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Entanglement generation by dissipation in or beyond dark resonances

Xiangming Hu*

Department of Physics, Central China Normal University, Wuhan 430079, China
(Received 28 April 2015; published 12 August 2015)

For dark resonance, one of the most remarkable coherent effects in light-matter interactions, it has commonly
been expected that squeezing and entanglement, if existent, are formed via coherent evolutions against dissipation.
Contrary to the expectations, here we show that dissipation generates entanglement between two cavity fields
and between two dark-state-based spins. The latter correspond also to the atomic ground-state spin squeezing
in a limited parameter domain. The dissipation effects, which are hidden deeply behind the coherence-induced
nonlinearities, are extracted by probing into the dressed atom-photon interactions, and are widely applicable for
the coherently prepared systems in dark resonances or beyond.
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I. INTRODUCTION

Two optical fields of equal intensities interact resonantly
with three-level �-type atoms and pump the atoms into a
superposition of the ground states, which is a state with maxi-
mal coherence and is called “dark state” [1–5]. This coherent
phenomenon is usually referred to as “dark resonance.” The
dark resonance does not mean absence of interactions but
existence of resonant transitions back and forth between the
two ground states. Once the atoms enter the dark state, they
are no longer excited and so become transparent to the applied
fields. It is the dark resonance that underlies those well-known
coherent effects such as coherent population trapping (CPT)
[1] and electromagnetically induced transparency [2–5]. One
of the greatest interests is in giant nonlinearities close to
the dark resonance. It has been expected that the coherence-
induced nonlinearities are used for the creation of squeezed and
entangled states [6–10]. It could have been deduced that the
coherent evolutions against dissipation are responsible for the
squeezed and entangled states, if existent. As a rule, however,
coherent evolutions are obtainable only when applied fields
are tuned far off resonance with the atoms [11–13]. Otherwise,
the desired states are easily destroyed since they are extremely
fragile to environmental dissipation or decoherence. Now, a
gap still exists between the dark resonance and the squeezing
and entanglement.

In this article, we show that dissipation generates squeez-
ing and entanglement in dark resonances or beyond. The
dissipation occurs for the Bogoliubov modes of the two
cavity fields, and also for the Bogoliubov modes of the
dark-state-based spins. Due to the dissipation, squeezing and
entanglement are obtainable both for two optical fields and for
two dark-state-based spins. The dissipation mechanisms are
essentially different from the coherent evolution mechanisms.
Squeezing and entanglement by dissipation do not require
the preparation of a system in a particular input state. In
principle, the squeezing and entanglement last for an arbitrary
long time, which is expected to play an important role in
quantum information processing. Due to these features, the
present dark-resonance system is inherently stable against
weak random perturbations, with the dissipative dynamics
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making the squeezing and entanglement stable. The dissipative
effects of the atoms and the fields on each other in the near-
resonant or highly excited systems are deeply hidden behind
the coherence-induced nonlinearities, which are in divergent
series of indefinitely high orders if we expand the dynamical
equation in terms of the laser intensities. Our strategy is to
merge the high-order nonlinearities into the dressed atomic
states and then to reveal the dissipation effects.

The dissipation effects were recently explored to prepare the
squeezed and entangled states in different schemes. Pielawa
et al. [14] showed that Rabi interactions with two beams of
two-level atoms can act as dissipative processes and make
two optical fields into their squeezed and entangled states.
Parkins et al. [15] and Torre et al. [16] showed that Raman
interactions mediated by two vacuum cavity fields and classical
fields can used as a dissipative reservoir and drive two atomic
ensembles into their squeezed and entangled states. Krauter
et al. [17] reported on the first experimental demonstration of
purely dissipative generation of spin entanglement. Different
from the above work, the purpose of this article is to show
the dissipation mechanism that hides behind coherent effects.
It has been aware that coherence determines the trapping of
the atoms in the superposition of the ground or metastable
states, the transparency to the optical fields, and the high-order
nonlinearities. However, even for the dark-resonance system,
it is not necessarily the coherent evolution but it can be the
intrinsic dissipation that leads to squeezing and entanglement
of the optical fields and/or of the atomic spins. The dissipation
hides deeply behind the coherence-induced nonlinearities.
In particular, this was demonstrated by the experiment of
Sautenkov et al. [6], who found that the switching between
the photon-photon correlation and anticorrelation at specific
two-photon detuning in the � system. This switching be-
havior has not been explained yet in a definite mechanism.
We show that the dissipation behind coherence provides a
principal explanation of it. The dissipation mechanism can be
separated out from the dressed atom-photon interactions. Such
mechanisms are most widely existent in coherently prepared
systems and practicably applicable for quantum squeezing and
entanglement.

The remaining part of this article is organized as follows.
In Sec. II, we give the master equation of the atom-field
interacting system and present the coherence-induced non-
linearities close to dark resonance. In Sec. III, we merge the
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nonlinearities into the dressed atoms and present the dressed
atom-photon interactions. In Sec. IV, we show the dissipation
mechanisms for entanglement between the two cavity fields
and between the two dark-state-based spins. The first two
subsections present physical analyses for the Bogoliubov mode
dissipations for the cavity fields and for the dark-state-based
spins, respectively, under respective adiabatic conditions, the
third subsection presents a numerical verification and gives
the quantum correlations for general nonadiabatic case, and
the fourth subsection shows the ground-state spin squeezing.
Finally, discussion and conclusion are given in Sec. V.

II. MASTER EQUATION AND COHERENCE-INDUCED
NONLINEARITIES CLOSE TO DARK RESONANCE

An ensemble of N atoms is placed at the intersection of
two optical cavities, which are pumped by two external fields,
as shown in Fig. 1(a). The two cavity fields are respectively
coupled to the two electronic dipole-allowed transitions of the
three-level atoms from the ground or metastable states |1,2〉
to the excited state |3〉 [Fig. 1(b)]. The master equation for the
density operator ρ of the atom-field system is written in the
dipole approximation and in an appropriate rotating frame as
[18]

ρ̇ = − i

�
[H,ρ] + Lρ, (1)

where the system Hamiltonian reads as

H =
∑
l=1,2

�[−�lσll + �cl
a
†
l al

+ gl(alσ3l + σl3a
†
l ) + i(εla

†
l − ε∗

l al)], (2)

where σkl = ∑N
μ=1 σ

μ

kl (σμ

kl = |kμ〉〈lμ|; k,l = 1,2,3) are the
collective projection operators for k = l and the collective
spin-flip operators for k �= l, al and a

†
l (l = 1,2) are annihila-

tion and creation operators for the cavity fields, �l = ω3l − ωl

and �cl
= ωcl

− ωl are, respectively, the detunings of atomic
transition frequencies ω3l and cavity resonance frequencies
ωcl

with respect to the driving field frequencies ωl , gl are the
strengths for the atom-cavity field couplings, and εl are the
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FIG. 1. (Color online) The atom-field interacting system. (a) Two
cavity fields a1,2, pumped by two external fields ε1,2, are coupled to
an ensemble of atoms at the intersection of the two cavities. (b) The
atomic transitions in � configuration.

classical driving field amplitudes. The damping term in the
master equation takes the form

Lρ =
2∑

l=1

⎛
⎝κlLal

ρ + γl

2

N∑
μ=1

Lσ
μ

l3
ρ

⎞
⎠, (3)

where Lal
ρ and Lσ

μ

l3
ρ describe the cavity and atomic decays

with rates 2κl and γl , respectively, and LOρ = 2OρO† −
O†Oρ − ρO†O, O = al,σl3.

It is well known that the nonlinearities that the fields and
the atoms experience depend remarkably on the atom-field
detunings �1,2 and the pump-cavity detunings �c1,2 . When
we choose the same atom-field detunings �1 = �2, CPT
occurs and the atoms decouple from the fields. This does not
mean absence of the atom-field interactions. Instead, resonant
transitions exist between the two ground states and exert their
effects on the quantum correlations at the sidebands [19].
For arbitrary detunings, the nonlinearities are generally so
complicated that they conceal the interaction mechanisms for
the quantum correlations. Fortunately, there is a symmetric
case for the atom-field detunings �2 = −�1 = �, in which
we can derive explicit expressions for the dressed atomic
states. Particularly, these dressed sublevels are equally spaced
and most suitable for studying the interaction mechanisms
for the quantum correlations. On the other hand, the dressed
interactions are most effective when the cavity fields are
resonant with the corresponding dressed transitions. This is
guaranteed by choosing the symmetric pump-cavity detunings
�c1 = −�c2 = �c.

For the above reasons, we focus on the choice of the above
symmetrical detunings. At the same time, for the sake of clarity
we also assume the other parameters to be equal: g1,2 = g,
γ1,2 = γ , and κ1,2 = κ . Then, the high-order nonlinearities can
be seen from the field equations after adiabatic elimination of
the atomic variables. The input intensity Iin = |gεl |2

κ2 (l = 1,2)

and the cavity field intensity I = |g〈al〉|2
γ 2 satisfy the equation

Iin = I [(1 + A)2 + (�̄c + D)2], (4)

where A and D represent, respectively, the absorption and the
dispersion due to the atoms and depend strongly on the cavity
field intensity I through the relations

A = C�̄2

�̄4 + �̄2 + �̄2I + I 2
,

(5)

D = C�̄(�̄2 − I )

�̄4 + �̄2 + �̄2I + I 2
.

Here, we have defined C = g2N

2κγ
, �̄ = �

γ
, and �̄c = �c

κ
. Once

� = 0, we have A = D = 0, which means that the atoms are
transparent to the fields. For � �= 0, expansion of Eqs. (4) and
(5) gives a divergent series of infinitely high orders when the
intensity is of considerable value. Bistability or multistability is
obtainable due to the nonlinearities. The stability is determined
by the negative eigenvalues of the drift matrix of the linearized
atom-field system. It is invalid to treat the nonlinearities in a
perturbative way. Close to the dark resonance (|�| � |g〈al〉|),
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the nonlinearity to absorption ratio is much larger than unity

|D|
A

≈ I

|�̄| ≫ 1. (6)

It has usually been expected that the coherence-induced
nonlinearities lead to the nonclassical correlations. Dantan
et al. [7] predicted the existence of the ground-state spin
squeezing and the light entanglement in the CPT system. They
interpreted the mechanism as the Faraday rotations [20,21]
plus the cavity feedback. In principle, this interpretation
means the coherent evolutions against dissipation. In contrast,
however, we will show that Bogoliubov mode dissipation,
which hides behind the nonlinearities or the nonlinear Faraday
effect, is a direct mechanism to generate the squeezing and
entanglement of the cavity fields and the atomic spins. For this
purpose, we merge the nonlinearities into the dressed atomic
states and analyze the dressed atom-photon interactions as
follows.

III. DRESSED ATOM-PHOTON INTERACTIONS

It is convenient to make a unitary transformation [22]
via U1 = 
l=1,2 exp(λla

†
l − λ∗

l al) with λl = εl

κ+i�cl

, and to
linearize the cavity fields al = 〈al〉 + δal (l = 1,2). After
doing so, we decompose the Hamiltonian into three parts:

H = Ha + Hc + HI , (7)

where the first part

Ha = ��(σ22 − σ11) +
∑
l=1,2

�(lσ3l + ∗
l σl3) (8)

represents the interaction of the atoms with the classical pump
fields εl and the semiclassical part of the cavity fields 〈al〉 (with
total Rabi frequency l = λl + g〈al〉), the second part

Hc = ��c(δa†
1δa1 − δa

†
2δa2) (9)

denotes the free part for the fluctuating parts of the cavity
fields δal , and the last part HI describes the interaction of the
atoms with the field fluctuations δal and will be given later. By
transferring the phase of l to the atomic operators, we have
real values for l = |l|. We assume that the Rabi frequencies
are equal and much stronger than the atomic and cavity decay
rates l =  � (γ,κ). After diagonalization of Ha we obtain
the dressed states that are expressed in terms of the bare atomic
states as [23]

|+〉 = 1 + sin θ

2
|1〉 + 1 − sin θ

2
|2〉 + cos θ√

2
|3〉,

|0〉 = −cos θ√
2

|1〉 + cos θ√
2

|2〉 + sin θ |3〉, (10)

|−〉 = 1 − sin θ

2
|1〉 + 1 + sin θ

2
|2〉 − cos θ√

2
|3〉,

where we have defined cos θ =
√

2

̄
, sin θ = �

̄
, and ̄ =√

�2 + 22. These dressed states |0〉 and |±〉 have their
eigenvalues E0,± = 0, ± �̄, which are equally spaced. The

free Hamiltonian Ha for the dressed atoms now becomes

Ha = �̄(σ++ − σ−−). (11)

Transforming the relaxation terms of the atoms to the dressed
states representation, we obtain the steady-state populations
Nl = 〈σll〉 (l = 0,±) as

N0 = N cos4 θ

1 + 3 sin4 θ
,

(12)

N+ = N− = 1

2
(N − N0).

It should be noted that when � = 0 (sin θ = 0, cos θ = 1 ), the
atoms are trapped in the dark state |0〉 = 1√

2
(−|1〉 + |2〉), i.e.,

N0 = N and N± = 0. For the CPT case, one has the maximal
coherence 〈σ12〉 = −N

2 but no entanglement.
Here, we focus on the case of nonvanishing detunings � �=

0. In terms of the dressed atomic states, Ha and Hc constitute
the total free Hamiltonian for the dressed atom-field system

H0 = Ha + Hc

= �̄(σ++ − σ−−) + ��c(a†
1a1 − a

†
2a2), (13)

where we have dropped the symbol δ and do so from now on
(i.e., by al we mean δal). We tune the cavity fields resonant with
the Rabi sidebands �c = ̄. The case of �c = −̄ is treated in
the same way. The dressed states are well separated from each
other since ̄ � (γ1,2,κ1,2). We can make a further unitary
transformation with U2 = exp (−iH0t/�) and a rotating-wave
approximation. After doing so, we obtain the interaction
Hamiltonian

HI = 1
2 �g[−a1 cos2 θ + a

†
2 sin θ (1 − sin θ )]σ+0

+ 1
2 �g[−a2 cos2 θ + a

†
1 sin θ (1 − sin θ )]σ−0

+ H.c., (14)

where we have used H.c. for Hermitian conjugate of the terms
before it. It is easy to see from the Hamiltonian that each field is
in resonant interaction with two cascaded dressed transitions,
as shown in Fig. 2(a). The entire system is now looked upon
as four interacting parts, two of which are the cavity fields
a1,2 and the other two are the dark-state-based spins σ0±. It
is necessary to describe the atomic modes before we analyze
the effects of the interactions. They have their commutation
relations [σ0±,σ±0] = σ00 − σ±±. We keep remembering that
a1,2 represent the fluctuations of the cavity fields. We are
looking for the conditions under which the fluctuations of the
collective modes of a1,2 are absorbed [24]. Such conditions are
existent in some regions, as will be shown in the following.
In this case, we have vanishing spin modes at steady state
〈σ0±〉 = 0, and then δσ0± = σ0±. Thus, by σ0± we denote the
fluctuations of the dark-state-based spins. The z quadratures of
the two spin modes have the mean values N0 − N±. Using the
Hamiltonian (14), we can analyze the collective dissipations
of the cavity fields and the dark-state-based spins.

The dressed atom-photon interactions described in Hamil-
tonian (14) are both in the parametric amplifier types and
in the beam-splitter types. These interactions are alternately
cascaded in a closed quadrilateral contour, as shown in
Fig. 2(b). It is known that the parametric amplifier interactions
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FIG. 2. (Color online) Dressed atom-photon interactions. (a)
Resonant transitions between adjacent triplets of the dressed atoms.
Each field is resonant with two different dressed transitions. (b) An
alternately cascaded quadrilateral loop of beam-splitter interactions
(for state transfer) and parameter amplifier interactions (for squeezed
states) of the cavity fields a1,2 with the dark-state-based spins σ0±.

are responsible for squeezing and entanglement while the
beam-splitter interactions lead to the quantum state transfer.
Two limiting cases clearly show that the dissipative inter-
actions are responsible for the light entanglement and the
spin entanglement. When γ � κ , the adiabatically evolving
atomic spin σ0− (σ0+) entangles itself with a1 (a2), and
transfers immediately its state to a2 (a1). As a consequence,
the cavity modes a1,2 are prepared in the two-mode squeezed
and entangled state. In the same way, when the conditions
are changed to κ � γ , the adiabatically evolving cavity fields
drive dark-state-based spins into the two-mode squeezed and
entangled states. The above mechanisms are more clearly
described as follows by using the Bogoliubov modes [14,15].

IV. ENTANGLEMENT GENERATION BY DISSIPATION

Here, we first present a physical analysis of the effects
of dressed atom-photon interactions on quantum correlations,
and then give the numerical results.

A. Bogoliubov field dissipation by atoms under adiabatic
condition (γ � κ)

If the dark-state-based spins undergo adiabatic evolutions
(γ � κ), that will lead to dissipation common for the two cav-
ity fields. To describe the collective dissipation, we introduce
the Bogoliubov modes for the cavity fields [25]

b1 = a1 cosh r + a
†
2 sinh r,

(15)
b2 = a2 cosh r + a

†
1 sinh r,

where we have defined the squeezing parameter r =
arctan ( − sin θ

1+sin θ
) for �


> −

√
2
3 and r = arctan ( 1+sin θ

− sin θ
) for �


<

−
√

2
3 . The interaction Hamiltonian (14) is rewritten as

HI =
∑
l=1,2

�gb(blσ
+
l + σlb

†
l ), (16)

b1σσ1

b2σ2

|+

|−

|0

(i) 

a1π1

a2π2

|π1

|π2

|0

(i) 

+

+

+

+

b2

σ2

b1

(ii)

Dissipation

Dissipation

σ1

a2

a1

(ii)

π 1

π 2

Dissipation

Dissipation

(a)

(b) 

FIG. 3. (Color online) Diagrammatic sketch for the entangle-
ment generation by dissipation. (a) The upper half part shows
(i) the dressed transitions for absorption of the Bogoliubov fields
b1,2, and (ii) the dissipations of Bogoliubov field modes b1,2 by
the dark-state-based spin σ1,2, respectively. (b) The lower half part
represents (i) the interactions of the Bogoliubov spins π1,2 with the
individual fields a1,2 and (ii) the dissipations of the Bogoliubov spin
modes π1,2 by the cavity fields a1,2, respectively.

where we have defined the dark-state-based spins σ1,2 =
σ0± and the corresponding coupling strength gb =
1
2g(−1 + sin θ )

√
1 + 2 sin θ for �


> −

√
2
3 , and σ1,2 = σ±0

and gb = 1
2g(1 − sin θ )

√−1 − 2 sin θ for �


< −
√

2
3 .

Pictorially, we show in Fig. 3(a-i) the interactions of
the Bogoliubov fields b1,2 with the dressed atoms, and in
Fig. 3(a-ii) the dissipations of the Bogoliubov fields b1,2

by the spins σ1,2 . The dressed atom-field interactions are
strongly dependent on the atom-field normalized detuning �


.

When �


> −
√

2
3 , annihilation (creation) of the new modes

b1,2 is accompanied with the dressed transitions from |0〉
to |±〉 (from |±〉 to |0〉), respectively. On the contrary,

when �


< −
√

2
3 , annihilation (creation) of the new modes

b1,2 is caused by the dressed transitions from |±〉 to |0〉
(from |0〉 to |±〉), respectively. Whether the field fluctuations
are suppressed or amplified depends on the dressed state
population differences N0 − N±. The populations follow the
relations N+ = N−, N0 > N± for |�


| < 1, and N0 < N± for

|�


| > 1 . It is seen from the above that the absorption of the
b1,2 modes is dominant over the amplification in the regions of
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�


= (−
√

2
3 ,0), (0,1), (−∞,−1), while the amplification dom-

inates over the absorption in the ranges of �


= (−1,−
√

2
3 ),

(1,∞). The squeezing and entanglement of the fields are
possible only when the absorption (dissipation) of the Bo-
goliubov modes dominates. The domains for squeezing and

entanglement are confined to �


= (−
√

2
3 ,0), (0,1), (−∞,−1).

As the dark-state-based spins σ1,2 evolve adiabatically (� �
κ) into the thermal vacuum states, the Bogoliubov modes b1,2

will dissipate into the thermal vacuum states. This corresponds
to the squeezing and entanglement of the original cavity fields
a1,2. On the other hand, once we tune to the other regions
�


= (−1,−
√

2
3 ), (1,∞), the fluctuations are amplified and the

squeezing and entanglement do not occur. Even in the presence
of the large nonlinearities in these regions, the squeezing
and entanglement are possible only when the dissipation
is dominant over amplification. This perhaps explains why
the photon-photon correlation and anticorrelation switching
occurs at a specific two-photon detuning, as demonstrated in
a recent experiment [6].

B. Bogoliubov spin dissipation by the fields under adiabatic
condition (κ � γ )

Similarly, if the cavity fields evolve adiabatically (κ � γ ),
they will induce dissipation common for the two dark-state-
based spins. To show this clearly, we use the Bogoliubov modes
for the spins

π1 = σ1 cosh r + σ+
2 sinh r,

(17)
π2 = σ2 cosh r + σ+

1 sinh r,

and rewrite the interaction Hamiltonian (14) in the form

HI =
∑
l=1,2

�gb(alπ
+
l + πla

†
l ). (18)

Figure 3(b-i) shows the interactions of the Bogoliubov spins
π1,2 with the individual fields a1,2, and Fig. 3(b-ii) pictorially
describes the dissipations of the Bogoliubov spins π1,2 by
the individual fields a1,2. Here, by |π1,2〉 we have denoted
the excited states for the Bogoliubov spins π1,2. For the
same ranges of the atom-field detunings as above, �


=

(−
√

2
3 ,0),(0,1),(−∞,−1), the absorption (amplification) of

the modes a1,2 is accompanied with the excitation (deexcita-
tion) of the new atomic modes π1,2, respectively. As the cavity
fields a1,2 evolve adiabatically (κ � γ ) into the vacuum state,
the Bogoliubov spin modes π1,2 will experience dissipations
and arrive at the thermal vacuum state. This corresponds
to the squeezing and entanglement of the individual spin
modes σ1,2 [26]. On the other hand, the spin squeezing and

entanglement are not existent for �


= (−1,−
√

2
3 ), (1,∞)

because of the amplification of the fluctuations. It is clear that
the Bogoliubov mode dissipation determines the squeezing
and entanglement of the dark-state-based spins even for the
large nonlinearities.

C. Field and spin dissipation by each other
for nonadiabatic case

So far, we have presented a physical analysis of the
Bogoliubov mode dissipations for the cavity fields a1,2 and
for the dark-state-based spins σ1,2 under respective adia-
batic conditions. In what follows, we present a numerical
verification for a general case. We exemplify the case for
�


> −
√

2
3 , and the case for �


< −

√
2
3 is treated in a similar

way. Following the standard technique [27], working in the
dressed states representation, and defining the c-number and
operator correspondences α1,2 ↔ a1,2 and β1,2 ↔ iσ0±√

N0−N±
we

derive the Langevin equations as follows:

α̇1 = −κα1 + ḡbβ1 cosh r − ḡbβ
†
2 sinh r + Fα1 ,

α̇2 = −κα2 + ḡbβ2 cosh r − ḡbβ
†
1 sinh r + Fα2 ,

(19)
β̇1 = −�β1 − γcβ

†
2 − ḡbα1 cosh r − ḡbα

†
2 sinh r + Fβ1 ,

β̇2 = −�β2 − γcβ
†
1 − ḡbα2 cosh r − ḡbα

†
1 sinh r + Fβ2 ,

where we have defined ḡb = gb

√
N0 − N+, � =

γ (1 − 1
2 cos4 θ ), and γc = γ

8 sin2 (2θ ). The F ’s
are noise terms with zero means and correlations
〈FO(t)FO ′(t ′)〉 = DOO ′δ(t − t ′), where the nonzero
diffusion coefficients are 2D

β
†
l βl

= 2�
 (
 = N+
N0−N+

)
and Dαkβl

= D
α
†
kβ

†
l
= −ḡb sinh r (k,l = 1,2; k �= l). It is

seen clearly from Eq. (19) that the cosh r terms describe
the beam-splitter interactions, while the sinh r terms
correspond to the parametric amplifier interactions. In fact,
the nonvanishing diffusion coefficients Dαkβl

and D
α
†
kβ

†
l

are
the very consequence of the parametric amplifier interactions.
The γc terms are due to the coherence transfer between the
degenerate transitions of the dressed atoms. The stability
analysis shows that the coupled system is always stable, and
the solutions at steady state are 〈α1,2〉 = 〈β1,2〉 = 0.

In order to describe the quantum correlations of the cavity
fields and the dark-state-based spins, we write the field and
atomic fluctuation variables δα1,2 = α1,2 and δβ1,2 = β1,2 in
terms of the position and moment quadratures as δαl =

1√
2
(δxαl

+ iδpαl
) and δβl = 1√

2
(δxβl

+ iδpβl
). For the col-

lective quadratures XO± = xO1 ± xO2 and PO± = pO1 ± pO2

(O = α1,2,β1,2), squeezing occurs when the variance of any
quadrature is less than unity [18,25,28]:

〈(δZ)2〉 < 1, (20)

where Z = Xα± , Pα± , Xβ± , Pβ± . The cavity fields are entangled
with each other if [29]

〈(δXα± )2〉 + 〈(δPα∓ )2〉 < 2, (21)

and the dark-state-based spins are entangled with each other if
[30]

〈(δXβ± )2〉 + 〈(δPβ∓ )2〉 < 2. (22)

In Eqs. (21) and (22), the X variance with plus (minus)
sign subscript matches the P variance with minus (plus) sign
subscript. Which inequality is met depends on the parameter
regime. It should be noted that although the squeezing or
entanglement conditions for the fields have the same forms as
for the dark-state-based spins, the essential difference exists
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between them. This difference lies in the presence of the
expectation values N0 − N± of the dark-state-based spins in
the redefined spin variables β1,2. The origin is the difference
of the commutation relations of the spins from those of the
bosonic fields [28,30] .

The steady-state variances are calculated from Eq. (19) for
� < 0:

〈(δXα+ )2〉 = 〈(δPα− )2〉

= 1 − �1(1 − e−2r ) − 2�
e−2r

(κ + �1)
(
1 + C−1

1

) (23)

and

〈(δXβ− )2〉 = 〈(δPβ+ )2〉 (24)

= 1 − κ(1 − e−2r ) − �

(
1 + κ+�2

C2�2

)

(κ + �2)
(
1 + C−1

2

) ,

where we have defined the cooperativity parameters C1,2 =
g2

b(N0 − N+)/κ�1,2 and two different decay rates �1,2 =
� ± γc. The unity next to the equality signs represents the
standard quantum limit, the (1 − e−2r ) terms are due to the
dressed atom-photon interactions, and the 
 terms come from
the atomic spontaneous emission. For � > 0, we substitute
〈(δXα− )2〉 = 〈(δPα+ )2〉 for the first equality in Eq. (23),
and 〈(δXβ+ )2〉 = 〈(δPβ− )2〉 for the first equality in Eq. (24).
Since we have equal variances 〈(δXα± )2〉 = 〈(δPα∓ )2〉 and
〈(δXβ±)2〉 = 〈(δPβ∓ )2〉, the conditions for the squeezing are
the same as for the entanglement. This is due to the symmetry
between the two dressed interaction pathways |0〉 b1←→ |+〉
and |0〉 b2←→ |−〉. That is not necessarily the case for the other
atom-field interacting systems. Generally, Xα+ and Pα− (Xα−
and Pα+ ) are not necessarily squeezed simultaneously, and nor
are Xβ− and Pβ+ (Xβ+ and Pβ− ). Once either quantity of any
pair has enough variance above the standard quantum limit 1
to counteract the squeezing effect of the other, entanglement is
no longer existent even though the squeezing is still existent.

Plotted in Figs. 4 and 5, respectively, are the variances
〈(δXα± )2〉 (= 〈(δPα∓ )2〉) and 〈(δXβ± )2〉 (= 〈(δPβ∓ )2〉) below
the standard quantum limit for different decay rates. Our
numerical results are presented as follows.

(1) Almost ideal two-mode squeezing is achievable for the
cavity fields or for the dark-state-based spins under respective
adiabatic conditions. From Figs. 4 and 5, we see that the

variances for the cavity fields at �


= −
√

2
3 ≈ −0.82 tend to

vanish,

〈(δXα+ )2〉 = 〈(δPα− )2〉 → 0, (25)

when γ � κ , and so do the variances for the dark-state-based
spins,

〈(δXβ− )2〉 = 〈(δPβ+ )2〉 → 0, (26)

when κ � γ . This clearly shows that almost ideal squeezed
states and Einstein-Podolsky-Rosen entangled states [31] are
obtained for cavity fields and for the dark-state-based spins.
Generally, in order to have good squeezing we need the three
conditions: relatively large squeezing parameter (r � 1), not
too deep saturation (
 � 1 ), and remarkably large cooperativ-
ity parameters (C1,2 � 1). Because of the strong dependence
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0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.4 0.0 0.4 0.8

Δ/Ω

α±(δX   )2

(δX   )2α-

(δX   )2α+

(δX   )2α+

κ=γ
κ=0.1γ
κ=0.01γ

FIG. 4. (Color online) Two-mode field variances 〈(δXα± )2〉 ver-
sus the normalized detuning �


for g

√
N = 20γ and κ = γ (dotted

line), 0.1γ (dashed line), 0.01γ (solid line).

of the quantities (r,
,C1,2) on the common parameter �


, the

above conditions are well satisfied for −
√

2
3 � �


� 0 . In

this regime, strong dissipation occurs for the Bogoliubov field
or spin modes with a large value of squeezing parameter r .
In addition, the cooperativity parameters C1,2 depend on the
atomic and cavity decay rates. For the other given parameters,
a decrease in γ or κ corresponds to an increase in the
cooperativity parameter C1,2. As C1,2 becomes large, the
engineered dissipation is enhanced, and so are the squeezing
and entanglement.

(2) Squeezing and entanglement are confined within the

ranges of �


= (−
√

2
3 ,0), (0,1), (−∞,−1). Figures 4 and

5 show an agreement with the above qualitative analysis.
Squeezing and entanglement happen within the predicted
ranges. We note N+ > N0 in the range of �


= (−∞,−1). In
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=
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FIG. 5. (Color online) Two-mode spin variances 〈(δXβ± )2〉 ver-
sus the normalized detuning �


for g

√
N = 20κ and γ = κ (dotted

line), 0.1κ (dashed line), 0.01κ (solid line).
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this case, the system is far beyond the dark state. However,
squeezing and entanglement are still achievable. This is
because the Bogoliubov mode dissipation dominates over the
individual mode dissipation due to the vacuum environment.

Beyond the above regions, i.e., (−1, −
√

2
3 ) and (1,∞), no

squeezing occurs even for large nonlinearity or the large
ratio of the nonlinearity to absorption. This is because the
fluctuations are amplified in these regions. This also explains
why the field correlation changes from positive to negative
values at a special two-photon detuning, as demonstrated in
Ref. [6]. It is clear that the coherence-induced nonlinearities
are not sufficient to describe the squeezing and entanglement
generation. In addition, we should note that if we tune
the cavity fields such �c = −̄ that the dependence of
the quantum correlations on the atom-field detuning �


is

symmetrically exchanged with respect to � = 0. The best

squeezing will happen at �


→
√

2
3 .

(3) The best squeezing approaches 50% for the nonadi-
abatic conditions (κ ∼ γ ) and large cooperativity parameter
C1,2 � 1. For C1,2 � 1, e−2r � 1, and 
 � 1, we easily
obtain from Eqs. (21) and (22)

〈(δXα+ )2〉 = 〈(δPα− )2〉 ≈ κ

κ + �1
,

(27)

〈(δXβ− )2〉 = 〈(δPβ+ )2〉 ≈ �2

κ + �2
,

which approach 1
2 for κ ≈ �1,2 ≈ γ . This shows that the best

squeezing of 50% is obtainable. Note that what is shown in
Figs. 4 and 5 (for κ = γ ) does not reach 50%. This is because
the conditions C1,2 � 1 are not well satisfied for a large value
of the squeezing parameter r . If we increase the number
of atoms N and/or decrease both of the cavity and atomic
decay rates κ and γ (κ ∼ γ ), the cooperativity parameters
C1,2 are increased and then the squeezing is enhanced. We
also should note that the present case is in sharp contrast to
the quantum memory case [32,33], in which the nonadiabatic
dissipation can enhance quantum noise reduction. In that case,
the coherent evolutions were employed against the dissipation
due to the environment. Naturally, an incomplete dissipation
of the atoms introduces less noise into the coupled fields.
However, the present case differs. While the two cavity
fields (the two dark-state-based spins) are considered as two
system modes, the two dark-state-based spins (the two cavity
fields) serve as two engineered reservoir components. The
reservoir exerts its dissipative effects on the Bogoliubov
modes of the system. Each system mode entangles with one
different reservoir component, and the other system mode
receives the state of the entangled reservoir component. The
state transfer processes are fast because of large dissipation
rates C1κ or C2�2. When the engineered reservoir arrives
at their steady states much sooner than the system, the
state of one reservoir component entangled with one system
mode is completely transferred to the other system mode.
Therefore, the faster the dissipation induced by the engineered
reservoir, the better the squeezing and entanglement of the
system. This is the essential difference between the coherent
evolution mechanisms and the Bogoliubov mode dissipation
mechanisms.

D. Ground-state spin squeezing

We should point out that the two-mode squeezing of the
dark-state-based spins also corresponds to the ground-state
spin squeezing in some regions. In order to show this, let us
define the ground- or metastable-state spin quadratures

Jx = σ12 + σ21,

Jy = −i(σ12 − σ21), (28)

Jz = σ11 − σ22,

which follow the commutation relation [Jy,Jz] = 2iJx . At
steady state, we have the mean values of the spin compo-
nents 〈Jx〉 = −(N0 − N+) cos2 θ and 〈Jy〉 = 〈Jz〉 = 0. The
spin squeezing occurs when either of the two inequalities
〈(δJy,z)2〉 < |〈Jx〉| is satisfied. In terms of the dark-state-based
spins we write the ground-state spin as

Jz = sin θ (σ++ − σ−−)

−cos θ√
2

(σ+0 + σ0− + σ0+ + σ−0). (29)

The ground-state spin variance is obtained for �


= (−
√

2
3 ,0)

as

〈(δJz)
2〉 = 〈(δXβ+ )2〉|〈Jx〉| + 2N+ sin2 θ, (30)

where the first term is the contribution of the interaction
determined correlation, and the second term is due to the
atomic spontaneous emission. We plot in Fig. 6 the variance
〈(δJz)2〉/|〈Jx〉| for different atomic decay rates. It is shown
that the ground-state spin squeezing is confined to the ranges

of detuning (−
√

2
3 ,0) for �c = ̄ and to (0,

√
2
3 ) for �c = −̄,

where the atoms populate dominantly in the dark state N0 >

N+. The best squeezing appears roughly when �


→ ∓0.6 for
�c = ±̄, respectively.

-0.8 -0.4
0.0
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FIG. 6. (Color online) Ground-state spin variance 〈(δJz)
2〉/|〈Jx〉|

versus the normalized detuning �


for g

√
N = 20κ and γ = κ (dotted

line), 0.1κ (dashed line), 0.01κ (solid line). The � < 0 part is for
�c = ̄ while the � > 0 part is for �c = −̄.
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V. DISCUSSION AND CONCLUSION

Finally, it is interesting to recall and compare with the role
of the dissipation in the formation of CPT. The atomic part in
the damping term (3) for the resonant and symmetrical case is
rewritten in terms of the dressed states as

Latomρ = γ

2

N∑
μ=1

(
Lσ

μ

0+ρ + Lσ
μ

0−ρ + Lσ
μ
p
ρ
)

+ γ

4

N∑
μ=1

(
Lσ

μ
−+ρ + Lσ

μ
+−ρ

)
, (31)

where σ
μ
p = σ

μ
++ − σ

μ
−−. Lσ0±ρ represent the decay |±〉 �

|0〉, Lσ
μ
p
ρ describes the dephasing behavior between the |+〉

and |−〉 states, and Lσ
μ
−+ρ and Lσ

μ
+− stand for the bidirectional

population transfer between the |+〉 and |−〉 states [18]. We
note that there are no terms like Lσ±0ρ in Eq. (31). That means
absence of the |0〉 � |±〉 channels away from the dark state.
For this reason, the atoms, once pumped into the dark state
|0〉, are no longer excited. Essentially, the atoms are deposited
in the dark state with the help of the incoherent channels
|±〉 � |0〉 [3]. In other words, the atomic coherence between
the ground states is established via dissipation processes. Off
resonance, there remain such dissipation processes. Moreover,

there appear the dissipation channels |0〉 � |±〉. Since the dark
state of the atoms is established via the dissipation, it is easy to
understand that the quantum coherence properties of the atoms
and the fields are determined by the dissipation processes.

In conclusion, by probing into the dressed atom-photon
interactions, we have separated out the Bogoliubov mode dissi-
pation mechanisms from the coherence-induced nonlinearities
of infinitely high orders in the laser intensities. It has been
shown that the Bogoliubov mode dissipation by the atoms
leads to two-mode squeezing and entanglement of the cavity
fields, and the Bogoliubov mode dissipation by the cavity
fields results in two-mode squeezing and entanglement of
the dark-state-based spins. The latter case corresponds to the
ground-state squeezing in a limited range of the normalized
detuning. The squeezing and entanglement by dissipation are
robust to the environmental fluctuations and are generally
utilizable for coherently prepared systems.
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