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We design composite controlled-PHASE gates, which compensate errors in the phase of a single gate. The
errors can be of various natures, such as relative, absolute, or both. We present composite sequences which are
robust to relative errors up to the sixth order with the number of the constituent gates growing just linearly with
the desired accuracy, and we describe a method to achieve even higher accuracy. We show that the absolute error
can be canceled entirely with only two gates. We describe an ion-trap implementation of our composite gates in
which simultaneous cancellation of the error in both the pulse area and the detuning is achieved.
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I. INTRODUCTION

Two-qubit gates form the basis of quantum computing:
Any quantum computation can be constructed entirely by
these gates, combined with the one-qubit Hadamard and
phase gates [1]. Prominent examples are the controlled-PHASE

(CPHASE) gate and the closely related controlled-NOT (CNOT)
gate, which have been implemented on various physical
platforms, such as ion traps [2], nuclear magnetic resonance
[3], photonic qubits [4], superconducting qubits [5], and
atoms [6].

Quantum computing, however, depends critically on the
accuracy with which these gates are implemented, and fault-
tolerant computation is possible only if gate infidelity is very
low, typically below 10−4 [7]. Different sources of error can
be identified in an experiment ranging from decoherence to
imperfections in the control fields, most notably pulse-length
errors, field inhomogeneity, improper field duration, frequency
shifts, etc. Because errors in the control fields lead to an
incorrect rotation angle of the state vector on the Bloch sphere,
we refer to them as rotation errors.

Various techniques to deal with rotation errors have been
proposed and implemented. Composite pulses, for example,
have found broad application where systematic errors in the
control field play a major role [8,9]. A composite pulse is
a sequence of pulses with well-defined phases, which are
designed such that the errors from the constituent pulses
largely cancel each other. For example, the very popular
broadband composite pulse BB1 of Wimperis [9] cancels the
error up to the second order on an arbitrary state (without
assumption of the initial state of the system). More accurate
pulses have been derived by Brown et al. [10], but they have
found limited application as they quickly become extremely
long. Low et al. [11] found optimal sequences yielding the
same accuracy as Brown et al. but with much fewer primitive
pulses.

In an important development, Jones [12] showed how
the available single-qubit composite pulses can be used to
construct composite conditional two-qubit gates, which are the
backbone of quantum computation. In particular, he extended
the BB1 pulse by Wimperis to construct a second-order
broadband two-qubit gate, which is robust to rotation errors.

*sivanov@phys.uni-sofia.bg

Later, Hill [13] showed how to achieve robust CNOT gates
from almost any interaction based on BB1 and used sequence
concatenation for higher precision. Gates of higher precision
can be obtained even more efficiently by extending the
sequences of Low et al. [11].

In this paper, we derive improved highly accurate composite
CPHASE gates of shorter duration and length than proposed so
far. Although derived for two qubits, these sequences can be
used to construct robust multiqubit CPHASE gates as well. In
Sec. II, we present sequences, which cancel relative errors up to
the sixth order using up to 12 gates, and describe how to obtain
even higher accuracy. In Sec. III, we design sequences which
can handle errors of both relative and absolute natures. Then,
in Sec. IV, we describe an implementation of our composite
gates with linear laser-driven ion traps. Remarkably, our gates
can compensate simultaneous errors in the Rabi frequency and
in the detuning.

II. COMPENSATION OF RELATIVE ERROR

A. General framework

An ideal two-qubit CPHASE gate, denoted by (θ ), is
represented by the propagator (in a rotated basis),

U (θ ) = eiθσxσx , (1)

where σx is the Pauli x matrix and θ is a rotation angle [14].
When two qubits are coupled with a coupling constant J for
a time T , then θ = JT . Relative rotation errors are described
by multiplying J or T by an unknown factor 1 + ε so that θ

is higher or lower than a desired value �. Therefore, rather
than (�), in reality one obtains [�(1 + ε)], represented by the
propagator U [�(1 + ε)]. The sensitivity of the gate to ε can
be much reduced by replacing single rotations with composite
rotations,

[ϕN+1](θN )[ϕN ] · · · (θ1)[ϕ1](θ0)[ϕ0]. (2)

Here time is running from right to left so that the rightmost gate
is the first one applied. This sequence contains N + 1 CPHASE

gates (θk) and N + 2 single-qubit phase gates [ϕk] applied to a
preselected qubit; once chosen, the same qubit is used over the
entire sequence. We will apply [ϕk] on qubit 2. The sequence
(2) is represented by the following propagator:

U (N)(�) = F (ϕN+1)U(θN )F (ϕN ) · · · U(θ0)F (ϕ0), (3)
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where

F (ϕ) = e−iϕσz . (4)

Note that by using the property (A1) one can incorporate the
phases in the U gates, yielding

U (N)(�) = F (φN+1)UφN
(θN ) · · ·Uφ1 (θ1)Uφ0 (θ0), (5)

or U (N)(�) = F (φN+1)
∏N

k=0 Uφk
(θk) in a more compact form.

Here we have defined a phased CPHASE gate (θ )φ , represented
by the propagator,

Uφ(θ ) = eiθσxσφ , (6)

where σφ = σx cos φ + σy sin φ, U0(θ ) = U (θ ), and (θ )0 =
(θ ). The realization (5) may be more convenient in a practical
setting where the operator Uφ(θ ) is achieved at no additional
cost by a simple shift in the phase of the driving field, which
does not represent a physical modification of the qubit. We
will use the realization (5) for our composite sequences. The
following relations can be derived from the property (A1):

φl = −2
l−1∑
k=0

ϕk, φN+1 =
N∑

k=0

ϕk, (7)

with l = 1,2, . . . ,N .
Three families of composite sequences are generally con-

sidered: broadband, passband, and narrowband, the first two
of which will be of interest in the present paper.

B. Broadband sequences

1. General principles

Although every gate in the sequence (5) is first-order
sensitive to ε (all angles θk are systematically wrong by some
constant fraction ε), the phases φk can be chosen such that the
composite gate sequence is robust to ε up to a certain higher
order n. To this end, we nullify the n lowest-order propagator
derivatives with respect to ε by solving the following system
of n + 1 algebraic equations for the phases φk:

∂l

∂εl
[U (N)(�) − U (�)]

∣∣∣∣
ε=0

= 0, (8)

with l = 0,1, . . . ,n. Such sequences exhibit robust profiles vs
ε around 0 and are called broadband. We denote them as Bn(�)
below. Longer sequences provide more free parameters to vary
(θk and φk), thereby allowing to eliminate higher orders of ε.

Numerical calculations indicate that we must have θ0 = �

and φ0 = 0 and that φN+1 = 0 for all sequences with N > 2.
Thus we are left with 2N − 2 parameters θk and φk to solve for.
It can be shown that for k > 0 the angles θk can take values
π (s + 1/2), where s = 0,1,2, . . .. In what follows, we will
restrict ourselves to θk = π

2 or π in order to minimize the total
angle and thereby the total time duration of the composite
sequence (5). It follows from Eq. (A2) that Uφk

(θk) is equal
to 1 for θk = π (even s) and to iσxσφk

for θk = π
2 (odd s).

Thus it can be shown that the product
∏N

k=1 Uφk
(θk) applies

σm
x to qubit 1, where m counts the gates with θk = π

2 in the
product. Because the zeroth-order approximation of Bn(�)
must reproduce U (�), we must have

∏N
k=1 Uφk

(θk) = 1 for
ε = 0. This implies that m is even so that besides the target

propagator U (�), the sequence (5) must contain an even
number of π

2 gates. Hence, the gate sequence (5) acquires
the form

[φ3]
(π

2

)
φ2

(π

2

)
φ1

(�)0 for N = 2, (9a)

(π

2

)
φN

· · ·
(π

2

)
φ2

(π

2

)
φ1

(�)0 for N > 2, (9b)

having a length of N + 1 and a total angle of N π
2 + �.

We further found that in our sequences with N > 6 and
� = π

4 we can set φ1 = 0. The important implication from
here is that we can merge the first two gates into a single
gate ( 3π

4 ). Note that, up to a global phase of π , this gate is
equivalent to (π

4 )
π

. As a result, we can eliminate one gate (π
2 )

from the sequences (9b) simply by setting φ0 = π , thereby
yielding shorter sequences,(π

2

)
φN−1

· · ·
(π

2

)
φ2

(π

2

)
φ1

(π

4

)
π

for N > 6, (10)

with length N and a total angle of N π
2 − π

4 . We have subtracted
1 from each index for consistency of notation.

With the above assumptions the left-hand side of Eq. (8)
can be handled relatively easily by applying the identities (A3),
(B1), and (B2), shown in Appendices A and B. For l = 0, we
obtain

N∑
k=0

(−1)k−Nφk + φN+1 = 0. (11)

Higher-order terms are not simple enough to be useful.

2. Two-pulse sequence n = 1

Let us consider a sequence with N = 2. Following the
above arguments, we set θ1 = θ2 = π

2 . Zero- and first-order
errors are canceled by imposing the following set of equations:

− φ1 + φ2 + φ3 = 0, (12a)
π

2
(e−φ1 + e−φ2 ) + �ei(φ1−φ2) = 0. (12b)

We obtain φ1 = φ, φ2 = 3φ, and φ3 = −2φ, where φ =
arccos(−�/π ) and the sequence is

B1(�) = [−2φ]
(π

2

)
3φ

(π

2

)
φ
(�)0. (13)

We consider this sequence to be of significant interest from
an experimental viewpoint for its reasonable robustness and
small duration and length.

3. Four-pulse sequence n = 2

The composite gate with N = 4 corrects for ε up to the
second order. The following sequence is obtained:

B2(�) =
(π

2

)
φ
(π )3φ

(π

2

)
φ
(�)0, (14)

with φ = arccos(−�/2π ). The length is reduced to four gates
as two adjacent phases are found to be equal. This sequence
coincides with the BB1 pulse derived by Wimperis [9] and
later used by Jones [12] to construct a robust two-qubit gate as
discussed in the Introduction.
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TABLE I. Broadband composite sequences Bn(�), which cancel the relative error ε up to order n, cf. Eq. (8). The phases for n > 2 are
given in units of π . The fidelities are shown in Fig. 1.

Bn(�) Total angle Phases φ0,φ1,φ2,φ3, . . . ,φN

B1(�) π + � 0,φ,3φ,−2φ [with φ = arccos(−θ/π )]
B2(�) 2π + � 0, φ,3φ,φ [with φ = arccos(−θ/2π )]
B3(π/4) 3.25π 0,1.725,0.244,1.127,0.351,1.785,1.042
B4(π/4) 3.75π 1,0.170,0.170,1.374,0.677,1.598,1.818,0.528,1.995
B5(π/4) 4.75π 1,0.065,2.257,1.826,1.020,0.487,1.452,1.671,0.132,0.812
B6(π/4) 5.75π 1,2.193,1.933,0.737,1.932,1.286,0.641,1.531,1.983,1.240,2.077,0.579

4. Higher sequences n � 3

Sequences of higher accuracy are calculated numerically
(see Appendix C). We picked a target angle of � = π/4,
which is traditionally used in quantum information to construct
the CNOT gate [1]. Third, fourth, fifth, and sixth orders in
ε are eliminated for N = 6, 7, 9, and 11, respectively [cf.
Eqs. (9b) and (10)] with corresponding total angles of A =
3.25π, 3.75π, 4.75π , and 5.75π . The phases of the composite
gates are given in Table I where in places adjacent gates have
identical phases. Therefore, as for B2(�), we can combine
these gates and reduce the overall length of the sequences. To
our knowledge, apart from B2(�), which coincides with BB1
by Wimperis [9], all broadband gates are original.

The corresponding fidelities F vs the error ε are shown in
Fig. 1 where the standard definition of F is used,

F = Tr(A†B)

Tr(A†A)
= 1

4
Tr(A†B), (15)

with A = U (�) and B = Bn(�). A comparison with the
benchmark of 1–10−4 (horizontal dashed line) reveals that
a single gate can be fault tolerant only if the error |ε| does
not exceed 1.8%. The N = 2 composite gate B1(π/4) exhibits
a clear improvement over the uncorrected single gate: The
tolerance range is already |ε| < 11%. As expected, the longer
composite gates are fault tolerant over a wider error range: We
have |ε| < 22% for B2(π/4); |ε| < 30% for B3(π/4); |ε| <

37% for B4(π/4); |ε| < 42% for B5(π/4); |ε| < 46% for
B6(π/4). Our gates B4(π/4) and B6(π/4) compare very well
with the broadband gates BB4 and BB6 by Low et al. [11]: Our
B4(π/4) with a total angle of 3.75π performs slightly better
than the BB4 of Low et al. with a total angle of 4.25π , and
B6(π/4) with a total angle of 5.75π performs slightly better
than the BB6 of Low et al. with a total angle of 6.25π .

The total angle, which determines the duration of the
entire sequence, is nπ + � (with 2n + 1 gates) for n � 3 and
(n − 1

2 )π + � (with 2n gates) for 3 < n < 7 to correct the
propagator to order n. For example, B3(π

4 ), which is third-order
insensitive, has a total angle of 3π + �. Note for comparison
that the same performance is achieved by the pulse B4, derived
by Brown et al. [10] and used by Jones [12], which requires
29 single gates and a total angle of 40π + �.

C. Passband sequences

Our broadband sequences are useful for the implementation
of highly accurate gates on an isolated qubit pair. In an actual
experiment, however, it is possible that neighboring qubits are
involved in the interaction too, against our will, e.g., as a result

of residual laser light addressing these qubits. To suppress
this effect while maintaining the robustness of the broadband
sequences, one can use passband sequences.

Passband pulses satisfy the equations,

∂l1

∂εl1
[U (N)(�) − U (�)]

∣∣∣∣
ε=0

= 0, (16a)

∂l2

∂εl2
[U (N)(�) − 1]

∣∣∣∣
ε=−1

= 0, (16b)

where l1 = 0,1, . . . ,n1 and l2 = 0,1, . . . ,n2. Equation (16a)
defines the broadband part around ε = 0, and Eq. (16b)
defines the narrowband part at ε = −1; the latter ensure that
small coupling strengths, as “felt” by neighboring qubits,

FIG. 1. (Color online) Fidelity of our broadband composite gates
Bn(�) to reproduce the gate exp (i π

4 σxσx), forming the basis of the
CNOT gate, vs the relative error ε. The order n is displayed on each
curve; 0 corresponds to a single uncorrected gate [cf. Eq. (1)]. The
dashed line represents the 10−4 benchmark level. Note the dramatic
increase in the ultrahigh fidelity range (infidelity below 10−4)
with N .

022333-3



SVETOSLAV S. IVANOV AND NIKOLAY V. VITANOV PHYSICAL REVIEW A 92, 022333 (2015)

TABLE II. Passband sequences Pn1,n2 (�), which cancel the error
ε up to order n1 around ε = 0 and up to order n2 around ε = −1
[cf. Eq. (16)]. The phases for P1,3(�) and P3,3(�) are given in
units of π . The fidelities are shown in Fig. 2. We have χ1 =
arccos (−

√
1
2 + �2

8π2 ), χ2 = arccos (−
√

2�2

4π2+�2 ). Note that P2,1(�) is
obtained from P1,2(�) by a sign flip of χ1.

Pn1,n2 (�) Phases φ0,φ1,φ2,φ3, . . . ,φN

P1,1(�) 0,φ,−φ [with φ = arccos(−�/2π )]
P2,1(�) 0,−χ1,−χ1 + χ2,χ1 + χ2,χ1 − χ2,−χ1 − χ2,π − χ1

P1,2(�) 0,χ1,χ1 + χ2,−χ1 + χ2,−χ1 − χ2,χ1 − χ2,π + χ1

P2,2(�) 0,φ,−φ,−φ,φ [with φ = arccos(−�/4π )]
P1,3( π

4 ) 0,0.076,1.604,1.851,0.595,1.443,0.751,0.691,1.111
P3,3( π

4 ) 1,0.091,0.644,1.866,0.941,1.596

yield negligible rotation. These passband pulses, denoted as
Pn1,n2 (�), are robust up to order n1 around ε = 0 and up to
order n2 around ε = −1. As such, passband sequences realize
robust rotations upon our pair of qubits as achieved using
broadband sequences while suppressing rotations upon the
remaining qubits [15].

Equation (16) can be handled relatively easily by applying
the identities (A3), (B1), and (B2). For Eq. (16a) we proceed
as for the broadband sequences. For l2 = 0, Eq. (16b) is
automatically fulfilled, whereas for l2 = 1 and l2 = 2, they
are reduced to

2� + π

N∑
k=1

eiφk = 0, (17a)

3π2 − 2�2 + π2
N∑

k<l=1

ei(φk−φl ) = 0, (17b)

respectively, which are treated numerically as is the case also
for l2 > 2.

Calculated passband sequences correcting to different
orders n1 and n2 are shown in Table II. The sequences are
as follows: for P1,2(�), P2,1(�), and P1,3(π

4 ) (with total angles
of 3π + �, 3π + �, and 4.25π ) we use the sequence (9b), for
P1,1(�) and P2,2(�) (with total angles of 2π + � and 4π + �)
we have

(π )φN
· · · (π )φ2 (π )φ1 (�)0, (18)

and for P3,3(π
4 ) (with a total angle of 5.75π ) we have

(π )φN
· · · (π )φ2 (π )φ1

(
3π

4

)
π

. (19)

The corresponding fidelities for � = π
4 are shown in Fig. 2.

Some of our sequences can be found in Ref. [11]: P1,1(�)
is identical to AP1, and P2,2(�) is identical to PD2 and PB1
by Wimperis [9]. Note that P3,3(π

4 ) with a total angle of 5.75π

performs almost as good as AP3 and PD4 with respective total
angles of 6.25π and 8.25π .

III. COMPENSATION OF ABSOLUTE ERROR

In addition to the above sequences, which compensate
relative errors in the target rotation angle �, we have designed

FIG. 2. (Color online) Fidelity of our passband composite gates
Pn1,n2 ( π

4 ) vs the relative error ε. The orders (n1,n2) are displayed on
each curve; 0 corresponds to a single uncorrected gate [cf. Eq. (1)].

a composite sequence, which suppresses absolute errors that
occur as a constant offset ξ in the rotation angles (�)φ →
(� + ξ )φ , represented by Uφ(� + ξ ). Like relative errors ε,
these errors must enter systematically in the sequences.

Using the property Uπ (θ ) = U0(−θ ), we have found that
absolute errors can be eliminated completely from Uφ(�) with
the sequence,

(�)A,φ =
(

π − �

2

)
π+φ

(
π + �

2

)
φ

, (20)

represented by

UA,φ(�) = Uπ+φ

(
π − �

2

)
Uφ

(
π + �

2

)
. (21)

Indeed, we have

UA,φ(� + ξ ) = Uπ+φ

(
π − �

2
+ ξ

)
Uφ

(
π + �

2
+ ξ

)

= Uφ

(
−π + �

2
− ξ

)
Uφ

(
π + �

2
+ ξ

)
= UA,φ(�). (22)

Potential errors in the phase φ can be removed following the
composite technique of Ref. [16].

Finally, we construct composite gates robust to errors
of either nature, relative or absolute. This is performed by
substituting Uφ(θ ) with UA,φ(θ ) throughout in our sequences
in Sec. II. For example, a gate robust to ε to the third order and
to ξ to any order is obtained with

[−2φ]
(π

2

)
A,3φ

(π

2

)
A,φ

(�)A,0, (23)

where φ = arccos(−�/π ).
Below we discuss a physical realization of our composite

CPHASE gate with laser-driven linear ion traps. Although we
consider ion traps, we note that our sequences are applicable
to other systems as well.
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IV. IMPLEMENTATION WITH TRAPPED IONS

In trapped ions a popular two-qubit gate is the Sørensen-
Mølmer (SM) gate [17]. It has been used by numerous
ion-trapping groups as a paradigmatic gate for quantum
information processing. The SM gate and closely related
gates were demonstrated by Leibfried et al. [18] and later
by Kirchmair et al. [19] with fidelities around 97%. Record
gate fidelities have been achieved by Benhelm et al. [20]
(99.3%) and Ballance et al. [21] (99.9%). Various dynamical
decoupling techniques have been experimentally demonstrated
to protect the two-qubit gate from the environment [22].
Coherent error suppression using a pulse-shaping technique
has also been experimentally demonstrated [23] where the
effects of certain frequency and timing errors were suppressed.

In this section we will show how one can achieve a
composite CPHASE gate, robust to: (i) rotation errors, which
may be caused by improper laser intensity and timing, and (ii)
certain frequency errors, which may be caused by a shift in
the trapping frequency. The gate duration grows only linearly
with the achieved precision contrary to previous proposals for
coherent error suppression [23] where exponential scaling is
observed.

A. Hamiltonian and propagator

Consider two ions irradiated along the transverse x direction
with a bichromatic laser field with frequencies ωr = ω0 −
ω1 + 
 and ωb = ω0 + ω1 − 
, tuned close to the first red
(ωr) and blue (ωb) sidebands of a common vibrational mode,
e.g., the center-of-mass (COM) mode [24]. Here ω0 is the
frequency of the internal atomic transition of each ion, ω1 is
the frequency of the vibrational mode, and 
 is a suitably
chosen detuning. The laser frequencies ωr and ωb sum up
to twice the qubit transition frequency, whereas neither of
the lasers is resonant to any level. Thereby only transitions
where the atomic states are changed collectively take place.
The interaction Hamiltonian is

H = g

2∑
k=1

σ (ζ+
k )(a†ei 
t−iζ−

k + ae−i 
t+iζ−
k ), (24)

where g is the (time-independent) Rabi frequency of the
spin-phonon coupling and σ (ζ+

k ) = σ+
k e−iζ+

k + σ−
k eiζ+

k with
σ+

k (σ−
k ) being the spin raising (lowering) operator for ion

k. The spin and the motional laser phases are defined by
ζ±
k = 1

2 (ζ b
k ± ζ r

k), where ζ b
k and ζ r

k are the laser phases of the
blue- and red-detuned laser beams, respectively, as seen by
ion k.

The propagator U is obtained using the Magnus expansion
[25] and is given by (up to a global phase)

U = D(α) exp

[
i
2g2


2
(
T − sin 
T )σ (ζ+

1 )σ (ζ+
2 )

]
, (25)

where T denotes the duration of interaction. D(α) is a
displacement operator, D(α) = exp (αa† − α†a) with

α = −gT



(ei 
T − 1)

2∑
k=1

σ (ζ+
k )e−iζ−

k , (26)

which causes an undesired change in the vibrational state of
the ion system.

Now we discuss how to restore the vibrational state
[eliminate D(α) from the propagator U ] while preserving
the conditional dynamics described by the σ -σ term in U .
A similar idea was used in Ref. [26]. Note that if we only
shift ζ−

k with π in Eq. (26), we get a displacement of opposite
magnitude D(α) → D(−α). This phase shift can be achieved
either by a direct manipulation of the laser phase or by
sandwiching U with π pulses on both ions. Therefore, in order
to restore the vibrational state, we apply a second bichromatic
pulse of equal Rabi frequency g and duration T with a phase
ζ−
k shifted with π . Then the propagator becomes

U = exp

[
i
4g2


2
(
T − sin 
T )σ (ζ+

1 )σ (ζ+
2 )

]
(27)

provided that potential errors in the interaction variables are
systematic. Note that hereby we restore the vibrational state
without even knowing the exact size of the detuning 
.

In the rest of the section we consider the implementation
of both realizations (3) and (5). The first allows us to use
global addressing for each CPHASE gate, a key advantage in the
Sørensen-Mølmer gate [17] at the expense of additional single-
qubit phase gates, whereas the second requires individual
addressing and possibly just a single phase gate (for N = 2).

B. Implementation with global addressing

Global addressing implies equal laser phases for both ions,
i.e., ζ±

k = ζ±. Without loss of generality, we can assume
that ζ+ = 0, which implies that σ (ζ+

k ) = σx,k . The propagator
becomes

U = exp

[
i
4g2


2
(
T − sin 
T )σx,1σx,2

]
, (28)

which yields the gate eiθσx,1σx,2 [cf. Eq. (1)] with θ given by

θ = 4g2


2
(
T − sin 
T ). (29)

It can be shown that the shortest gate time Tmin is obtained
for 
 = 2g

√
π/θ for a chosen value of g. Then the above

equation becomes 
Tmin − sin 
Tmin = π , and the solution
is

Tmin = π



=

√
πθ

2g
. (30)

An important implication follows from Eq. (29): Potential
systematic errors in the Rabi frequency g (including unequal
couplings), the detuning 
, and the pulse duration T combine
into a single error in the rotation angle � → �(1 + ε), which
we already know how to suppress by using our composite
broadband sequences, listed in Table I.

When there are more than two ions in the trap, residual laser
light is likely to couple neighbor ions as well; neighbor ion k

will be coupled with Rabi frequency gk . As a result a rotation
will occur with small angle θk = 4ggk


2 (
T − sin 
T ) where
we expect that θk � �. This effect can be well suppressed by
using our passband sequences, listed in Table II.

We emphasize that although this method allows for
global addressing to achieve a single CPHASE gate, individual
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addressing is required to apply the single-qubit gates from the
sequence (3).

C. Implementation with individual addressing

Now the spin phase ζ+
2 of ion two is modulated (relative

to ion one) where the goal is to absorb the phase gates in the
rotations [cf. sequences (3) and (5)]. Again, we set ζ−

k = ζ−,
and without loss of generality, we assume that ζ+

1 = 0. The
propagator (27) becomes

U = exp

[
i
4g2


2
(
T − sin 
T )σx,1σ (ζ+

2 )

]
, (31)

which yields the gate eiθσx,1σ (ζ+
2 ) [cf. Eq. (6)] that we need for

the sequence (5) with θ given by Eq. (29). The minimum time
Tmin is given by Eq. (30).

D. Multiple modes

In our scheme we employ a single vibrational mode [cf.
Eq. (24)] assuming that other modes can safely be neglected.
Here we demonstrate that if other modes play non-negligible
roles, which may be the case in a realistic situation, our
scheme still produces a robust CPHASE gate. To be more
concise, in the following we consider a system of two ions and
correspondingly two vibrational modes. The generalization for
more ions follows immediately.

To account for the second vibrational mode we use the
following Hamiltonian [27]:

H =
2∑

k,n=1

2gkn sin μtσx,k[a†
ne

i(ωnt−ζ−
k ) + ane

−i(ωnt−ζ−
k )],

(32)
which describes the interaction of the ion pair with a bichro-
matic laser field with frequencies ωb,r = ω0 ± μ. Without loss
of generality and for ease of notation we have assumed that
ζ+
k = 0. The laser is tuned close to the sideband resonance for

the COM mode so that for the detuning we have μ = ω1 − 


with 
 � ω1. Here the indices k and n number the ions and the
modes, respectively. Mode n has frequency ωn and is described
by the operators an and a

†
n.

The propagator U is obtained using the Magnus expansion
[25] and is given by (up to a global phase)

U =
2∏

n=1

ei(βna
†−β

†
nan)eiK12σxσx , (33)

where

βn = −μ − eiωnt (μ cos μt − iωn sin μt)

μ2 − ω2
n

2∑
k=1

2igknσ
x
k e−iζk

(34)
describes the displacements and

K12 =
2∑

n=1

4g1ng2n

μ2 − ω2
n

(
μ

μ − ωn

sin(μ − ωn)t

− μ

μ + ωn

sin(μ + ωn)t + ωn

2μ
sin 2μt − ωnt

)
(35)

FIG. 3. (Color online) Relative error ε = 2K
(2)
12 /� in the rotation

angle [cf. Eq. (36)] vs the detuning 
, shown with a black line. The
red curve is an approximation given by Eq. (37).

describes the spin-spin coupling [27]. Below we set gk1 =
−g12 = g22 = g accounting for the normal mode transfor-
mation matrix [28]. As in the single mode case, a second
bichromatic pulse with ζ−

k shifted with the phase of π cancels
the displacements, resulting in the propagator,

U = e2i(K (1)
12 +K

(2)
12 )σxσx . (36)

K
(n)
12 is the contribution from mode n and K12 = K

(1)
12 + K

(2)
12 .

Note that for |
| � ω1 − ω2 the second mode can be
neglected and this propagator reduces to the propagator from
Eq. (27); then we have 2K

(1)
12 = θ for 
 = 2g

√
π/θ , t = π



,

and K
(2)
12 = 0. When |
| is varied between 0 and ω1 − ω2, K

(1)
12

changes very weakly since the radial modes are closely spaced.
The second mode can lead to under- or overrotation [cf.

Eqs. (27) and (36)], and potential errors in the rotation angle,
represented by 2K

(2)
12 , can be significant for large 
 (small gate

time). The variation in the relative error ε = 2K
(2)
12 /� with 


is shown in Fig. 3 with a black line for typical experimental
parameters ω1/2π = 4 MHz and ω2/2π = 3.6 MHz [27].
Note that this variation can be well suppressed by our
composite gate sequences as discussed above.

We can estimate the relative error ε due to the second mode
for particular 
 using the formula,

ε ≈ 2ω2


(ω1 − 
)2 − ω2
2

, (37)

which is a good approximation to 2K
(2)
12 /� and is shown with

a red curve. For detunings |
| reaching 0.1(ω1 − ω2) we find
that ε is around 0.1. Note that even with such an error we
can obtain ultrahigh fidelity using, for example, B1(�) from
Table I.

V. CONCLUSION

We have derived highly accurate broadband and passband
CPHASE gates, which correct rotation angle errors of relative
and absolute natures. For relative errors, the number of the
ingredient gates and the duration of our sequences grow
linearly with the leading error order as opposed to most
proposals where very rapid growth is observed. Absolute errors
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can be eliminated completely with a sequence of just two
gates. We describe an implementation with ion traps using
bichromatic laser fields where our sequences compensate the
influence of the extraneous vibrational modes and errors both
in the pulse area and in the detuning.
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APPENDIX A: USEFUL IDENTITIES

From the identity e−iφσz/2σxe
iφσz/2 = σφ , we obtain

Fi(φ/2)U(θ )Fi(−φ/2) = Uφ(θ ), (A1)

where Fi(φ) = e−iφσz,i and i denotes a certain qubit. For i = 2
we have

Uφ(θ ) = eiθσxσφ = cos θ1 + i sin θσxσφ. (A2)

The following identities are useful for calculating the error
terms:

2l∏
k=1

σ (φk) = exp

(
i

2l∑
k=1

(−1)kφkσz

)
, (A3a)

2l+1∏
k=1

σ (φk) = σ

(
−

2l+1∑
k=1

(−1)kφk

)
, (A3b)

where l = 0,1,2, . . .. For l = 1 we have

σ (φ1)σ (φ2) = exp[−i(φ1 − φ2)σz], (A4a)

and

σ (φ1)σ (φ2)σ (φ3) = σ (φ1 − φ2 + φ3). (A4b)

APPENDIX B: CALCULATION OF PROPAGATOR
DERIVATIVES

To calculate the derivatives of the propagator in Eq. (8) one
can use the following property:

∂l

∂εl
U (N)(θ )

∣∣∣∣
ε=0

=
∑

l1+···+lN =l

(
l

l1, . . . ,lN

) N∏
s=1

∂

∂εls
Uφs

(θs)

∣∣∣∣∣∣
ε=0

. (B1)

Here the sum extends over all N -tuples (l1, . . . ,lN ) of non-
negative integers with

∑N
s=1 ls = l.

For the derivatives we substitute

∂l

∂εl
Uφ[θ (1 + ε)]

∣∣∣∣
ε=0

= θ lUφ

(
θ + lπ

2

)
. (B2)

APPENDIX C: NUMERICAL PROCEDURE

First, we construct a generic composite sequence of the
form as shown in Eq. (3) or (5). We calculate the derivatives
from Eq. (8) or (16) using the identities (B1) and (B2). Then
we proceed with a numerical minimization of the quantity,

D =
n∑

l=1

∣∣∣∣ ∂l

∂εl
[U (N)(�) − U (�)]

∣∣∣∣
ε=0

∣∣∣∣, (C1)

where we use Newton’s gradient-based method to determine
the variables φk yielding D = 0. To minimize the number
of the CPHASE gates Uφk

(θk), we start from a small number
N , which is gradually increased, until we reach a solution
to D = 0. Because we use a local optimization algorithm, we
iteratively pick the initial values of the variables using a Monte
Carlo scheme.
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