectors kp1 = (kp,kp), kp2 = (−kp,kp), kp3 =
(−kp,−kp), and kp4 = (kp,−kp) (see Fig. 1). The incident
angles of all pumps are below the magic angle [21,40] such
that single-pump scattering processes (signal at k and idler at
2kpn − k) are negligible. The multipump parametric processes
(signal at k and idler at kpn + kpm − k with n �= m) share a
common idler mode at ki = (0,0). The four corresponding sig-
nal modes at ks1 = (0,2kp), ks2 = (−2kp,0), ks3 = (0,−2kp),
and ks4 = (2kp,0) have been shown to be entangled [33].

To obtain the equations of motion for the signal and
idler modes, we introduce a simplified notation. In particular,
because all scattering processes are within the lower polariton
branch, we omit the branch index. In addition, we introduce
Yx = Y1kx

for every quantity Y = P,ω,�(tot),ω̃,RNL,X,C and
define γx = �(tot)

x /2 for x = i,s1, . . . ,s4,p1, . . . ,p4. Because
of the particular pump-signal-idler configuration, we have
ωsn ≡ ωs , γsn ≡ γs , Xsn ≡ Xs , Csn ≡ Cs , ωpn ≡ ωp, Xpn ≡
Xp, and Cpn ≡ Cp for n = 1, . . . ,4.

Assuming classical pump fields 〈pjkpn
〉 = Pn ∈ C, which

imply a coherent driving, and identical pumps Pn ≡ P , we
retain only terms containing the semiclassical pump amplitude
P twice. Introducing the vectors P = (pi,p

†
s1, . . . ,p

†
s4)T and

F = (Fpi
,F

p
†
s1
, . . . ,F

p
†
s4

)T , the equation of motion for the
signal and idler modes takes the form:

d

dt
P(t) = M(t)P(t) + F(t), (8)

where

M =

⎛⎜⎜⎜⎜⎜⎝
−iω̃i −igsP2 −igsP2 −igsP2 −igsP2

igs(P∗)2 iω̃∗
s 0 0 0

igs(P∗)2 0 iω̃∗
s 0 0

igs(P∗)2 0 0 iω̃∗
s 0

igs(P∗)2 0 0 0 iω̃∗
s

⎞⎟⎟⎟⎟⎟⎠,

(9)
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FIG. 1. (Color online) Sketch of the considered pump-signal-
idler configuration in (a) position space and (b) momentum space.
The circles in panel (b) display the possible energy- and momentum-
conserving scattering processes within the lower branch, where two
pumped polaritons scatter into pairs of signal and idler polaritons.
Specifically, mixed-pump scattering processes of oppositely arranged
(neighboring) pumps with |kpn + kpm| = 0 (|kpn + kpm| = 2kp)
contribute to the circle(s) with radius

√
2kp (kp).

and

gs = 2XiXsXp

(
�R

nsat
Cp + VxxXp

)
. (10)

We note that the matrix M depends on time solely, because the
pump amplitude P is time dependent.

D. State of emitted field

Defining the matrix G of Green’s functions as the solution
of the homogeneous equation,

d

dt
G(t,t ′) = M(t)G(t,t ′), (11)

with the initial condition G(t,t) = I (I is the 5 ×
5 identity matrix), the solution of the inhomogeneous

Eq. (8) is

P(t) = G(t,0)P(0) +
∫ t

0
G(t,τ )F(τ ) dτ. (12)

It allows for the calculation of multitime correlation functions.
As a basis for the tomographic reconstruction of the

measured signal and idler photon density matrix we choose
the four states |1i ,1sn〉 (n = 1, . . . ,4), where |1x〉 denotes the
state of a photon in channel x = i,s1, . . . ,s4. This choice
can experimentally be realized by the postselection of events,
where a click in the idler detector occurs, which takes out the
vacuum component. Then the matrix elements of the measured
photon density matrix ρi,sm;i,sn = 〈1i ,1sm|ρ|1i ,1sn〉 are given
by

ρi,sm;i,sn = 1

N

∫
Td

∫
Td

〈p†
i (t1)p†

sm(t2)psn(t2)pi(t1)〉dt1dt2

= 1

N

∫
Td

∫
Td

[〈p†
i (t1)pi(t1)〉〈p†

sm(t2)psn(t2)〉

+ 〈p†
i (t1)p†

sm(t2)〉〈psn(t2)pi(t1)〉]dt1dt2, (13)

where the second line follows from a Wick factorization. In this
equation N is a normalization constant and Td is the detector
window.

III. RESULTS

The equations from the last section allow us to study the
tomographic reconstruction of the state of the emitted signal
and idler fields in different situations. If the semiconductor
microcavity is continuously pumped, the equations of motion
can be solved analytically through transformation into the
pump rotating frame. For Gaussian pump pulses—the usual
experimental situation—the equations have to be solved
numerically.

A. Analytical modeling

To obtain analytical results for the stationary state in the
long-time limit we assume a continuous pumping, i.e., P =
Pe−iωpt , with P ∈ R. We define 
 = gsP

2
for abbreviation

and perform a transformation into the pump rotating frame:

p†
sn = p†

sn e−2iωpt , F
p
†
sn

= F
p
†
sn

e−2iωpt . (14)

Defining

T(t) =

⎛⎜⎜⎜⎝
1 0 0 0 0
0 e−2iωpt 0 0 0
0 0 e−2iωpt 0 0
0 0 0 e−2iωpt 0
0 0 0 0 e−2iωpt

⎞⎟⎟⎟⎠, (15)

P(t) = T(t)P(t), and F(t) = T(t)F(t) (16)

brings the equation of motion (8) to the form

d

dt
P(t) = M P(t) + F(t), (17)
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with the time-independent matrix

M = T−1(t)M(t)T(t) − 2iωp

⎛⎜⎜⎜⎝
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝
−γi −i
 −i
 −i
 −i


i
 −γs 0 0 0
i
 0 −γs 0 0
i
 0 0 −γs 0
i
 0 0 0 −γs

⎞⎟⎟⎟⎠ − iωiI. (18)

According to G(t,t ′) = T−1(t)G(t,t ′)T(t ′), the Green’s func-
tions become a matrix exponential

G(t,t ′) = exp{M(t − t ′)} = G(t − t ′) . (19)

In order to calculate the populations and correlators
in the long-time limit needed for the tomographic state
reconstruction, we assume the condition γsγi > 4
2 to
be fulfilled. This guarantees that all eigenvalues of M
have negative real parts; i.e., the corresponding Green’s
functions converge in the long-time limit. In addition,
we assume a (dimensionless) uniform noise background
Nb, characterized by 〈Fpx

(t)Fpy
(t ′)〉 = 〈F

p
†
x
(t)F

p
†
y
(t ′)〉 = 0,

〈F
p
†
x
(t)Fpy

(t ′)〉 = Nb�xδx,yδ(t − t ′), and 〈Fpx
(t)F

p
†
y
(t ′)〉 =

(Nb + 1)�xδx,yδ(t − t ′), with x,y = i,s1, . . . ,s4. As shown
in the Appendix, the tomographic reconstruction is

ρ = X

4

⎛⎜⎝1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎠ + 1 − X

4

⎛⎜⎝1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠, (20)

with X ∈ [0,1]. The state ρ in Eq. (20) is a mixture of a pure
(fully entangled) W state and a (not entangled) identity state.
In the four-partite case under study, full entanglement means
that neither subsystem can be separated. The parameter X is
the weight of the W state in the mixture ρ. For X = 1, ρ is
fully entangled. Contrariwise, ρ is fully separable for X = 0.
Clearly the state ρ is entangled for any finite X > 0. In this
sense, X can be taken as an entanglement measure, which
quantifies the violation of a corresponding Bell inequality.

Figure 2 shows X as a function of 
/γ and Nb for γ =
γi = γs . We note that the parameter 
 is proportional to the
pump intensity, which, however, is limited by the stationarity
condition 4
2 < γiγs . Obviously, the fully entangled pure W

state is obtained for vanishing noise background. This result is
in accordance with the discussion in our previous article [33],
where losses through the cavity mirrors and the coupling to
lattice vibrations are neglected. Interestingly, even for a finite
noise background Nb > 0 the pure W state can be generated
if the pump power is high enough. Lowering the pump power
at fixed Nb leads to a decrease of entanglement.

B. Numerical solution

Numerically, we can also study the case of Gaussian
pump pulses. In practice, we solve Eq. (11) for Gaussian
pump pulses, having an intensity maximum at 4 ps and a
width of 1 ps, and calculate the populations and correlators
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FIG. 2. (Color online) Amount of entanglement in the state ρ

[Eq. (20)], quantified by X as a function of 
/γ and Nb, for γ =
γi = γs .

to do the tomography. Thereby we choose a reasonable
detection window of Td = 120 ps, allowing for technically
feasible experiments with standard photodetectors. Again,
the tomographic reconstruction results in a state of the
form (20); i.e., it is fully characterized by a single parameter
X. The amount of entanglement quantified by X is shown
in Fig. 3(a) in dependence on the pump intensity at var-
ious temperatures, while Fig. 3(b) gives X as a function

0 50 100 150 200
pump intensity [photons / μm2]
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pump intensity = 100μm−2
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FIG. 3. (Color online) Entanglement of the numerically recon-
structed signal density matrix as a function of the pump intensity
(a) and the detuning δ = ωc

0 − ωx
0 (b). The results in panel (a) are

calculated for different environment temperatures but fixed detuning
δ = −2.4 meV, whereas data in panel (b) are obtained for different
environment temperatures and pump intensities. Other parameters of
the investigated sample can be found in Ref. [21].
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of the detuning δ = ωc
0 − ωx

0 . The remaining system pa-
rameters are fixed in accordance with Refs. [21,25,26],
where a specific semiconductor microcavity sample was
investigated.

Compared to the analytical solution in the last section, we
have set the uniform noise background Nb to 0. Noise enters the
equations through the pump-induced photoluminescence [41]
that depends on the temperature of the reservoirs. The choice
Nb = 0 is the reason why the numerical results in Fig. 3(a)
tend to 1 for vanishing pump intensity. Contrary to the
long-time behavior for continuous pumps, an increase in
the pump intensity leads to a decrease of the entanglement.
This behavior is even more pronounced for higher reservoir
temperatures. The reason for this is a temperature-dependent
background, created by the pump-induced photoluminescence,
on top of which parametric scattering, i.e., entanglement
generation, takes place. Increasing the temperature at a fixed
pump intensity leads to a higher background at a fixed
number of parametric scattering processes and hence to a
lower degree of entanglement. Nevertheless, the generated
entanglement is surprisingly robust [see the range of X in
Fig. 3(a)], even in the full simulation which includes the
losses through the cavity mirrors and the coupling to lattice
vibrations.

When one keeps the environment temperature and the pump
intensity fixed, the entanglement decreases if the detuning is
increased [see Fig. 3(b)]. This happens as a consequence of
the suppression of exciton and photon mixing for positive
detuning, which weakens the polariton parametric scattering
strength. Increasing the environment temperature or the pump
intensity leads to a decrease of entanglement, but the functional
δ dependence remains similar. Interestingly, even for large

positive detuning a finite amount of entanglement is generated
by the microcavity.

IV. CONCLUSIONS

We have studied the generation of multipartite entangled
light in semiconductor microcavities within the dynamics-
controlled truncation scheme. If one includes the losses
through the cavity mirrors and the coupling to lattice vibra-
tions, this formalism allows for a decoupling of the incoherent
system dynamics (pump-induced photoluminescence) from
the parametric scattering processes as the source of entan-
glement. After calculation of particular multitime correlation
functions, the state of the emitted signal and idler fields is
obtained through tomographic reconstruction. The resulting
multipartite entanglement between the four signal channels for
both continuous pumping and Gaussian pump pulses is robust
against decoherence under realistic experimental conditions.
This observation shows that the emitted photons carry the ini-
tial polariton entanglement. Since polaritons are quasiparticles
composed of cavity photons and semiconductor excitons, they
can sustain pair correlations over long times and distances in-
side such solid-state devices. In this sense, the emitted photons
serve as a probe of the internal entanglement properties.
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APPENDIX: EXPLICIT SOLUTION FOR CONTINUOUS PUMPING

Here, we evaluate the stationary populations and correlations in the long-time limit. We start with the diagonalization of the
matrix M from Eq. (18). The eigenvalues of M are

λ1 = λ2 = λ3 = −γs − iωi, λ4/5 = − 1
2 (γi + γs ±

√
(γi − γs)2 + 16
2) − iωi. (A1)

To simplify the notation, we introduce � =
√

(γi − γs)2 + 16
2, λ = −γs − iωi , and λ± = λ − λ4/5 = (γi − γs ± �)/2, with
λ+ > 0 and λ− < 0. With these definitions, the matrix V of eigenvectors is

V = 1√
2�λ+|λ−|

⎛⎜⎜⎜⎜⎜⎝
0 0 0 −√

2|λ−|λ+
√

2λ+|λ−|
−√

�λ+|λ−| −√
�λ+|λ−| −√

�λ+|λ−| √
2|λ−|i
 √

2λ+i


0 0
√

�λ+|λ−| √
2|λ−|i
 √

2λ+i


0
√

�λ+|λ−| 0
√

2|λ−|i
 √
2λ+i
√

�λ+|λ−| 0 0
√

2|λ−|i
 √
2λ+i


⎞⎟⎟⎟⎟⎟⎠, (A2)

such that

V−1MV = λI −

⎛⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 λ+ 0
0 0 0 0 λ−

⎞⎟⎟⎟⎠. (A3)
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The matrix G of the Green’s functions is given by

G(t) = eλt V

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 e−λ+t 0

0 0 0 0 e−λ−t

⎞⎟⎟⎟⎟⎟⎠V−1 = eλt

⎛⎜⎜⎜⎜⎜⎝
Gi,i(t) Gi,s(t) Gi,s(t) Gi,s(t) Gi,s(t)
G∗

i,s(t) Gs,s(t) Gs,s ′ (t) Gs,s ′ (t) Gs,s ′ (t)

G∗
i,s(t) Gs,s ′ (t) Gs,s(t) Gs,s ′ (t) Gs,s ′ (t)

G∗
i,s(t) Gs,s ′ (t) Gs,s ′ (t) Gs,s(t) Gs,s ′ (t)

G∗
i,s(t) Gs,s ′ (t) Gs,s ′ (t) Gs,s ′ (t) Gs,s(t)

⎞⎟⎟⎟⎟⎟⎠, (A4)

with matrix elements

Gi,i(t) = e− 1
2 (γi−γs )t

(
cosh

�

2
t − γi − γs

�
sinh

�

2
t

)
, (A5a)

Gi,s(t) = −2i



�
e− 1

2 (γi−γs )t sinh
�

2
t, (A5b)

Gs,s(t) = 3

4
+ e− 1

2 (γi−γs )t

4

(
cosh

�

2
t + γi − γs

�
sinh

�

2
t

)
, (A5c)

Gs,s ′ (t) = Gs,s(t) − 1. (A5d)

Convergence of these functions requires γi + γs > �, i.e., γiγs > 4
2.
Introduction of the uniform noise background Nb allows for the evaluation of the idler and signal populations in the long-time

limit. This yields

N∞
i,i ≡ lim

t→∞〈p†
i (t)pi(t)〉 =

∫ ∞

0
2e−2γs t

{
NbγiG

2
i,i(τ ) + 4(Nb + 1)γs |Gi,s(τ )|2} dτ

= Nbγi

γi + γs

γs(γi + γs) − 4
2

γiγs − 4
2
+ (Nb + 1)γs

γi + γs

4
2

γiγs − 4
2
, (A6)

N∞
s,s ≡ lim

t→∞〈p†
s (t)ps(t)〉 = (Nb + 1)γi

γi + γs


2

γiγs − 4
2
+ 3Nb

4
+ Nbγs

4(γi + γs)

γi(γi + γs) − 4
2

γiγs − 4
2
, (A7)

and the correlators become

N∞
s,s ′ ≡ lim

t→∞〈P †
s (t)Pi ′(t)〉 = (Nb + 1)γi

γi + γs


2

γiγs − 4
2
− Nb

4
+ Nbγs

4(γi + γs)

γi(γi + γs) − 4
2

γiγs − 4
2
, (A8)

N∞
i,s ≡ lim

t,t ′→∞
〈P †

i (t)P †
s (t ′)〉 = i(2Nb + 1)γiγs


(γi + γs)(γiγs − 4
2)
. (A9)

Finally, the tomographic reconstruction results in the state

ρ = 1

4

N∞
i,i N

∞
s,s ′ + |N∞

i,s |2
N∞

i,i N
∞
s,s + |N∞

i,s |2

⎛⎜⎝1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞⎟⎠ + 1

4

(
1 − N∞

i,i N
∞
s,s ′ + |N∞

i,s |2
N∞

i,i N
∞
s,s + |N∞

i,s |2
)⎛⎜⎝1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠, (A10)

such that the value of X in Eq. (20) becomes

X = N∞
i,i N

∞
s,s ′ + |N∞

i,s |2
N∞

i,i N
∞
s,s + |N∞

i,s |2
. (A11)
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