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Rydberg-blockade controlled-NOT gate and entanglement in a two-dimensional array
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We present experimental results on two-qubit Rydberg-blockade quantum gates and entanglement in a two-
dimensional qubit array. Without postselection against atom loss we achieve a Bell state fidelity of 0.73 ± 0.05.
The experiments are performed in an array of single Cs atom qubits with a site to site spacing of 3.8 μm. Using
the standard protocol for a Rydberg-blockade CZ gate together with single qubit operations we create Bell states
and measure their fidelity using parity oscillations. We analyze the role of ac Stark shifts that occur when using
two-photon Rydberg excitation and show how to tune experimental conditions for optimal gate fidelity.
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I. INTRODUCTION

Qubits encoded in hyperfine states of neutral atoms are a
promising approach for scalable implementations of quantum
information processing [1]. We are developing an atomic qubit
array for quantum logic experiments. The array consists of
qubits encoded in Cs atom hyperfine states. Single qubit gate
operations are performed using either microwave fields for
global operations on the array, or focused light fields for control
of individual qubits [2]. Two-qubit entangling gates are based
on Rydberg-blockade interactions [3]. Qubit initialization is
performed with optical pumping and qubit readout is based on
imaging of resonance fluorescence [4].

Provided sufficiently high gate fidelities can be achieved
the neutral-atom approach provides a scalable path towards
large qubit numbers. The qubit density in our recent two-
dimensional (2D) implementations [2,5] is approximately one
qubit per 14 μm2 with a loading fraction of 60%. This
translates into an effective area per qubit of 24 μm2. The
area needed for a large number of qubits, say 106, would be
a modest 0.24 cm2. Although there are numerous engineering
challenges associated with scaling to such a large number of
qubits there is no fundamental reason why this could not be
achieved.

At the present time the largest impediment to scaling
is that the demonstrated gate fidelities have not reached
the level where fault-tolerant coding and error correction
architectures are viable [6]. Single qubit gate operations have
reached better than 0.99 fidelity with single-site control [2]
and it is reasonable to anticipate further improvement using
composite pulse sequences [7]. The fidelity achieved to date
for entangling gates is less satisfactory. Three research groups
have demonstrated entanglement of neutral-atom qubits using
Rydberg interactions. The results have been characterized in
terms of Bell state or entanglement fidelities with reported
values of 0.58 [8], 0.71 [9], 0.75 [10], and 0.81 [11] allowing
for postselection to correct for atom loss during the gate
sequence. Reported fidelity results without postselection,
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which is preferable for quantum computing applications, are
0.58 [9] and 0.60 [11].

The experimental entanglement fidelity results reported
to date lag far behind theoretical analyses which predict
gate fidelities >0.99 [12] in a room-temperature apparatus
and >0.9999 for circular Rydberg states at cryogenic tem-
peratures [13]. It has therefore been an open question as
to whether or not the separation between experimental and
theoretical results is due to purely technical errors, or derives
from some unaccounted for aspect of the atomic physics. We
demonstrate here that previous analysis has not fully accounted
for ac Stark shifts that occur in two-photon excitation of
Rydberg states. We clarify the impact of the Stark shifts on the
effective gate matrix, and show how to minimize sensitivity
to imperfectly controlled experimental parameters. We then
demonstrate improved two-qubit entanglement with fidelity
of 0.79 ± 0.05 allowing for postselection and 0.73 ± 0.05
without postselection. Although still below what is needed
for scalability we anticipate that further improvement will be
possible in the future.

The rest of the paper is organized as follows. In Sec. II
we recall the Rydberg-blockade CZ protocol and analyze the
impact of ac Stark shifts on the gate. We then proceed to
show how to compensate for the Stark shifts to obtain an
ideal gate matrix. In Secs. III A and III B we describe the
experimental setup and how to measure relevant parameters
using Ramsey interference and Rabi oscillation experiments.
In Secs. III C and III D we describe CNOT and Bell state
experiments, followed by a concluding Sec. IV with an outlook
on future developments.

II. RYDBERG CONTROLLED PHASE GATE

The standard protocol for creating a controlled phase
gate via Rydberg blockade uses a three pulse sequence to
implement

CZ =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠. (1)

The sequence shown in Fig. 1 uses a π pulse on the control
qubit, 2π on the target, and π on the control [3]. In the ideal
situation of perfect blockade and negligible ratio of excitation
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FIG. 1. (Color online) Level structure (left) and pulse sequence
(right) for two-qubit Rydberg-blockade CZ gate. The qubits are
encoded in ground hyperfine states |0〉,|1〉 while |r〉 is a high lying
Rydberg state.

Rabi frequency � to qubit frequency splitting ωq we obtain the
gate matrix (1). While several experiments have used single-
photon excitation of alkali-metal atom Rydberg states [14,15],
all the Rydberg based quantum gate experiments except [11]
have used a more complicated two-photon excitation method.
The primary reason for doing so has been to avoid the need for
high power at the short wavelengths of one-photon excitation
(297 nm in Rb and 321 nm in Cs). As we proceed to show,
the use of a two-photon drive changes the gate matrix so that
even under ideal conditions we do not obtain Eq. (1). Instead
the CZ gate matrix takes the form

CZ,φ̄ =

⎛
⎜⎜⎝

eıφ00 0 0 0
0 eıφ01 0 0
0 0 eıφ10 0
0 0 0 eıφ11

⎞
⎟⎟⎠ (2)

with φ̄ shorthand for the phases {φ00,φ01,φ10,φ11}. The CZ,φ̄

operator can only create entanglement when φ00 − φ01 −
φ10 + φ11 �= 2πn with n integer. It is therefore essential to
correctly control the gate phases.

A. ac Stark shifts

The first contributions to the gate phases come from ac
Stark shifts that arise due to the use of two-photon excitation
as shown in Fig. 2. We divide the Stark shifts into resonant
and nonresonant contributions. Each of the qubit levels |0〉,|1〉
acquire resonant and nonresonant Stark shifts as does the
Rydberg level. All shifts are listed in Table I.

There are several things to note about the expressions given
in Table I. The resonant shifts are the standard expressions
valid for the situation where |�1| � γe with γe the radiative
linewidth of the intermediate level. We assume two-photon
resonance between |1〉 and |r〉 so that �2 = −�1 and � =
�1 + �2 = 0. The field amplitudes and Rabi frequencies
are related by �j = djEj /� with dj the relevant transition
dipole matrix element, Ej the electric-field amplitude, and
the two-photon Rabi frequency �R = �1�2/(2�1). In the
approximation that the hyperfine splitting of |e〉 is small
compared to the detuning �1 the expressions given are valid.
When this is not the case the expressions for the Stark shifts
as well as the relation between � and the one-photon Rabi
frequencies have to be modified. The full expressions for the
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FIG. 2. (Color online) Level diagram (a) and ac Stark shifts
(b) for two-photon Rydberg excitation.

specific case of Cs atoms excited via 6s1/2 → 7p1/2 → ns1/2,
as in our experiments, are given in Appendix A.

The nonresonant polarizabilities αgj can be calculated using
a sum over states approach. Since we explicitly account for the
resonant contributions to the ac Stark shift, the polarizabilities
in this paper are defined with the resonant transitions excluded
from the sum. The nonresonant Rydberg polarizability is given
by the expression

αrj = − e2

meω
2
j

, (3)

where e and me are the electron charge and mass, respectively,
and ωj is the frequency of field j . We will assume that the
excitation beams are large compared to the size of the Rydberg
wave function and ignore corrections to the Rydberg shift
arising from finite beam size effects [16].

B. Phase shift from a 2π rotation

In the case of a two-level system driven by a single field
the ground state accumulates a shift of eiπ = −1 during a
resonant 2π pulse. The situation is more complicated for the
three-level system driven by two fields. The laser frequencies
are tuned to give full population transfer from the ground state
to the excited state. This implies that the detuning compensates
the Stark shifts from each of the excitation beams. In the
case where there is two-photon resonance, or near resonance,
and �1/γe is large to minimize spontaneous emission the
resonance condition is

� ≈ (
�r

R2 + �nr
R1 + �nr

R2

) − (
�r

11 + �nr
g1 + �nr

g2

) = 0. (4)

This includes the resonant Stark shift, which can be canceled
by setting |�1| = |�2| (when the intermediate level hyperfine
structure is negligible), and the nonresonant shifts on the
ground (Rydberg) states, �nr

g(R)1(2).
In the far detuned limit when the hyperfine structure of the

intermediate state can be neglected the phase accumulated by
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TABLE I. Stark shifts contributing to the gate phases. Here Ej is the field amplitude of field j , �j is the Rabi frequency, �1 is the
detuning from the intermediate level, and αg(R)j is the nonresonant polarizability of the ground (Rydberg) levels at the frequency ωj of field j .
Superscripts r and nr label resonant and nonresonant Stark shifts respectively. Full expressions that account for the hyperfine structure of the
intermediate level are given in Appendix A.

Description Shift on |0〉 Shift on |1〉 Shift on |r〉

Resonant shift from E1 �r
01 = 1

4
|�1|2

�1−ωq
�r

11 = 1
4

|�1|2
�1

Nonresonant shift from E1 �nr
g1 = − 1

4�
αg1|E1|2 �nr

g1 �nr
R1 = − 1

4�
αR1|E1|2

Resonant shift from E2 �r
R2 = 1

4
|�2|2
�1

Nonresonant shift from E2 �nr
g2 = − 1

4�
αg2|E2|2 �nr

g2 �nr
R2 = − 1

4�
αR2|E2|2

the ground state after a resonant 2π Rydberg pulse is

φR = π

[
1 −

∣∣∣∣�1

�2

∣∣∣∣sgn(�1)

]
− (

�nr
g1 + �nr

g2

)
2tπ , (5)

with t2π = 2tπ = 2π/|�R|. Equation (5) is readily derived
using the Schrödinger equation for a three-level ladder
configuration, and adiabatically eliminating the intermediate
state in the limit of large detuning.

We can express the Rabi frequency ratio as

π

∣∣∣∣�1

�2

∣∣∣∣ = 2

∣∣∣∣π2�1

�1�2

∣∣∣∣ |�1|2
4|�1|

= sgn(�1)
2π

|�R|�
r
11 = sgn(�1)2tπ�r

11.

The 2π pulse phase can therefore be written as

φR = π − (
�r

11 + �nr
g1 + �nr

g2

)
2tπ . (6)

This way of writing the phase has a clear physical interpre-
tation. The factor of π is the quantum phase accumulation from
rotating the effective two-level system, which is analogous to
a spin 1/2, through 2π . The second term is the Stark phase
accumulated by the ground state over a time of 2tπ .

It may be surprising that the usual picture of a 2π Rabi
pulse imparting a π phase shift is only valid for a single-photon
transition. For a two-photon drive the phase shift can take on
any possible value although values of the Rabi frequencies
for which φR = π can always be found. In particular when
the ac Stark shifts on the ground state are fully compensated,
i.e., �r

11 + �nr
g1 + �nr

g2 = 0, then φR = π , and we recover the
one-photon transition result.

C. Gate phases

The CZ,φ̄ operator is constructed by considering how the
shifts described in the previous sections affect the computa-
tional basis states, |ct〉 = {|00〉,|01〉,|10〉,|11〉}.

For the |00〉 state the excitation beams are detuned by ωq for
both qubits so both remain in the |00〉 state. From Table I, the
shifts on |0〉 include the resonant E1 shift and the nonresonant
E1 and E2 shifts. The shift on |0〉 for the control (target) qubits
is

φhf,c(t) = −(
�r

01,c(t) + �nr
g1,c(t) + �nr

g2,c(t)

)
2tπ,c(t), (7)

so

φ00 = φhf,c + φhf,t. (8)

Here we have allowed for a possible variation in parameters at
the control and target qubit sites so that φhf,c φhf,t need not be
equal.

For the |01〉 state, the control experiences the off-resonant
Stark shift, φhf,c, while the target picks up a phase shift from
the resonant 2π Rydberg pulse, φR from Eq. (5),

φ01 = φhf,c + φR,t. (9)

The |10〉 state is different than the |01〉 state because the
control atom is held in the Rydberg state for a time 2tgap + 2tπ,t.
The phase accumulated during this time is due to the ground-
Rydberg differential Stark shift and is given by

φgap = −[(
�r

R2,c + �nr
R1,c + �nr

R2,c

)
− (

�r
11,c + �nr

g1,c + �nr
g2,c

)]
2(tgap + tπ,t). (10)

Here tgap is the extra time in between pulses which, experimen-
tally, is the minimum time it takes to switch the laser beams
between control and target sites. In total the shift on the |10〉
state is

φ10 = φR,c + φgap + φhf,t. (11)

Finally the |11〉 state experiences an additional shift due to
the blockade, φB, for a time 2tπ,t which includes the resonant
Stark shift from E1 and the nonresonant shifts on the |1〉 state
of the target atom

φB = −(
�r

11,t + �nr
g1,t + �nr

g2,t

)
2tπ,t + φBL,

= −π + φR,t + φBL.

The last term is a small blockade leakage phase [3] φBL =
π�R/(2B). The total phase accumulation on the |11〉 state
during the gate sequence is thus

φ11 = −π + φR,c + φR,t + φgap + φBL. (12)

Equations (8)–(12) fully determine the phases of the CZ,φ̄

operator which we summarize here for convenience:

φ00 = φhf,c + φhf,t, φ01 = φhf,c + φR,t,

φ10 = φR,c + φgap + φhf,t,

φ11 = −π + φR,c + φR,t + φgap + φBL.

The gate phases are not completely independent since
φ01 + φ10 − φ00 − φ11 = π − φBL. In the limit where the
blockade leakage phase φBL is small, which will be the case for
parameters which yield high fidelity entanglement, there is a
fixed constraint between the phases. A global multiplicative
phase factor is irrelevant, leaving two free phases. As we
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discuss in the following section a correct choice of two
parameters is sufficient to fix the two phases and obtain an
ideal gate operation.

D. Setting parameters to recover an ideal CZ gate

In general the CZ,φ̄ operator does not necessarily create
entanglement, and does not directly create Bell states with
standard phases. In this section we show that it is in principle
possible to choose parameters such that an ideal CZ operator
is implemented by the pulse sequence of Fig. 1. For simplicity
we assume that �1,�2 are the same for both control and target
atoms so that we can drop the c, t subscripts on the gate
phases. We will also neglect φBL since it is a small error for
typical experimental parameters of B � �R. Alternatively the
φBL phase can be canceled using a slightly modified pulse
sequence, which does not change the other gate phases, as
described in Fig. 3 of Ref. [12].

To proceed we note that we can always ensure φR = nπ

by choosing the correct value for the Rabi frequency ratio
q = |�2

�1
|. To see this let �r

11 = a|�1|2,�nr
g1 = b|�1|2,�nr

g2 =
c|�2|2,tπ = πd/|�1�2| with a,b,c,d real constants that
depend on the detuning from the intermediate level and atomic
structure parameters. If we then choose q such that

1 − n = (a + b)d

q
+ (cd)q

we obtain φR = nπ . We then set tgap such that φgap = 2n′π .
Solutions occur at

tgap + tπ = n′π(
�r

R2 + �nr
R1 + �nr

R2

) − (
�r

11 + �nr
g1 + �nr

g2

)
Setting φR,φgap to be multiples of π as described above, the

gate phases modulo 2π , for n odd and n′ even are

φ00 = 2φhf, φ01 = φhf + π, φ10 = φhf + π, φ11 = π.

(13)

For n even and n′ odd we get

φ00 = 2φhf, φ01 = φhf, φ10 = φhf, φ11 = π. (14)

The φhf phases can be corrected by applying global Rz(θ )
rotations with θ = −φhf which recovers the ideal CZ of Eq. (1).
We emphasize that an ideal CZ gate is recovered apart from
errors due to spontaneous emission from the intermediate
and Rydberg levels, finite-temperature Doppler and position
fluctuations, and finite blockade strength. Those errors have
been quantitatively studied in previous work [12], but without
the constraints implied by the parameter choices presented
here. We defer a reexamination of the theoretically achievable
gate fidelity in a real atom to future work.

E. Setting parameters to recover a CX gate

In the experiments described below in Sec. III we have not
implemented the parameter settings needed for an ideal CZ

gate. Nevertheless we can still create a modified CNOT = CX

gate and create Bell states, albeit not with the standard phases.
The standard CX gate in the computational basis {00,01,10,11}

is

CX =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠.

An equivalent operator, but with the X operation conditioned
on the control qubit being in state |0〉, is

C̄X = (X ⊗ I )CX(X ⊗ I ) =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠.

The usual method to transform the CZ gate into a CX gate
is to apply Hadamard gates on the target qubit before and after
the CZ operation. We generalize this to π/2 rotations, with a
relative phase θ to create the operator

CX,φ̄(θ ) = Rt(π/2,θ )CZ,φ̄Rt(π/2,0),

where Rc(t)(ξ,θ ) is a ground-state rotation on the control
(target) by an angle ξ , with phase θ . For arbitrary φ̄ and θ

we find

CX,φ̄(θ ) =

⎛
⎜⎝

a b 0 0
c d 0 0
0 0 e f

0 0 g h

⎞
⎟⎠

with eight nonzero elements a–h. However, for specific values
of θ we get a CX,φ̄(θ ) operator proportional to CX or C̄X, with
only four nonzero elements of unit modulus, but with different
phase factors. We define a matrix overlap as O(CX,CX,φ̄(θ )) ≡
1
4

∑
elements

CX|CX,φ̄(θ )|2. It then follows that

O[CX,CX,φ̄(φ11 − φ10)] = 1, O[C̄X,CX,φ̄(φ01 − φ00)] = 1.

(15)

Note that the overlap is not a gate fidelity and does not contain
any phase information. The difference between the phases used
to prepare the two CX gates is independent of parameters as
expected,

(φ11 − φ10) − (φ01 − φ00) = −φR,t + φB = −π. (16)

We then use the CX,φ̄(θ ) gate to create Bell-like states, but
with nonstandard phases. To do so we apply the sequence

U (θ,φ̄) = CX,φ̄(θ )Rc(π/2,0). (17)

Operating with U on the product state |00〉 creates a maximally
entangled state when θ = φ11 − φ10. In general this will not
be one of the Bell states due to the presence of different phase
factors on the two components of the state vector. If desired
we can recover a standard Bell state with additional one qubit
rotations. This is the approach we demonstrate in the next
section.

To determine the entanglement fidelity of the state created
with U we measure the populations and the two-qubit
coherence terms which can be done by the method of parity
oscillations [17]. Defining the parity signal P = P00 + P11 −
P01 − P10, where Pij are the diagonal terms of the two qubit
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FIG. 3. (Color online) Experimental data used to determine optical beam powers. The figure shows measurements on the control site only
and fitted frequencies are indicated in the plots. (a) Ground-state Ramsey oscillations with 459-nm laser used to extract �1. (b) Ground-Rydberg
Rabi oscillations used to extract �2 once �1 and �1 are known. (c) Ground-Rydberg Ramsey experiment used to measure �diff,gR. The straight
line is an aid to the eye and is not a fit, but suggests a frequency <0.1 MHz. The inset shows a faster ground-Rydberg Ramsey oscillation using
other parameters. Beam powers extracted from these measurements are given in Table II.

density matrix, a π/2 rotation at an angle θ on both qubits
transforms the parity signal to

P ′ = 2Re[C2] − 2|C1| cos(2θ + φ). (18)

Here C1 = |C1|eıφ is the coherence between states |00〉 and
|11〉 and C2 is the coherence between states |01〉 and |10〉. The
coherence C1 can then be extracted from the parity oscillation
measurements. The entanglement fidelity of states close to the
Bell state |00〉+|11〉√

2
is F = P00+P11

2 + |C1|. Values of F > 0.5
are a sufficient condition for the presence of entanglement [18].

III. EXPERIMENT

A. Setup

Cs atoms are loaded into a 49 site array of blue-detuned
dipole traps formed by 64 tightly focused, weakly overlapping
780-nm beams as described in Refs. [2,5]. The 7 × 7 site array
has a 3.8-μm site to site spacing. The qubits are encoded in
the hyperfine clock states with |0〉 ≡ |6s1/2,f = 3,mf = 0〉
and |1〉 ≡ |6s1/2,f = 4,mf = 0〉. Single qubit rotations are
performed globally using a 9.2-GHz microwave field. Single
site rotations use a combination of the microwave field and
a tightly focused beam detuned by −14 GHz from the 7p1/2

line to induce a differential Stark shift equal to ∼40 kHz on
a single site. In contrast to the approach of Ref. [2] where the
microwave frequency was detuned from ωq and the optical
Stark shift provided a local resonance condition, here the
microwave frequency is set to ωq and the Stark shift is used to
tune the site where no rotation is desired out of resonance.

Rydberg excitations are driven using a two-photon transi-
tion through an intermediate 7p1/2 level. The two wavelengths
are 459 and 1038 nm. The lasers are locked to high finesse ultra
low expansion resonators for long-term frequency stability and
short-term linewidths <500 Hz on few μs time scales. We
measure �1, the detuning from the center of mass of 7p1/2, by
maximizing the light scattering from the |7p1/2,f = 4〉 level,
and then detuning the light by a known amount. The hyperfine
constant of 7p1/2 is reported in Table III. The duration of the
excitation pulses is controlled by acousto-optic modulators
(AOMs). The pulses were of square shape as indicated in
Fig. 1, with typical rise and fall times of 50 ns. For each
Rydberg pulse the 1038-nm light was left on for approximately

50 ns longer than the 459-nm light so that the precise value
of the pulse duration was controlled by the 459-nm light. This
leads to some additional ground-Rydberg ac Stark shifts from
the 1038-nm light that are not accounted for in the analysis of
Sec. II C.

Each beam is sent through separate fibers to a 2D beam
scanner which is created using two crossed AOMs which
allows for 2D positioning across the array [19]. The two
counterpropagating beams are focused to waists (1/e2 intensity
radii) of 3.0 and 3.7 μm for the 459- and 1038-nm light, and
aligned onto a single site. The site to site switching time is
∼0.5 μs. The two photons are σ+,σ− polarized with respect
to the quantization axis z which is perpendicular to the plane
of the qubit array. A 0.15-mT bias magnetic field is applied
along z. With these polarizations and choice of intermediate
level we excite a Rydberg |ns1/2,mj = −1/2〉 fine-structure
state. As shown in Appendix B there is negligible excitation
of the mj = +1/2 Zeeman state. All data reported here are
for the |82s1/2,mj = −1/2〉 state with �1 = 2π × 0.83 GHz.
The optical trap array is turned off for the few μs duration of
the Rydberg gates. Turning the traps back on after Rydberg
excitation leads to photoionization or mechanical loss of the
atoms before they decay to the ground state. In this way trap
loss is used to measure the Rydberg excitation probability.

As we discuss in the next section the detuning �1 and
the beam powers are chosen to minimize the differential ac
Stark shift between ground and Rydberg states which can be
expressed as

�diff,gR = (
�r

R2 + �nr
R1 + �nr

R2

) − (
�r

11 + �nr
g1 + �nr

g2

)
.

Minimizing this shift is advantageous as it reduces sensitivity
to intensity fluctuations caused by laser instability, optical
beam pointing drifts, and atomic motion. A small differential
Stark shift also prevents time varying detuning, and conse-
quently off-resonant state rotations, during the finite rise and
fall times of the optical pulses. Because the experimental
detuning is only several times larger then the 7p1/2 hyperfine
splitting, the hyperfine structure must be included when
calculating the differential shift (see Appendix A). State
dependent Stark shifts due to the 780-nm trapping light [16]
are not accounted for since we turn off the traps for the few μs
duration of the Rydberg gates.
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TABLE II. Experimentally determined optical parameters. The first column gives the range of measured values from multiple measurements
over a two-day time span. The next two columns give the values assumed for determining the optical beam powers. Using beam waists of
w459 = 3.0 μm, w1038 = 3.7 μm the fitted powers were P459,c = 22 μW, P459,t = 21 μW, P1038,c = 1.9 mW, and P1038,t = 2.0 mW. The
inferred ground-Rydberg differential Stark shift and CX phase using these beam powers are given in the last two rows.

Range over 2 days Value used for fits Value used for fits
Measured values (MHz) Control site (MHz) Target site (MHz) CX eye diagram

�diff,g/2π 0.80–0.95 0.86 0.81
�R/2π 0.63–0.75 0.67 0.65
�diff,gR/2π �0.1
φ01 − φ00 1.05 (rad)
Inferred values
�inferred,gR/2π 0.088 0.160
φ01 − φ00 1.01 (rad)

B. Setting and estimating parameters

In order to calculate all of the shifts induced by the Rydberg
excitation beams we need to have good measurements of the
beam intensities at the atoms. A series of Ramsey and Rabi
flopping experiments is used for this purpose as shown in
Fig. 3.

To find E1, two microwave π/2 pulses are applied with
a variable length 459-nm pulse in between. The resulting
Ramsey frequency is equal to the differential Stark shift of
the qubit states induced by the 459-nm light. This is equal to
the difference between the resonant Stark shifts on |1〉 and |0〉
which are separated by the hyperfine frequency ωq,

�diff,g = �r
11 − �r

01. (19)

Measuring �diff,g , and using the dependence on the in-
tensity of the 459-nm light we can infer E1 since �1 and
ωq are known. In principal the same method can be used to
extract E2 but the differential shift on the ground state from the
1038-nm beam is small, about 200 Hz. Instead we measure
�R the two-photon Rabi frequency for Rydberg excitation.
Since �R depends on E1,E2,�1, and the hyperfine structure of
the intermediate level, which is known, we can infer E2. We
emphasize that for our experimental parameters it is important
to account for the hyperfine structure using the expressions
given in Appendix A. Although the full expressions only differ
by about 10% from the approximate expressions of Table I the
gate performance is very sensitive to the beam intensities at
the 10% level, as can be seen in Fig. 7 below.

As a consistency check we then measure the ground-
Rydberg differential shift �diff,gR with a ground-Rydberg
Ramsey measurement. This shift depends on both E1 and E2.
Figure 3 shows measured data using the Rydberg 82s1/2 state.
The measured and inferred quantities are listed in Table II.
Using the matrix elements from Table III we determine the
field strengths Ej which are used to calculate resonant and
nonresonant Stark shifts which in turn are used to infer
�inferred,gR. Figure 3(c) shows the ground-Rydberg differential
shift after choosing beam powers such that the shift is relatively
small, less than 100 kHz. At these low frequencies we are not
able to measure the shift accurately, since we cannot hold the
Rydberg atoms for extended periods. We therefore only give
an estimated upper limit on the shift in the table.

Note the parameters above are not fine tuned to recover an
ideal CZ as discussed in Sec. II D. We instead use a relative

phase of φ01 − φ00 between the ground state π/2 rotations to
recover an entangling CX,tc gate, as explained in Sec. II E.
With the measured beam parameters, we use the equations of
Sec. II C to calculate the expected two qubit operators

CZ,φ̄ =

⎛
⎜⎜⎝

e−ı 0.13 0 0 0
0 eı 0.88 0 0
0 0 e−ı 0.76 0
0 0 0 −eı 0.24

⎞
⎟⎟⎠, (20)

and

CX,φ̄(φ01 − φ00) =

⎛
⎜⎜⎝

0 e−ı1.7 0 0
e−ı0.69 0 0 0

0 0 e−ı0.76 0
0 0 0 e−ı2.89

⎞
⎟⎟⎠.

(21)

TABLE III. Physical parameters for Rydberg excitation of Cs via
the 7p1/2 level. From top to bottom the table sections give ground-
state parameters, 7p1/2 parameters, and Rydberg level parameters.
Reduced matrix elements are given in terms of the Bohr radius a0.

Parameter Value Ref.

αnr
g,459 −11.6 × 10−24(cm3) a

αnr
g,1038 189 × 10−24(cm3) a

〈7p1/2||r||6s1/2〉 −0.276a0 [20]

A7p1/2 94.35 MHz [21]
�3,7p1/2/(2π ) −212.3 MHz
�4,7p1/2/(2π ) 165.1 MHz
τ7p1/2 0.155 μs [22]

αnr
82s1/2,459 −15 × 10−24 cm3 Eq. (3)

αnr
82s1/2,1038 −77 × 10−24 cm3 Eq. (3)

〈ns1/2||r||7p1/2〉 −8.08
n3/2 a0

b

Ans1/2
13 200

(n−4.05)3 MHz c

τ82s1/2 203 μs [23]

aThe ground-state nonresonant polarizabilities are calculated using a
sum over states method, excluding the 7p1/2 level in the case of αnr

g,459.
bThe n dependence is a fit to values calculated using quantum defect
wave functions as described in [28].
cThe n dependence is an approximation based on values reported
in [15,29].
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All nonlisted elements in CX,φ̄ have magnitude <8 × 10−4. We
see that the gate phases differ appreciably from the standard
values. Nonetheless we can still create entangled states as
explained in Sec. II E. The predicted Bell-type state produced
by this gate is

|ψ〉 = −eıφ00
|00〉 + eı(−2φ00+φ01+φ10)|11〉√

2

= −eıφ00
|00〉 + eı0.38|11〉√

2
,

which is a maximally entangled state. The largest effect not
accounted for in the predicted state is the finite blockade
strength of the two-qubit Rydberg interaction. We use a
Rydberg excitation Rabi frequency of �R = 2π × 0.67 MHz.
The Rydberg interaction for 82s1/2 states at 7.6 μm separation
is B 
 2π × 23 MHz. We calculate a blockade leakage phase
of φBL = π�

2B 
 2.6◦, which is negligible compared to other
error sources.

C. CX gate-experimental results

It is clear that setting the correct phase of the second ground-
state pulse is crucial to the operation of the gate and creation
of entangled states. This phase is found experimentally by
varying the phase of the final ground-state pulse. An example
of this can be seen in Fig. 4 for control and target qubits that
are two sites away so that their separation is 7.6 μm. Single
atom data of the target atom which is cut on whether a control
atom is present or not are shown. The blue curve shows the
data when a control atom is present and therefore the Rydberg
blockade occurs. While this is only single atom data, this curve
can be thought of as representing the |11〉 state and if we wish
to run the CX gate, we choose the phase where this curve is
minimum so that |11〉 goes to |10〉. The red curve shows the
data when a control atom is not present and no blockade occurs
and can therefore be thought of as |01〉.

φ (radians)

f=
4 

po
pu

la
tio

n blockade

no
blockade

FIG. 4. (Color online) Experimental CX eye diagram on next-
nearest-neighbor sites separated by 7.6 μm. The blue curve is from
loading an atom in both control and target sites and represents a
blockaded data set. The red curve is from data with no atom in the
control site. The two curves have a π phase shift with respect to each
other as expected. The phase at the minimum of the no blockade
curve is φ01 − φ00 which gives the CX,tc gate.
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FIG. 5. (Color online) State preparation (left) and C̄X gate popu-
lation matrix (right) on next-nearest-neighbor sites, 7.6 μm apart,
using parameters measured in Sec. III B. The average statistical
uncertainty of the data is ±0.008 for the state preparation and ±0.02
for the C̄X gate.

To measure the C̄X gate population matrix, each of the
computational states are prepared, the C̄X pulse sequence is
applied, and the results are measured as shown in Fig. 5. The
overlap of the populations with an ideal gate is 0.82, without
any corrections for atom loss. This improves on our previous
result [9] of 0.74. Note that the sum of the output populations
in a given row is not equal to unity. For the first two rows we get
1.01, 1.03. We attribute this slight excess to fluctuations in the
loading and atom retention rates. The second two rows have
populations sums of 0.80, 0.84. For these input states |10〉,|11〉
the control qubit is Rydberg excited and must wait there while
a Rydberg pulse is applied to the target qubit, before returning
to the ground state. Excess loss of population in this case is the
largest contributor to gate error. We discuss possible reasons
for this loss in Sec. IV below.

D. Entanglement results

We proceed to implement the U operator of Eq. (17)
to create an entangled two-qubit state. We select the gate
phase of φ01 − φ00 to implement the C̄X gate. Data are taken
on next-nearest-neighbor sites, separated by 7.6 μm. Parity
oscillations are then performed to quantify the entanglement
fidelity. The results of Fig. 6 give an entanglement fidelity
of F = 0.73 ± 0.05 without any loss correction. Adding in
a retention correction for ground-state loss during the gate
sequence equal to 0.996 and 0.993 for the respective sites does

phase (radians)
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rit
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|00> |01> |10> |11> 0 1 2 3

0

1

-1

0.5
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0.0

0.1
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0.3

0.4

0.5

0.6

FIG. 6. (Color online) Bell state population measurement and
parity oscillation measurement with no loss correction using next-
nearest-neighbor sites. The populations measured for the Bell state
are |00〉 : 0.54 ± 0.06, |01〉 : 0.03 ± 0.02, |10〉 : 0.05 ± 0.03, |11〉 :
0.38 ± 0.06. The fit to the parity curve gives |C1| = 0.27 ± 0.02
and |C2| = 0.006. This results in an entanglement fidelity F =
0.73 ± 0.05 and F = 0.79 ± 0.05 when corrected for atom loss.
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FIG. 7. (Color online) The entanglement fidelity as a function of the fractional change of the optical powers P459,P1038 and the detuning
�1 from the optimal values. The center point of each plot uses the parameters found experimentally in Sec. III B and the color scale is the
fidelity normalized by the value at the center of each panel.

not change this result. Correcting for atom loss during the
gate by renormalizing each of the points on the parity curve
results in a loss corrected value for C1 = 0.32 ± 0.03 and a
postselected entanglement fidelity of F = 0.79 ± 0.05. These
results are the highest two-qubit entanglement fidelity, without
postselection, reported to date using the Rydberg interaction.
The previous best was 0.60 [11].

IV. DISCUSSION

We have demonstrated improved entanglement fidelity
using the Rydberg-blockade interaction between two atomic
qubits. Nevertheless the results obtained are still far from
the 10−3, or lower, errors that are expected to be needed
for scalable quantum computing [6]. Detailed calculations do
predict the feasibility of much higher fidelity. It is therefore
important to understand the cause of the observed infidelity
and to implement improved protocols.

One issue is the technical challenge of stabilizing all
experimental parameters. Our current experimental procedures
for qubit state measurements involve pushing out f = 4 atoms,
and then detecting the presence of an atom, in order to infer
the qubit state. This method allows us to measure the qubit
state with high fidelity [2], but implies that a new atom has
to be loaded half the time on average. The need for atom
reloading results in a relatively low data rate of 2 s−1. While
state dependent measurements have been performed without
atom loss [11,24], to date this has only been demonstrated
on one or two trapped atoms. In the multisite array used here
there is increased background noise from the trapping light
and multiple atoms which makes lossless measurements more
difficult. Achieving lossless detection in the multisite array is
a challenge we are working to solve by increasing the optical
detection efficiency.

The low data rate implies that entanglement experiments,
including the requisite tuning of experimental parameters, as
in Fig. 3, require many hours to complete. As is shown in
Fig. 7 the fidelity drops steeply as experimental parameters are
changed. In order to have a fidelity within 95% of the optimal
value the beam powers should not differ by more than ±0.05
and the detuning should not change by more than ±0.2. It is
not difficult to maintain the detuning to the required precision,

but holding beam intensities at the atoms to a few percent
drift over many hours is challenging and needs to be improved
on. Experimental intensity drifts are currently up to the 10%
level over the course of a day which contributes to the gate
infidelity.

In addition to these technical issues the measured data point
to a dominant experimental error. Looking at the last two rows
in the CX population matrix in Fig. 5 we see that in cases
where the control atom is Rydberg excited there is about a
20% loss of population. This error, together with imperfect
state preparation, and drifts of parameters at the few percent
level easily explain the imperfect fidelity we obtain. Excess
loss of Rydberg excited atoms has been the major contributor
to gate infidelity not only in this study, but also in previous
entanglement experiments [8–11]. We note that for input state
|01〉 where the control atom is not excited, and the target atom
experiences a 2π Rydberg pulse, the loss is very low, at most
a few percent as shown in Fig. 8. The difference between
excitation of control or target atoms is that the control atom
has some gap time in between Rydberg π rotations where the
excitation beam is switched off, moved to the target site, then
moved back to the control site, and switched back on for the
final Rydberg π rotation. This gap time is equal to ∼ 3μs.
This is much shorter than the lifetime of the Rydberg state
and only slightly longer than the 2π Rydberg pulse applied
to the target atom. We have verified in control experiments

pulse time (μs) gap time (μs)
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0 1 2 0 1 2 3 4 5

(b)

3
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FIG. 8. (Color online) Ground-state population after a 2π Ryd-
berg pulse (a) and after a π− gap −π Rydberg pulse sequence with
variable gap time (b).
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that a sequence of π Rydberg pulse, very short gap time
of < 50 ns, π Rydberg pulse, also leads to excess Rydberg
loss.

The reasons for the additional loss when an atom is left
in the Rydberg state for a short time are under investigation.
Several possible explanations are worth considering. The large
polarizability of Rydberg atoms could result in mechanical
forces from background electric-field gradients pushing the
atoms away. The experiments are performed in a pyrex
vacuum cell with the atoms 1 cm away from the nearest
walls. By way of spectroscopy on Rydberg states we have
determined the background dc field to be 10–30 mV/cm.
Although this measurement does not directly tell us about
field gradients, assuming that the field varies by this amount
over a length scale as short as 1 mm gives insufficient
mechanical forces to explain the observed atom loss. Pho-
toionization rates [4] are also too small to explain the observed
loss.

Another possibility is that what we observe is not the loss of
an atom, but coupling between the laser excited |82s1/2,mj =
−1/2〉 state and some other Rydberg state during the gap
time. Since other Rydberg states are not brought back to the
ground state in the second π pulse, such coupling could result
in leaving an atom in the Rydberg state, and the atom then
being lost when the trap light is turned back on after the
gate sequence. Several mechanisms could result in coupling
between different Rydberg levels. Although the ns1/2 states
have no significant tensor polarizability, matrix elements to
other states are very large, scaling as n2ea0. Higher-order terms
in the hyperpolarizability [25] could then lead to state mixing.
Improved control of background electric fields should serve to
limit this possibility. On the other hand if a static background
field was the reason for state mixing we might expect to see a
similar loss in a single 2π Rydberg pulse, which we do not, as
can be seen from Fig. 8.

These considerations point to the likelihood that the
observed loss is related to the turning on and off of the
Rydberg pulses. The optical pulses are only approximations
to square pulses, as they have rise and fall times of about
20 ns. When there is a finite ground-Rydberg differential Stark
shift there will be a time varying detuning at the rising and
falling edges which may promote excitation of more than one
Rydberg state. Figure 8(b) shows a loss signal that does not
increase monotonically with the gap time. Interestingly the
minimal loss need not occur at the minimal gap time, and
the population shows oscillatory behavior. Although we have
observed oscillations as a function of gap time, the details of
the oscillations have not been repeatable. The oscillations may
be due to time-dependent interference of atomic states which
are not eigenstates of the Rydberg excitation Hamiltonian.
Numerical integration of the Schrödinger equation for such
pulse sequences does reveal imperfect Rydberg excitation and
de-excitation, and this issue is also the subject of ongoing
work.

Irrespective of the correct explanation for the excess
Rydberg loss it is apparent that tuning the ground-Rydberg
differential ac Stark shift to a value that is small compared to
the excitation Rabi frequency has reduced the amount of loss,
and improved the gate fidelity compared to previous work.
We anticipate further improvement in future experiments with

better control of background electric and magnetic fields as
well as the use of optimized pulse shapes.
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APPENDIX A: RYDBERG EXCITATION WITH
INTERMEDIATE STATE HYPERFINE STRUCTURE

The expressions given in the main text for the ground-
Rydberg Rabi frequency and ac Stark shifts neglect the hy-
perfine structure of the intermediate level used for two-photon
excitation. This is a good approximation when the detuning is
very large compared to the width of the hyperfine structure.
With our experimental parameters this approximation is only
about 90% accurate. We give here relevant formulas that
account for the hyperfine structure.

We wish to couple atomic states |g〉 → |r〉 using two-
photon excitation via intermediate level |p〉. When the hy-
perfine structure of the intermediate level is negligible the
two-photon Rabi frequency is �R = �1�2/2� with �1,2 the
one-photon Rabi frequencies and � = ω1 − ωpg the detuning
of the field driving |g〉 → |p〉. Here ωpg = ωp − ωg = (Up −
Ug)/�. This expression is accurate when |�| � �hf where
�hf is the width of the hyperfine structure of the p level.

We proceed to calculate the Rabi frequency for the two-

photon excitation |g〉 E1→ |p〉 E2→ |r〉 where |g〉,|r〉 are specific
hyperfine states and |p〉 is shorthand for a manifold of
hyperfine states. The two-photon matrix element between
ground and Rydberg hyperfine states is

Vfg→fr
= E1E2e

2〈r,fr ,mg + q1 + q2|rq2

×
∑
fp

|p,fp,mg + q1〉〈p,fp,mg + q1|rq1 |g,fg,mg〉

= V
∑
fp

c
jpfp

Ijgfg
c
jrfr

Ijpfp
C

fr ,mg+q1+q2

fp,mg+q1,1,q2
C

fp,mg+q1

fg,mg,1,q1
, (A1)

where V = E1E2e
2〈nr lr sjr ||r||nplpsjp〉〈nplpsjp||r||nglgsjg〉,

C..
.... is a Clebsch-Gordan coefficient [26], and

c
j ′f ′
Ijf = (−1)1+I+f +j ′√

2f + 1S
jIf

f ′1j ′ ,

where

Sabc
def =

{
a b c

d e f

}

is a compact notation for the 6j symbol. Here e is the electronic
charge, I is the nuclear spin, s = 1/2 is the electronic spin of
an alkali-metal atom, ng,p,r is the principal quantum number
of the atomic state, fg,p,r is the total angular momentum, lg,p,r

is the orbital angular momentum, and jg,p,r is the electronic
angular momentum. The photon fields 1 and 2 have amplitudes
E1,E2, polarization state q1,q2 in a spherical basis and mg is the
projection of the ground hyperfine state angular momentum.

We define a one-photon detuning from the center of
mass of the p state �1 = ω1 − ωpg and hyperfine shifts
within the |p〉 manifold �fp

= ωfp
− ωp = 2π × A

2 [fp(fp +
1) − I (I + 1) − jp(jp + 1)] where A is the magnetic dipole
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hyperfine constant. We only consider states with j = 1/2
and can therefore neglect higher-order terms of the hyperfine
interaction.

Adding the contributions from the p levels the two-photon
Rabi frequency between hyperfine states can be written as

�
fr,mg+q1+q2

fg,mg
= ��̃

fr ,mg+q1+q2

fg,mg

where

� = E1E2e
2〈nr lr sjr ||r||nplpsjp〉〈nplpsjp||r||nglgsjg〉

2�2�1

�̃
fr ,mg+q1+q2

fg,mg

=
I+jp∑

fp=|I−jp |
c
jpfp

Ijgfg
c
jrfr

Ijpfp
C

fr ,mg+q1+q2

fp,mg+q1,1,q2
C

fp,mg+q1

fg,mg,1,q1

�1

�1 − �fp

.

The Rydberg hyperfine states can be expanded in an
uncoupled basis as

|jrI ; fr,mr〉 =
∑

mj ,mI

C
frmr

jrmj ImI
|jrI ; mjmI 〉

or

|jrI ; mjmI 〉 =
∑
fr ,mr

C
frmr

jrmj ImI
|jrI ; frmr〉.

We are interested in the situation where we start in a single
ground hyperfine state and therefore we replace mr by
the laser excited value mg + q1 + q2. Then since �

fr,mr

fg,mg
=

2〈frmr |Ĥ|fgmg〉, with Ĥ the electric dipole Hamiltonian for
the two-photon transition, we can write the Rabi frequency
coupling ground hyperfine and Rydberg fine-structure states
as

�
jr ,mj

fg,mg
=

∑
fr ,mr

C
frmr

jrmj ImI
�

fr ,mr

fg,mg

= �
∑
fr

C
fr ,mg+q1+q2

jrmj ImI
�̃

fr ,mg+q1+q2

fg,mg
≡ ��̄

jr ,mj

fg,mg
(A2)

with mI = mfg
+ q1 + q2 − mjr

. Here we have introduced an
effective angular factor

�̄
jr ,mj

fg,mg
=

∑
fr

C
fr ,mg+q1+q2

jr ,mj ,I,mg+q1+q2−mj
�̃

fr ,mg+q1+q2

fg,mg
. (A3)

We use tildes to denote angular factors coupling hyperfine
states to hyperfine states and overbars to denote factors
coupling hyperfine states to fine-structure Zeeman states. It
should be emphasized that a description of the ground-Rydberg
coupling in terms of a Rydberg fine-structure state is only
valid when the hyperfine interaction in the Rydberg state is
negligible. Cesium ns states have a relatively large hyperfine
splitting so that in order to ensure coupling to a single Rydberg
state we apply a bias magnetic field along z to decouple the
hyperfine interaction. This implies a modification to Eq. (A3)
which we will make explicit in Appendix B.

We will also need the one-photon Rabi frequencies

�
fp

fg,mfg ,q1
= �gp�̃

fp

fg,mfg ,q1

= �gpc
jpfp

Ijgfg
C

fp,mfg +q1

fg,mfg ,1,q1
,

�
fp

jr ,mjr ,−q2
= �rp�̄

fp

jr ,mjr ,−q2

= �rp

∑
fr

c
jpfp

Ijrfr
C

fp,mfr −q2

fr ,mfr ,1,−q2
C

fr ,mfr

jrmjr ImI
,

where mfr
= mfg

+ q1 + q2, mI = mfr
− mjr

and

�gp = E1e〈nplpsjp||r||nglgsjg〉
�

,

�rp = E2e〈nr lr sjr ||r||nplpsjp〉
�

.

With these definitions the ground and Rydberg state Stark
shifts under conditions of two-photon resonance are

�ac,g = �2
gp

∑
fp

(
�̃

fp

fg,mfg ,q1

)2

4(�1 − �fp
)
, (A4)

�ac,r = �2
rp

∑
fp

(
�̄

fp

jr ,mjr ,−q2

)2

4(�1 − �fp
)
. (A5)

The differential ac Stark shift is �ac = �ac,r − �ac,g.
We have written the Rydberg fine-structure state ac Stark

shift as a sum over the contributions from hyperfine states
of the p level. When the Rydberg hyperfine coupling is not
negligible we should instead use the hyperfine resolved ac
Stark shifts which are

�ac,fr = �2
rp

∑
fp

(
�̃

fp

fr ,mfr ,−q2

)2

4(�1 − �fp
)
.

Finally, it is also important to know the probability of
photon scattering from the p level during a ground to Rydberg
π pulse. The time for the pulse is tπ = π/�

jr ,mj

fg,mf
and the

number of scattered photons is (see Sec. IV B in [27])

N=γptπ

2

⎡
⎣�2

gp

∑
fp

(
�̃

fp

fg,mg,q1

)2

2(�1 − �fp
)2

+�2
rp

∑
fp

(
�̃

fp

jr ,mj ,−q2

)2

2(�1 − �fp
)2

⎤
⎦.

Here γp = 1/τp is the radiative decay rate from the p level and
the prefactor of 1/2 acounts for half the integrated population
being in the ground and Rydberg levels during the π pulse. For
coherent qubit control we choose parameters such that N � 1
and interpret N as the probability Pse to scatter a photon.

The above general expressions for Rabi frequency, ac Stark
shift, and spontaneous emission probability can be applied to
any desired set of atomic levels. Expressions valid in the limit
of detuning large compared to the hyperfine structure width
can be found by simply setting �fp

→ 0.

APPENDIX B: EXCITATION OF CS ns1/2 STATES VIA 7 p1/2

Here we give explicit expressions for excitation of Cs atoms
using 6s1/2 → 7p1/2 → ns1/2. The two fields are σ+,σ− polar-
ized so that the ground |6s1/2,fg = 4,mf = 0〉 state is coupled
to the Rydberg hyperfine states |ns1/2,3,0〉, |ns1/2,4,0〉. The
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FIG. 9. (Color online) Calculated ground-Rabi frequency �R (left), resonant Stark shift of |6s1/2,f = 4〉 due to the 459-nm light �r
11

(center), and total ground-Rydberg differential Stark shift �gR including resonant and nonresonant contributions (right), for two-photon
excitation of Cs |82s,mj = −1/2〉 starting in |4,0〉 using parameters from Table II for the control site. Solid blue curves account for the 7p1/2

hyperfine structure, while the dashed yellow curves do not include hyperfine corrections. The spontaneous emission plot only accounts for
scattering from 7p1/2 as the Rydberg state decay is negligible for the parameters used. The gate experiments used ν1 = 0.83 GHz.

hyperfine-hyperfine angular factors defined in Appendix A are

�̃3
4,0,1 = −1

4
, �̃3

3,0,1 = −�̃3
4,0,1,

�̃4
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√
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16
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48
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4,0
4,0.

For the experiments reported here we use Rydberg level
82s1/2 which has a hyperfine splitting between the fr = 3,4
components of about ωhf,r = 2π × 110 kHz. At zero magnetic
field the |6s1/2,4,0〉 ground state couples to both hyperfine
levels with equal and opposite Rabi frequencies. The nonzero
hyperfine splitting implies that for any laser tuning there is
some off-resonant excitation which leads to gate errors.

To correct for this we apply a small bias magnetic field
Bz along the z axis of Bz = 0.15 mT. In the presence of the
magnetic field the energies of the Rydberg |3,0〉,|4,0〉 states
move apart and the coupled eigenstates can be written as

|82s1/2,mj = 1/2〉 = −(1 − √
1 + x2)|3,0〉 + x|4,0〉

[x2 + (1 − √
1 + x2)2]1/2

,

|82s1/2,mj = −1/2〉 = (1 + √
1 + x2)|3,0〉 − x|4,0〉

[x2 + (1 + √
1 + x2)2]1/2

,

with x = μBgjBz/�ωr,hf where μB is the Bohr magneton and
gj 
 2. Here we have neglected the small correction due to the
nuclear g factor. At Bz = 0.15 mT we find x = 38.2 and the
matrix element from the ground state to |82s1/2,mj = −1/2〉
is within 0.0001 of the asymptotic value. At the same time
the coupling to |82s1/2,mj = 1/2〉 is suppressed to about
0.02 times the coupling to |4,0〉. The small matrix element

together with the approximately 4.2-MHz splitting between the
mj = ±1/2 states lets us tune to resonance with mj = −1/2
and safely neglect the coupling to mj = 1/2. Measurements
indicate a residual coupling to mj = 1/2 that is slightly larger
than 0.02, which may be attributed to polarization errors of the
Rydberg excitation beams.

To summarize, with the magnetic field applied we couple to
a Rydberg fine-structure state with matrix elements given by
Eqs. (A2), (A3), (A5). Using the expressions in the previous
section we find the “reduced” one- and two-photon Rabi
frequencies,

�

2π
= 87 570 × (P1,mWP2,mW)1/2

n
3/2
r w1,μmw2,μmν1,GHz

MHz,

�gp

2π
= 2446 × P

1/2
1,mW

w1,μm
MHz,

�rp

2π
= 71 600 × P

1/2
2,mW

n
3/2
r w2,μm

MHz.

where ν1,GHz = �1/2π (in GHz), Pj,mW is a beam power in
mW, and w1(2),μm are beam waists (1/e2 intensity radii) in μm.
The two-photon angular factor coupling ground hyperfine to
Rydberg fine-structure state can be written compactly as

�̄
1/2,−1/2
4,0 = − 1

3
√

2

1 − 5�3,7p1/2

8�1
− 3�4,7p1/2

8�1(
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�1

)(
1 − �4,7p1/2

�1

)

and �̄
1/2,−1/2
3,0 = −�̄

1/2,−1/2
4,0 . Finally, the full expressions for

the ground-Rydberg Rabi frequency, ac Stark shifts, and
spontaneous emission probability from the 7p1/2 level are
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The ground-Rydberg Rabi frequency, resonant ground Stark shift, and total ground-Rydberg Stark shifts are shown versus
detuning using experimental parameters in Fig. 9. Comparing the center and right panels demonstrates that the nonresonant Stark
shifts must be accounted for when determining the parameters to be used to cancel the ground-Rydberg differential shift.
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[10] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

[11] Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W.
Biedermann, arXiv:1501.03862.

[12] X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and
M. Saffman, Phys. Rev. A 85, 042310 (2012).

[13] T. Xia, X. L. Zhang, and M. Saffman, Phys. Rev. A 88, 062337
(2013).

[14] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang,
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