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Algebraic metrology: Nonoptimal but pretty good states and bounds
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We investigate quantum metrology using a Lie algebraic approach for a class of Hamiltonians, including local
and nearest-neighbor interaction Hamiltonians. Using this Lie algebraic formulation, we identify and construct
highly symmetric states that admit Heisenberg scaling in precision for phase estimation in the absence of noise.
For the nearest-neighbor Hamiltonian we also perform a numerical scaling analysis of the performance of pretty
good states and derive upper bounds on the quantum Fisher information.
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I. INTRODUCTION

The ultraprecise determination of an optical phase [1], the
strength of a local magnetic field [2], atomic frequency [3],
spectroscopy [4], and clock synchronization [5] are just
a few of the many celebrated achievements of quantum
metrology [6]. If N systems, deployed to probe the dynamics
of a physical process, are prepared in a particular entangled
state the precision in the estimation of the relevant parameter
scales is achieved at the Heisenberg limit O(N−1). Contradis-
tinctively, if the N probes are prepared in a product state then
the standard limit, O(N−1/2), in precision is achieved [7].

In quantum metrological scenarios considered most often
the dynamics, in the absence of decoherence, describing the
evolution of the N probes is represented by the unitary operator
U (θ ) = eiθH where θ is the parameter, or a set of parameters,
to be estimated [8] and H is the Hamiltonian governing
the evolution. Note that O(N−1) is the maximum achievable
limit in precision—the Heisenberg limit—in cases where the
spectral radius of the operator describing the unitary dynamics
of the N probes scales linearly with N , e.g., local and k-local
Hamiltonians. In what follows we consider cases where this
latter requirement holds.

In most applications of quantum metrology to date the
Hamiltonian is assumed to be local, i.e., H =∑N

i=1 h(i), where
h(i) acts on probe i. Metrological scenarios making use of
one-dimensional (1D) cluster state Hamiltonians have also
been studied [9]. For local Hamiltonians employing qubits as
probes the optimal state is the GHZ state [10] in the case of
atomic frequency spectroscopy [3], and the so-called NOON
state in the case of optical interferometry [1]. The latter is a
linear superposition of N photons in an optical interferometer,
with the N photons being either in the upper or lower arm of
the interferometer.

However, it is known that in the presence of local dephasing
noise, where the noise operators commute with the Hamilto-
nian, GHZ and NOON states perform no better than separable
states [11]. Indeed, in this scenario quantum metrology offers
only a constant factor improvement, in the asymptotic limit,
over the standard limit [12–14]. The state that achieves this
improvement, in the limit of a large number of probes, is the
so-called spin-squeezed state [15].

In this work we are mainly concerned with quantum
metrology beyond the local Hamiltonian condition and the
construction of states that perform favorably both in the

presence and absence of noise. Specifically, we use Lie
algebraic techniques to accomplish the following.

(1) Identify a class of Hamiltonians which belong to the
Lie algebra of the special unitary group of two dimensions,
su(2).

(2) For all such Hamiltonians, we provide a recipe for
constructing states that achieve Heisenberg scaling in precision
for noiseless metrology [16].

(3) Determine the performance of these states for metrol-
ogy in the presence of a particular nearest-neighbor Hamil-
tonian in the presence of local dephasing noise. Specifically,
we numerically compute the actual QFI for moderate values
of N and find that, for metrology using nearest-neighbor
Hamiltonians under local dephasing noise, states constructed
via our procedure are suboptimal but outperform product
states [17].

For local Hamiltonians we find that states constructed via
our method yield the same asymptotic bound as the GHZ, or
spin-squeezed state. However, for finite N our states yield a
different pre-factor compared to the bound of [12], obtained
for the product and GHZ states.

Whereas there are other methods for identifying states that
yield Heisenberg scaling precision, such as GHZ-type states
(see Sec. II A), our method for constructing alternative states
for parameter estimation is of interest for the following two
reasons. On the one hand, the optimal states for parameter
estimation are rather difficult to obtain in certain experimental
setups, and on the other hand these optimal states are known
to be extremely susceptible to noise, so much so that their
precision scaling quickly deteriorates. The pretty good states
we introduce in this work, as well as their construction, may be
experimentally more accessible than the optimal states. More
importantly these states, as we show, may perform better in the
presence of noise than the optimal states of noiseless metrology
thereby paving the way towards practical quantum metrology
in the presence of noise and imperfections.

The outline of this paper is as follows. In Sec. II we
review the mathematical background of both classical and
quantum metrology (Secs. II A and II B, respectively), and
Lie algebras (Sec. II C). In Sec. III we formulate noiseless
quantum metrology in a Lie algebraic framework. Using this
framework we construct states that exhibit Heisenberg scaling
(Sec. III A), and determine an entire class of Hamiltonians
for which our construction applies (Sec. III B). We illustrate
our construction using a local Hamiltonian, as well as two
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nonlocal Hamiltonians. In Sec. V we study the performance
of our constructed states for noiseless metrology in the
presence of local dephasing noise, and in particular we provide
both analytic (Sec. V A) and numerical results (Sec. V B)
of the performance of these states for local, as well as
nearest-neighbor Hamiltonians. We summarize and conclude
in Sec. VI.

II. PRELIMINARIES

In this section we provide a brief background of both
noiseless (Sec. II A) and noisy quantum metrology (Sec. II B).
We outline key results in both these scenarios and introduce a
characterization of pretty good states for noiseless and noisy
metrology. For the sake of completeness we re-derive the
bound by Escher et al. [12] pertaining to the best possible
precision achievable by a quantum strategy in the presence of
noise (Sec. II B). In Sec. II C we review the theory of su(2) Lie
algebras.

A. Classical and quantum parameter estimation

In a metrological scenario the goal is to estimate a
parameter, θ ∈ R, of a population described by random vari-
able X, whose elements, x ∈ R, correspond to measurement
outcomes with respective probability distribution, p(x|θ ),
given a random finite sample of n data drawn from this
population. Using a suitable function, θ̂ : Xn → R (known
as an estimator) an estimate of θ is given by θ̂ ({xi}ni=1).

Two desired properties of any good estimator is unbiased-
ness and minimum variance. An estimator is unbiased if its
expected value 〈θ̂〉, with respect to the probability distribution
p(x|θ ), is equal to θ . Furthermore, an estimator is said to
have minimum variance, δθ2 ≡ 〈( θ̂

d〈θ̂〉/dθ
− θ )2〉, if the variance

of any other estimator is greater or equal to δθ2 [18]. A
lower bound on the variance of any estimator is given by
the well-known Cramér-Rao inequality [19],

δθ2 � 1

ν�(θ )
, (1)

where �(θ ) is the Fisher information given by [20]

�(θ ) =
∫

1

p(x|θ )

(
∂ ln p(x|θ )

∂θ

)2

dx, (2)

and ν is the number of repetitions of the experiment. It is
known that the lower bound in Eq. (1) is saturated in the limit
ν → ∞ by the maximum likelihood estimator [21].

The Fisher information quantifies the amount of informa-
tion carried by the random variable X about θ ∈ R. In quantum
mechanics the parameter θ is imprinted in a state ρ(θ ) ∈ B(H),
where B(H) denotes the set of bounded operators on the
Hilbert space H of a quantum system after undergoing some
evolution, as will be explained shortly, and the probability
distribution is given by p(x|θ ) = Tr(Mxρ(θ )M†

x), where the
set of measurement operators {Mx : B(H) → B(H)} satis-
fies
∑

x M
†
xMx = I . Consequently, the Fisher information

is different for different choices of measurement operators.
Denoting by �Mx

(θ ) the Fisher information, Eq. (2), for the
measurement given by {Mx}, the quantum Fisher information

(QFI) is defined as

F(ρ(θ )) := max
{Mx }

�Mx
(θ ), (3)

and quantifies the amount of information about θ one learns
when using the most informative measurement. Consequently,
the quantum Cramér-Rao inequality is given by [22]

δθ2 � 1

νF(ρ(θ ))
. (4)

It has been shown in [23] that the QFI is given by

F(ρ(θ )) = Tr[Lθρ(θ )Lθ ], (5)

with

Lθ = 2
∑
α,β

〈α|ρ̇(θ )|β〉
λα + λβ

|α〉〈β|, (6)

the symmetric logarithmic derivative, where ρ̇(θ ) =
∂ρ(θ )/∂θ , λα the eigenvalues of ρ(θ ), |α〉 the corresponding
eigenvectors, and the sum in Eq. (6) is over all α,β satisfying
λα + λβ �= 0. The most informative measurement is the one
whose elements are the projectors on the eigenspaces of the
symmetric logarithmic derivative.

Two important properties of the QFI are its additivity,
F(ρ(θ ))⊗N ) = NF(ρ(θ )), and convexity, F(

∑
i piρi(θ )) �∑

i piF(ρi(θ )) [24].
The parameter θ is imprinted in the state, ρ ∈ B(H), of

a quantum system by a completely positive, trace-preserving
(CPT) map, Eθ : B(H) → B(H), ρ(θ ) = Eθ (ρ). For different
values of θ , ρ(θ ) traces a curve in the space of bounded
operators. Determining the value of θ is equivalent to dis-
tinguishing between ρ(θ ) and ρ(θ + δθ ). For the case where
ρ is pure, i.e., ρ = |ψ〉〈ψ |, and in the absence of noise,
i.e., Eθ (ρ) = eiθH ρe−iθH , with H the generator of shifts in
θ (the Hamiltonian), F(ρ(θ )) = 4(�H )2, where (�H )2 ≡
〈H 2〉 − 〈H 〉2 is the variance of H [24].

It follows that in order to obtain the best estimate of θ in
the absence of noise one must use an initial pure state |ψ〉 that
has the largest variance with respect to H . It can be shown that
for any Hamiltonian H , acting on N quantum systems (�H )2

is optimized by states of the form [6,25],

|ψ〉 =
√

1

2
(|
min〉 + eiφ|
max〉), (7)

with φ ∈ (0,2π ] arbitrary, and where |
min(max)〉 is the
eigenstate of H corresponding to the minimum (maximum)
eigenvalue. If the Hamiltonian is local the state in Eq. (7)
corresponds to GHZ (NOON)-like states in frequency spec-
troscopy and optical interferometry, respectively, and achieves
a precision,

δθ2 � 1

νN2
, (8)

known as the Heisenberg limit [7]. This is a quadratic
improvement over the best strategy employing separable states
of N probes achieved by |φPS〉 = |+〉⊗N [6]. We refer to the
states of Eq. (7) as optimal states for noiseless metrology [26].

From the preceding discussion it is clear that any state for
which the variance of the Hamiltonian is O(N2), i.e., achieves
Heisenberg scaling up to a constant factor independent of N , is
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FIG. 1. (Color online) Probability distributions of the coeffi-
cients |ck|2 of the arbitrary state in Eq. (9) over a Hamiltonian with
equally gapped spectrum σ (H ). The horizontal axis represents the
continuous limit of the discrete spectrum of H . The solid (red)
distribution gives the optimal variance (�H )2 = N 2, whereas the
large-dashed (orange) distribution gives (�H )2 = N . The medium
(blue) and small (green) dashed distributions have variance (�H )2 =
O(N 2) and correspond to pretty good states.

desirable for noiseless parameter estimation. Identifying such
states may be important in cases where the ultimate resources
are unavailable, or highly costly to prepare. For example, let
H =∑k λk|λk〉〈λk| be the spectral decomposition of H with
spectral radius, �(H ) = O(N ), and consider an arbitrary state,

|ψ〉 =
∑

k

ck|λk〉, (9)

where ck ∈ C. The variance of H with respect to the state of
Eq. (9) can be trivially computed to be

(�H )2 =
∑

k

|ck|2λ2
k −
(∑

k

|ck|2λk

)2

. (10)

Viewing the state as a classical probability distribution over
the eigenvalues of H , we say a state is pretty good for
noiseless metrology if its probability distribution, weighted
by the eigenvalues of H , has a variance of O(N2). For the
remainder of this work we mainly restrict to Hamiltonians with
a homogeneously gapped spectrum, i.e., where the ordered
eigenvalues λk of H satisfy |λk+1 − λk| = c ∈ R, ∀k. A few
examples of pretty good states for such Hamiltonians are
shown in Fig. 1.

B. Bounds for noisy metrology

As the QFI is convex it follows that in noiseless metrology
no increase in precision is gained by preparing the N probes
in a mixed state. However, in the presence of decoherence the
evolution of the N probes is described by the CPT map Eθ ,
whose Kraus decomposition contains more than a single Kraus
operator [27]. Consequently, the state Eθ (ρ) ∈ B(H), where ρ

is the initial state of the N probes, will in general be a mixed
state. As Eq. (6) requires both the eigenvalues and eigenvectors
of Eθ (ρ), computing the QFI for large N becomes intractable.
Due to this fact, much of the theoretical developments in noisy

quantum metrology have focused on deriving upper bounds
for the QFI.

A promising route for placing an upper bound on the QFI
utilizes channel extension [13,28] and channel-purification-
based techniques [12,29] which we re-derive here for the sake
of completeness. One can write the state of the N probes after
the noisy evolution as

ρ(θ ) = trE
[
Ũ

(SE)
θ [|ψS〉〈ψS | ⊗ (|0〉〈0|)E]Ũ (SE)†

θ

]
≡ trE[|�(θ )(SE)〉〈�(θ )(SE)|], (11)

where the subscripts S (E) refer to the system (environment),
respectively, Ũ

(SE)
θ is a unitary acting on both the system

and the environment, and |�(θ )(SE)〉 ≡ Ũ
(SE)
θ (|ψS〉 ⊗ |0E〉)

is a purification of ρ(θ ). Due to the partial trace over the
environment in Eq. (11), the purification, |�(θ )(SE)〉, of ρ(θ )
is unique up to an isometry V

(E)
θ , acting on the E. As one can

gain more information about θ by measuring both S and E the
QFI of |�(θ )(SE)〉 provides an upper bound on the QFI of ρ(θ ),

F(ρ(θ )) � F(|�(θ )(SE)〉〈�(θ )(SE)|)
≡ CQ(|ψS〉〈ψS |,Km(θ )), (12)

where Km(θ ) ≡E 〈m|Ũ (SE)
θ |0〉E are the Kraus operators

describing the action of the CPT map Eθ .
The upper bound in Eq. (12) involves determining the QFI

of a pure state which, using Eq. (6), can be easily determined
to be [23]

F(|�(θ )(SE)〉〈�(θ )(SE)|) = 4(〈�(θ )′(SE)|�(θ )′(SE)〉
− |〈�(θ )′(SE)|�(θ )(SE)〉|2), (13)

where |�(θ )′(SE)〉 ≡ d|�(θ)(SE)〉
dθ

. In terms of the Kraus operators
Km(θ ), Eq. (12) reads [12]

CQ(|ψS〉〈ψS |,Km(θ )) = 4(〈ψS |A1|ψS〉 − (〈ψS |A2|ψS〉)2),

(14)

where

A1 =
∑
m

dKm(θ )†

dθ

dKm(θ )

dθ
,

(15)

A2 = i
∑
m

dKm(θ )†

dθ
Km(θ ).

That the upper bound of Eq. (12) is attainable
can be seen by noting that the Bures fidelity,

F (ρ(θ ),ρ(θ + δθ ))2 ≡ (tr
√

ρ(θ )1/2ρ(θ + δθ )ρ(θ )1/2)
2
,

between two adjacent density operators ρ(θ ), ρ(θ + δθ ) can
be expanded to second order in δθ as

F (ρ(θ ),ρ(θ + δθ ))2 = 1 − δθ2

4
F(ρ(θ )) + O(δθ3). (16)

In addition, Uhlmann’s theorem states that
F (ρ(θ ),ρ(θ + δθ ))2 = max{|�(θ + δθ)(SE)〉} |〈�(θ )(SE)|�(θ +
δθ )(SE)〉|2, where |�(θ )(SE)〉 is a purification of ρ(θ ),
|�(θ + δθ )(SE)〉 a purification of ρ(θ + δθ ), and the
maximization is over all purifications of ρ(θ + δθ ) [30].
Performing a Taylor expansion of |〈�(θ )(SE)|�(θ + δθ )(SE)〉|2
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up to second order in δθ yields

|〈�(θ )(SE)|�(θ + δθ )(SE)〉|2
= 1 − δθ2(〈�(θ )′(SE)|�(θ )′(SE)〉

− |〈�(θ )′(SE)|�(θ )(SE)〉|2) + O(δθ3). (17)

Hence, up to second order in δθ , the maximization over
|�(θ + δθ )(SE)〉 required to compute the fidelity amounts
to the minimization of the second term in Eq. (17) over all
|�(θ + δθ )(SE)〉. From Eq. (17) and Eq. (16) it follows that

F(ρ(θ )) = 4 min
{|�(θ)(SE)〉}

(〈�(θ )′(SE)|�(θ )′(SE)〉

− |〈�(θ )′(SE)|�(θ )(SE)〉|2)

= min
{Km(θ)}

CQ(|ψS〉〈ψS |,Km(θ )). (18)

Hence, the bound of Eq. (12) is attained by minimizing over
all possible Kraus decompositions of the CPT map Eθ , which
is equivalent to optimizing over the isometry V

(E)
θ on the

environment in Eq. (11).
The above technique has been applied to quantum metrol-

ogy in the presence of local, uncorrelated noise, such as
dephasing, loss, and noise of full rank [12,13,31]. In the case of
local unitary evolution and local uncorrelated dephasing noise,
where the dephasing operators commute with the Hamiltonian,
it was shown that the ultimate precision achievable using a
GHZ or NOON state is given by

δθ2 � 1

νη2NN2
, (19)

where 0 � η < 1 denotes the strength of dephasing with η = 1
meaning no dephasing at all [13]. Whereas for small N GHZ
and NOON states still exhibit precision inversely proportional
to N2, for large N precision in phase estimation quickly
decreases below the standard limit.

The usefulness of optimal states completely disappears if
one wishes to estimate frequency rather than phase. In this
case θ = ωt and ω is the parameter to be estimated, and the
resources are the number of probes used and the total running
time for the experiment T = νt , where t is the time for a single
experimental run and ν are the number of repetitions. Here,
one not only needs to optimize over the measurements but also
over the time t that these measurements need to be performed.
The variance in estimating frequency using a GHZ state was
shown to be [11]

δω2 � 2γ e

NT
, (20)

with γ the dephasing parameter. Exactly the same precision is
achieved if the N probes are prepared in a separable state.

However, for a particular measurement strategy commonly
employed in Ramsey spectroscopy it was shown that [11]

δω2 � 2γ

NT
, (21)

i.e., only a factor of e−1 improvement over the standard limit
can be achieved. Furthermore, the bound in Eq. (21) was shown
to be asymptotically achievable by a spin-squeezed state with
a particular squeezing parameter that decreases with N [15].
Note that this result provides a lower bound on the QFI as

the measurement is fixed. Using the purification techniques
discussed above Escher et al. [12] derived an upper bound,
equal to Eq. (21), on the QFI proving that this is indeed the
ultimate achievable precision. It is worth noting that recent
work proves that the use of quantum error-correcting codes
can help suppress the decoherence effects and thus restore the
Heisenberg limit in some noisy metrological scenarios [32].

C. The su(2) Lie algebra

In this subsection we briefly review the su(2) Lie algebra.
This algebra is the familiar algebra for angular momentum
in quantum mechanics. Thus, we simply outline the key
properties that will be useful for our purposes and refer the
reader to [33] for further details.

Let V be an M-dimensional vector space over the field
F equipped with an operation [·,·] : V × V → V , the Lie
bracket or commutator, and let {Si}Mi=1 ∈ V be a set of linearly
independent vectors. Then {Si}Mi=1 form a Lie algebra if the
following hold.

(1) [Sk,Sl] =∑m cklmSm, where cklm ∈ F are the structure
constants of the algebra.

(2) [Sk,Sk] = 0 for all Sk ∈ {Si}Mi=1.
(3) For any Sk,Sl,Sm ∈ {Si}Mi=1, [Sk,[Sl,Sm]] +

[Sl,[Sm,Sk]] + [Sm,[Sk,Sl]] = 0.
The su(2) Lie algebra is a three-dimensional vector space

whose basis elements, {Si}3
i=1, are the generators of the

algebra. The su(2) structure constants are given by cklm =
icεklm, where c ∈ R and εklm is the Levi-Civita symbol. For
c = 0 one obtains a trivial, three-dimensional, Abelian algebra.
For c = 2 one possible set of generators for su(2) are the Pauli
matrices {σx, σy, σz}.

For su(2) the operator J2 =∑i S
2
i , known as the Casimir

invariant of su(2), obeys [ J2,A] = 0, ∀A ∈ su(2). If the
elements {Si}3

i=1 represent Hermitian operators, acting on the
Hilbert space of a quantum system, then a convenient basis
for the Hilbert space is {|j,m,β〉}, where j and m label the
eigenvalues of J2 and Sz (which in our notation is denoted by
S3), respectively, and β is a multiplicity label indicating the
degeneracy of a given pair of labels (j,m). Then,

J2|j,m,β〉 = c2 j (j + 1)|j,m,β〉,
(22)

S3|j,m,β〉 = c m|j,m,β〉,
where j is either an integer or half-odd integer, and m can take
any of the 2j + 1 values in the interval −j � m � j . For a
given j one obtains all values of m by starting from m = ±j

and repeatedly applying the ladder operators,

J
(3)
± := S1 ± iS2√

2
, (23)

respectively. Here, and in the following, the notation J
(k)
±

denotes the ladder operators that raise (lower) the eigenstates
of Sk and are defined as J

(k)
± ≡ (Sl±Sm)√

2
, where the indices

(klm) are cyclic permutations of (123). We remark that the
set {Sk,J

(k)
± } constitute another set of generators of su(2) with

[Sk,J
(k)
± ] = ±cJ

(k)
± , [J (k)

+ ,J
(k)
− ] = Sk. (24)

Note that J2 can also be written as J2 = S2
k + {J (k)

+ ,J
(k)
− },

where {A,B} = AB + BA is the anticommutator.
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We now show how noiseless parameter estimation, where
the Hamiltonian is one of the generators of su(2), can be
re-phrased in purely Lie algebraic terms, and derive the pretty
good states for noiseless quantum metrology. In Sec. V we
investigate the performance of these pretty good states in the
presence of noise.

III. LIE ALGEBRAIC FORMULATION OF NOISELESS
QUANTUM METROLOGY

In this section we formulate noiseless quantum metrology
using the su(2) Lie algebra, and provide a recipe for construct-
ing pretty good states (Sec. III A). In addition, we derive a class
of Hamiltonians for which our construction can be applied
(Sec. III B). Specifically, we consider a unitary evolution given
by eiθH , and restrict ourselves to homogeneously gapped
Hamiltonians.

As shown in Sec. II A the quantum Cramér-Rao bound in
this case is given by δθ2 � 1

4ν(�H )2 . The states that optimize the
variance are linear superpositions of states corresponding to
the maximum and minimum eigenvalues of H . However, such
states may be difficult to generate. Expressing the variance
of H as a function of the generators of su(2), and using
algebraic techniques, we construct states whose variance also
scales quadratically with N . Such states could be easier to
prepare than the optimal states yet would still yield Heisenberg
scaling in precision. For ease of exposition we simply state
the important results in this section, and defer all proofs to
Appendixes A and B.

A. Pretty good states for noiseless metrology

Let us assume that H ≡ S1 ∈ su(2), and that there exist two
more operators, S2, S3, such that {S1, S2, S3} are generators for
su(2). In Sec. III B we will establish necessary conditions for
{H, S2, S3} to be the generators of su(2) for Hamiltonians with
homogeneously gapped spectra. Many of the Hamiltonians
considered in the context of quantum metrology thus far are
homogeneously gapped and thus satisfy these conditions (see
Sec. IV).

The following theorem shows how to construct pretty good
states for noiseless metrology. Starting from the ground state
of one of the generators different from H (say S3), one simply
applies the raising operator J

(3)
+ [see Eq. (23)] a sufficient

number of times.
Theorem 1. Let {S1, S2, S3} be a set of generators for su(2).

Assume, without loss of generality, that H ≡ S1, and let |ψmin〉
be an eigenstate of S3 corresponding to the smallest eigenvalue.
Then the variance of H with respect to the state

|ψ〉 =
√

1

N J
(3)k
+ |ψmin〉, (25)

where N denotes the normalization constant, scales as half the
spectral radius of J2, �( J2), if k = 
 2jmax+1

2 �, where jmax is
related to the maximum eigenvalue of J2 via Eq. (22), and 
·�
is the ceiling function.

The proof of Theorem 1 can be found in Appendix A.
In order to achieve Heisenberg scaling we require that

�( J2) = O(N2). As �( J2) � �(S2
1 ), it is sufficient that

�(S1) ∝ N . Recall that we consider here, as in all other

realistic quantum metrology scenarios, that H is the sum
of Nk-local Hamiltonians, i.e., H =∑N−k

i=1 h(i), with h(i) a
k-nearest neighbor Hamiltonian where k is independent of N .
In this case � = O(N ), and the QFI scales as O(N2).

For almost all Hamiltonians considered so far in quantum
metrology, this is indeed the case.

We now show that for the case where H ≡ 1/2 Sz =
1/2
∑

i σ
(i)
z , the states of Theorem 1 are the well-known

Dicke states in the x basis [34]. Indeed, the set of operators
{Sx,Sy,Sz}, with Sy defined similar to Sz, Sx , are the generators
of the su(2) Lie algebra. It is easy to show that J (x)

+ = 1√
2
(Sy +

iSz), and that |ψmin〉 of Sx is given by |−〉⊗N . Applying J
(x)
+ ,

�N
2 � times to the state |−〉⊗N gives

|ψ〉 =
√√√√ 1(

N

� N
2 �
) ∑

π∈SN

|−π(1)〉|+π(2)〉|−π(3)〉 . . . |+π(N)〉

≡
∣∣∣∣N,

⌊
N

2

⌋〉
x

, (26)

where �·� denotes the floor function, π ∈ SN denotes an
element of the permutation group of N objects, and the sum
in Eq. (26) runs over all permutations. The state in Eq. (26)
is the Dicke state of N systems, �N

2 � of which are in the +1
eigenstate of σx and the rest are in the −1 eigenstate. The
variance of this state is given by N/2(N/2+1)

2 for N even and
(N/2(N/2+1)−1/2)

2 if N is odd. Hence, the state |N,�N
2 �〉

x
is a

pretty good state.
Note that if one were to choose a different set of generators,

say W2 = αS2 + βS3,W3 = −βS2 + αS3, then the pretty
good states obtained with W2,W3 differ from those obtained
from S2, S3 only in the relative phases of the coefficients
of the state, expanded in the eigenbasis of H . This is due
to the fact that the generators of su(2) form a basis for a
three-dimensional vector space, with the basis {H,W2,W3}
obtained from {H,S2, S3} by an appropriate rotation about the
vector corresponding to the generator H .

As we discuss at the end of the next section, our procedure
for constructing pretty good states also applies for more
general Hamiltonians.

B. Constructing su(2) from the Hamiltonian

We now determine necessary conditions for a homoge-
neously gapped Hamiltonian to be an element of su(2) and
provide a prescription for how, given the Hamiltonian, one
can construct the two remaining generators of su(2). At the
end of this section we discuss how a similar construction can
be applied to block diagonal Hamiltonians, where each of the
blocks is homogeneously gapped.

Let S1 be our Hamiltonian which, using the spectral
decomposition, can be written as

S1 =
n∑

k=1

dk∑
i=1

λk|k,i〉〈k,i|

≡
n∑

k=1

λk|k〉〈k| ⊗ 1dk
, (27)
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where λk are the eigenvalues, |k,i〉 the corresponding eigenvec-
tors, and {|k,i〉}dk

i=1 form an orthonormal basis of a subspace
whose dimension dk corresponds to the multiplicity of the
kth eigenvalue. Without loss of generality we may order the
eigenvalues of S1 in decreasing order such that λk > λk+1,∀k

and shift the entire spectrum of H such that −λk = λn−k+1.
We seek two Hermitian operators, S2, S3, such that

[S2,S3] = icS1,

[S3,S1] = icS2, (28)

[S1,S2] = icS3,

where c > 0. The following lemma, whose proof can be found
in Appendix B, establishes the form the operators S2, S3 must
take.

Lemma 1. Let S1 be given as in Eq. (27) and let S2, S3 be
two Hermitian operators. If the spectrum of S1 is homoge-
neously gapped, i.e., |λk+1 − λk| = c,∀k, and the conditions
in Eq. (28) hold then

S2 =
n∑

k=1

|k + 1〉〈k| ⊗ S
(k,k+1)
2 + |k〉〈k + 1| ⊗ S

(k+1,k)
2 ,

(29)

S3 =
n∑

k=1

|k + 1〉〈k| ⊗ S
(k,k+1)
3 + |k〉〈k + 1| ⊗ S

(k+1,k)
3 ,

where S
(k,l)
2 (S(k,l)

3 ) are dl × dk matrices, and S
(k,k+1)
2 =

−iS
(k,k+1)
3 ,∀k.

It now remains to determine the form of the matrices
S

(k+1,k)
2 ,S

(k+1,k)
3 . The following theorem establishes necessary

conditions on the multiplicities dk of S1 in order for {S1,S2,S3}
to be the generators of su(2). In addition, Theorem 2 provides
one possible solution for the operators S2, S3. The proof of
Theorem 2 can be found in Appendix B.

Theorem 2. Let S1 be given by Eq. (27) with the eigenvalues
of S1 satisfying λk − λk+1 = c,∀k ∈ (1, . . . ,n). In addition,
let the operators S2, S3 be given as in Lemma 1. Necessary
conditions for Eq. (28) to hold are that dk+1 � dk for 1 � k �
� n

2 �, and dk = dn+1−k . Furthermore, one possible solution for

the matrices S
(k,k+1)
3 is given by the dk+1 × dk matrix,

S
(k,k+1)
3 =

√
c

2
diag

⎛
⎜⎜⎜⎜⎜⎝
√√√√ k∑

i=1

λi

︸ ︷︷ ︸
d1 times

,

√√√√ k∑
i=2

λi

︸ ︷︷ ︸
(d2−d1) times

, . . . ,

√√√√ k∑
i=k−1

λi

︸ ︷︷ ︸
(dk−1−dk−2) times

,
√

λk︸︷︷︸
(dk−dk−1) times

⎞
⎟⎟⎟⎟⎟⎠, (30)

whereby diag (d1,d2, . . . ,dn) denotes a not necessarily square
matrix S, whose only nonvanishing elements Si,i = di . Note
that the dimension of the matrix S(k,k+1) is indicated by the
superscript.

The proof uses the fact that [S2,S3] = i c H , and the form
of S2 and S3 given in Lemma 1 to establish a set of n equations

involving n unknown operators. In order for the system of n

equations to be solvable, it is necessary that dk+1 � dk for 1 �
k � � n

2 � and dk = dn+1−k . One valid solution for the operators

S
(k,k+1)
3 is the dk+1 × dk matrix whose main diagonal consists

of the singular values of S
(k,k+1)
3 and the rest of the elements are

zero. From the relation between S3 and S2 given in Lemma 1
a similar solution can be constructed for S2.

Homogeneously gapped Hamiltonians form only a subclass
of operators that belong to su(2). Indeed, consider the block
diagonal operator H =⊕m Hm, with

Hm =
dm∑
k=1

dkm∑
i=1

(λm − k c)|km,i〉〈km,i|

≡
dm∑
k=1

(λm − k c)|km〉〈km| ⊗ 1dkm
, (31)

where dm is the dimension of the subspace upon which Hm

acts, λm is the largest eigenvalue in the homogeneously gapped
spectrum of Hm, and |km,i〉 the corresponding eigenvectors.
The operator H is not homogeneously gapped as for any two
blocks, m,n, λm − λn can be arbitrary. However, as each block
Hm is homogeneously gapped, one can use Lemma 1 and
Theorem 2 above to construct Hermitian operators S2,m, S3,m

such that {Hm, S2,m,S3,m} are the generators of su(2) acting
on the appropriate dm-dimensional subspace. Consequently,
the operators {H, S2 =⊕m S2,m, S3 =⊕ S3,m} are the gen-
erators of su(2) on the entire Hilbert space. Constructing pretty
good states for such Hamiltonians is also possible so long as
at least one block has dimension dm ∝ N .

Homogeneously gapped Hamiltonians form an important
subclass of operators as it includes, but is not limited to,
almost all local Hamiltonians studied in parameter estimation
to date, as well as nearest-neighbor Hamiltonians that appear
in interacting one-dimensional systems, graph state Hamilto-
nians [9], as well as Hamiltonians used in topological quantum
computing [35]. The next section illustrates our method with
some examples from the above mentioned Hamiltonians, and
can be safely skipped upon first reading.

IV. EXAMPLES OF su(2) HAMILTONIANS

In the previous section we showed how one can construct
the requisite Lie algebra from a homogeneously gapped
Hamiltonian. In this section we illustrate how the construction
of Sec. III B works for four such Hamiltonians, the single body
Hamiltonian, H = 1/2

∑N
i=1 σ (i)

z (Sec. IV A), the 1D cluster
state Hamiltonian H =∑N

i=1 σ (i−1)
z σ (i)

x σ (i+1)
z (Sec. IV B),

the nearest-neighbor Hamiltonian, H =∑N−1
i=1 σ (i)

z σ (i+1)
z

(Sec. IV C), and the Hamiltonian, H =∑N−1
i=1 σ (i)

y σ (i+1)
y +

σ⊗N
x + σ⊗N

z (Sec. IV D).

A. Local Hamiltonian

One of the most frequently used Hamiltonians in quantum
metrology is the local Hamiltonian [6,7,11–13]:

H = 1

2

N∑
i=1

σ (i)
z , (32)
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whose spectrum and multiplicities are given by

σ (H ) =
{
λx = N

2
− x; dx =

(
N

x

)
, x ∈ (0, . . . ,N)

}
.

Such a Hamiltonian frequently appears in the estimation of
local field [2].

For ease of exposition we illustrate our construction for
N = 5. Using Theorem 2 the matrices S

(k,k+1)
3 are given by

S
(1,2)
3 = diag

(√
5

4

)
,

S
(2,3)
3 = diag

(√
8

4
,

√
3

4
,

√
3

4
,

√
3

4
,

√
3

4

)
,

S
(3,4)
3 = diag

(
(
3

2
,1,1,1,1,

1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
, (33)

S
(4,5)
3 = S

(2,3)†
3 ,

S
(5,6)
3 = S

(1,2)†
3 .

Recalling that S
(k,k+1)
2 = −iS

(k,k+1)
3 , generator S2 can easily

be determined from Eq. (33). Defining the ladder operators for
S2 as in Eq. (23) the eigenstate corresponding to the minimum
eigenvalue of S2 is

|ψmin〉 = −i

4
√

2
|ψ00000〉 +

√
5

32
|ψ00001〉 + i

√
5

4
|ψ00111〉

−
√

5

4
|ψ10001〉− i

√
5

32
|ψ11011〉+ 1

4
√

2
|ψ11111〉, (34)

where {|ψ j 〉} denotes the basis in which H is a diagonal
matrix with its eigenvalues ordered from highest to lowest.
For eigenvalues that are degenerate, we choose without loss of
generality one eigenstate from the corresponding eigenspace.
Raising the state in Eq. (34) twice using J

(2)
+ , yields the pretty

good state,

|ψPG〉 = i
√

5

4
|ψ00000〉 − 1

4
|ψ00001〉 + i

2
√

2
|ψ00111〉

− 1

2
√

2
|ψ10001〉 + i

4
|ψ11011〉 −

√
5

4
|ψ11111〉, (35)

whose variance is 17/4. The maximum possible variance is
25/4 and is achieved by the GHZ state 1√

2
(|ψ00000〉 + |ψ11111〉),

whereas the product state |+ + + + +〉 achieves a variance
of 5

4 .
The operators S2, S3 derived from our construction do not

look like the standard Sx, Sy operators. However, as mentioned
above, the operators S2, S3 are one possible solution. One ob-
tains Sx (Sy) from S2 (S3) by conjugating the latter with the uni-
tary that maps the eigenbasis of Sx (Sy) to that of S2 (S3). Ap-
plying the same unitary to the state in Eq. (35) one obtains the
Dicke state |5,2〉 which achieves a variance of 17/4. In the next
subsection we consider Hamiltonians based on graph states.

B. One-dimensional cluster state Hamiltonian

Consider the one-dimensional cluster state Hamiltonian,
H =∑N

i=1 σ (i−1)
z σ (i)

x σ (i+1)
z , investigated by Rosenkratz and

Jaksch [9]. This Hamiltonian can be easily obtained from the
local Hamiltonian, H =∑N

i=1 σ (i)
x , as

N∑
i=1

σ (i−1)
z σ (i)

x σ (i+1)
z = V

(
N∑

i=1

σ (i)
x

)
V †, (36)

where

V =
N∏

i=1

U
(i,i+1)
ph , (37)

with

U
(i,i+1)
ph = |0〉〈0| ⊗ I (i+1) + |1〉〈1| ⊗ σ (i+1)

z . (38)

In general, any graph state Hamiltonian HG, where G =
(V,E) is a graph whose vertices V correspond to physical
qubits and edges E between two vertices correspond to
interactions, can be written as HG =∑i K

(i), where K (i)

are stabilizers [36]. All such Hamiltonians can be obtained
from the local Hamiltonian H =∑i σ

(i)
x by conjugation

with

V =
∏

i,j∈E

U
(i,j )
ph , (39)

where U
(i,j )
ph is the two-qubit phase gate in Eq. (38) between any

two qubits i,j connected by an edge. Hence, the construction
of S2, S3 for the linear cluster state Hamiltonian proceeds by
first constructing the corresponding operators for the local
Hamiltonian, H =∑N

i=1 σ (i)
x , followed by conjugation by V .

Similarly the pretty good states for the one-dimensional cluster
state Hamiltonian are obtained by applying V on the pretty
good state constructed for H =∑N

i=1 σ (i)
x .

C. Nearest-neighbor Hamiltonian

In this subsection we show how our construction works
for the case where the dynamics of our quantum system
is given by Uθ = exp(iθH ) with H the nearest-neighbor
Hamiltonian,

Hnn =
N−1∑
i=1

σ (i)
z σ (i+1)

z . (40)

It can be shown (see Appendix C) that the spectrum of Hnn in
Eq. (40) is given by

σ (Hnn) =
{
λx = N − 1 − 2x; dx = 2

(
N − 1

x

)
,

x ∈ (0 . . . N − 1)

}
, (41)

Notice that, as the multiplicities of the Hamiltonians in
Eqs. (32) and (40) are not equal, there exist no real numbers
α, β such that αHnn + β1 = H . Nearest-neighbor Hamilto-
nians appear frequently in one-dimensional systems, and in
metrology the goal is to estimate the interaction strength
between neighboring qubits.

In order to explicitly illustrate the method of Sec. III B, let
us consider the case N = 5. Using Theorem 2 the matrices
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S
(k,k+1)
3 are given by

S
(1,2)
3 = diag(2,2),

S
(2,3)
3 = diag(

√
6,

√
6,

√
2,

√
2,

√
2,

√
2,

√
2,

√
2),

(42)
S

(3,4)
3 = S

(2,3)†
3 ,

S
(4,5)
3 = S

(1,2)†
3 ,

and the corresponding matrices S
(k+1,k)
2 are obtained via the

relation S
(k,k+1)
2 = −iS

(k,k+1)
3 .

Having obtained the operators S2, S3 we can now apply
Theorem 1 and determine states that yield Heisenberg-like
scaling for noiseless parameter estimation. Choosing Hnn =
S1, and the ladder operators,

J
(3)
± = 1√

2
(S1 ± iS2), (43)

the eigenstates of S3 with the minimum eigenvalue are a
twofold degenerate subspace spanned by

|�1〉 = 1

4
|ψ00000〉 − 1

2
|ψ00010〉 +

√
3

8
|ψ01010〉

− 1

2
|ψ10110〉 + 1

4
|ψ11110〉,

(44)

|�2〉 = 1

4
|ψ00001〉 − 1

2
|ψ00011〉 +

√
3

8
|ψ01011〉

− 1

2
|ψ10111〉 + 1

4
|ψ11111〉,

where {|ψ j 〉} denotes the basis in which Hnn is a diagonal
matrix with its eigenvalues ordered from highest to lowest. As
any state in the span of the states given in Eq. (44) can be
used as our initial state, we choose without loss of generality
|�1〉. Applying the raising operator J

(3)
+ , twice to |�1〉 yields

the normalized state,

|�1〉 =
√

3

8
|ψ00000〉 − 1

2
|ψ01011〉 +

√
3

8
|ψ11110〉. (45)

The variance of the Hamiltonian with respect to this state is
12. The maximum possible variance of Hnn, achievable with

the state |ψopt〉 =
√

1
2 (|00000〉 + |10101〉), is 16. Finally, the

product state |+ + + + +〉 achieves a variance of 4.

D. Non-local Hamiltonian

In order to illustrate our method for a Hamiltonian differ-
ent from the single-body, graph state, and nearest-neighbor
Hamiltonians, i.e., that cannot be obtained by rescaling and
shifting the spectrum of either the single-body Hamiltonian or
the nearest-neighbor Hamiltonian, consider the Hamiltonian,

Hnl =
N∑

i=1

σ (i)
y σ (i+1)

y + σ⊗N
x + σ⊗N

z . (46)

Let us consider the case N = 4, for which the eigenvalues and
corresponding multiplicities are

λx = {5, 3, 1,−1,−3,−5},
(47)

dx = {1, 1, 6, 6, 1, 1}.

We remark that the Hamiltonian in Eq. (46) has a homoge-
neously gapped spectrum only if N is even.

Applying Theorem 2 yields the following matrices for
S

(k,k+1)
3 :

S
(1,2)
3 =

√
5,

S
(2,3)
3 = diag(

√
8),

S
(3,4)
3 = diag(3,1,1,1,1,1), (48)

S
(4,5)
3 = S

(2,3)†
3 ,

S
(5,6)
3 = S

(1,2)†
3 ,

and the corresponding matrices S
(k+1,k)
2 are again obtained via

the relation S
(k,k+1)
2 = −iS

(k,k+1)
3 .

Choosing Hnl = S1, and ladder operators J
(3)
± as in Eq. (43)

the eigenstate corresponding to the lowest eigenvalue for S3

are

|ψmin〉 = − 1

4
√

2
|ψ0000〉 +

√
5

32
|ψ0001〉 −

√
5

4
|ψ0010〉

+
√

5

4
|ψ1000〉 −

√
5

32
|ψ1110〉 + 1

4
√

2
|ψ1111〉, (49)

where {|ψ j 〉} denotes the basis in which Hnl is a diagonal
matrix with its eigenvalues ordered from highest to lowest.
Applying the raising operator J

(3)
+ twice on the state in Eq. (49)

yields the normalized state,

J
(3)2
+ |�〉 = −

√
5

4
|ψ0000〉 + 1

4
|ψ0001〉 + 1

2
√

2
|ψ0010〉

− 1

2
√

2
|ψ1000〉 − 1

4
|ψ1110〉 +

√
5

4
|ψ1111〉, (50)

whose variance with respect to Hnl is 17. Note that the
optimal variance for Hnl is 25 and is achieved by the equal
superposition of the maximum and minimum eigenstates of
Hnl . Finally, the product state |+ + ++〉 achieves a variance
of 4.

V. PRETTY GOOD STATES IN THE PRESENCE OF LOCAL
DEPHASING NOISE

In this section we analyze the performance of pretty
good states for noiseless metrology in the presence of local
dephasing noise. Specifically, in Sec. V A we use the upper
bound to the QFI of [12], as discussed in Sec. II B, to
analytically bound the performance of our pretty good states.
We find that for local dephasing noise and a local Hamiltonian,
the bound scales at the SQL and, when considering a particular
local Kraus decomposition of the CPTP map describing the
dephasing noise, the bound of [12] yields the same result for
a large variety of states [37]. Moreover, for local dephasing
and a nearest-neighbor Hamiltonian we show that the bound
of [12] for the choice of local Kraus decompositions coincides
with the QFI in the absence of noise, which is always an upper
bound to the QFI. As a result, we determine the usefulness
of pretty good states for noisy metrology by numerically
evaluating their QFI. As computation of the latter becomes
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intractable with an increasing number of probe systems we
compute the optimal QFI for N � 12 in the case of local noise
and a nearest-neighbor Hamiltonian in Sec. V B.

The case of local noise and local Hamiltonian has already
been treated by us in [37]. There we numerically investigated
the performance of several state families, including product
sates, GHZ-type states, pretty good states, as well as spin-
squeezed states, for several types of local as well as correlated
noise. It was shown that for local Hamiltonians, pretty good
states outperform both product and GHZ-type states for all
local noise models for up to 70 qubits, but were far from the
corresponding optimal states.

A. Analytical bounds for metrology in the presence of local
dephasing noise

In this subsection we provide a general expression for the
bound derived in [12] (see also Sec. V A) for the case of
phase estimation in the presence of local dephasing noise. We
then compute this bound with respect to the pretty good states
constructed in Sec. III A.

Consider the phase estimation scenario where N probes are
subject to a unitary evolution U (θ ) = eiθH , with H ∈ B(H⊗N )
the total Hamiltonian acting on the N probes. In addition, the
N probes are subject to local dephasing noise described by a
CPT map E , such that E[U (θ )(·)U †(θ )] = U (θ )E(·)U †(θ ), i.e.,
the unitary evolution commutes with the noise.

Without loss of generality let us assume that the local
dephasing acts along the z axis of the Bloch sphere. Thus,
for a single, two-level system local dephasing is described by
a CPT map with Kraus operators,

S0 = √
p 1,

(51)
S1 =

√
1 − p σz,

where p = 1−e−γ t0

2 with γ denoting the strength of the noise
and t0 the time interval under which the system is subject
to noise [38]. Consequently, the CPT map describing local
dephasing of N qubits is described by the Kraus operators,

Sm =
N⊗

i=1

Smi
, (52)

where m ≡ m1 . . . mN and mi ∈ (0,1),∀i ∈ (0, . . . ,N). As the
unitary dynamics commutes with local dephasing noise, it
follows that the entire dynamical evolution can be described
by a CPT map, with Kraus operators given by

S̃m(θ ) = U (θ )Sm. (53)

As mentioned in Sec. II A, an upper bound on the QFI
is given by Eq. (12). Substituting the Kraus operators given
by Eq. (53) into Eq. (12) yields the trivial upper bound
F � 4(�H )2, which is the QFI one obtains in the absence
of uncorrelated dephasing noise. However, as any two Kraus
decompositions for the same CPT map are unitarily related,
one can write any Kraus decomposition of Eθ as

�n(θ ) =
∑

m

V (θ )nmS̃m(θ ). (54)

In order to minimize Eq. (12) one must optimize over all
unitary operators V (θ ). Such optimization can be performed

using semidefinite programming [13]. For the case of quantum
metrology in the presence of local dephasing noise, and with
the Hamiltonian given by H = 1/2Sz Escher et al. show that
for the case where N → ∞ it suffices to optimize over all
Kraus operators that are unitarily related by V (θ ) = eiαθB

where B is a Hermitian operator and α is a free parameter
that needs to be optimized.

With V (θ ) given as above, one can compute the operators
A1, A2 of Eq. (15) as well as the bound of Eq. (18).
Differentiating the Kraus operators in Eq. (54) with respect
to θ , and after some algebra, one arrives at the following
expression,

Cmin
Q (|ψS〉〈ψS |,�m(θ )) = 4

(
(�H )2 − �2

�

)
, (55)

where

� =
〈
H
∑
mn

S†
mBmnSn

〉
− 〈H 〉

〈∑
mn

S†
mBmnSn

〉
,

(56)

� =
〈∑

mn

S†
m[B2]mnSn

〉
−
〈∑

mn

S†
mBmnSn

〉2

.

Our goal is to use the bound given in Eq. (55) to gauge
the performance of pretty good states for noiseless metrology
in the presence of local dephasing noise. We first focus on
the case of pretty good states for the local Hamiltonian of
Eq. (32). As the noise acts locally on each of the N qubits,
Escher et al. restrict their search for the Kraus decomposition
that minimizes Eq. (12) to local Kraus decompositions. To that
end they assume V (θ ) = eiαθSx . For this choice of V (θ ) it can
be shown that (see Appendix D)

Cmin
Q = 4N (�H )2(1 − q2)

N (1 − q2)1 + q2(�H )2
, (57)

where q ≡ 4p(1 − p).
We now determine the usefulness of our pretty good states

from Sec. III A by computing the bound of Eq. (57). The
variance, (�H )2

PG, of H in Eq. (32) with respect to our
pretty good states of N qubits can be easily calculated to
be (�H )2

PG = N
4 (N

2 + 1), and the bound of Eq. (57) is given
by

Cmin
Q (PG) = 4N

(
N
2 + 1

)
(1 − q2)

4(1 − q2) + q2
(

N
2 + 1

) . (58)

In the limit N → ∞, CQ(PG) → 4N(1−q2)
q2 . If, however, we

compute the bound of Eq. (57) with respect to the GHZ state,
one easily finds

CQ(GHZ) = 4N2(1 − q2)

4(1 − q2) + q2N
, (59)

which, in the limit N → ∞ also tends to 4N(1−q2)
q2 .

In fact, one can infer from Eq. (57) that in the limit of large
N , CQ will always scale as the SQL, up to some pre-factor.
For the optimal product state ((�H )2 = N/4), this pre-factor
is 1 − q2 whereas for our pretty good states the pre-factor
is (1 − q2)/q2. This is the same pre-factor as for the GHZ
state, which is known to yield the same precision as product
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states for large enough N in the case of frequency estimation
(q = e−2γ t ). Hence, whereas the bound of Eq. (57) gives the
right scaling in precision for the case of phase estimation using
local Hamiltonians in the presence of local dephasing noise, it
is incapable of discriminating which states attain this bound.

We now consider the case of phase estimation using the
nearest-neighbor Hamiltonian [Eq. (40)] and local dephasing
noise. We choose the same Kraus decomposition as Escher
et al., which leads to a good bound of the QFI in the case
of local Hamiltonians. Our reason for choosing this particular
Kraus decomposition is that the noisy process we consider
shares the same characteristics in both cases, namely local
noise whose generators commute with the unitary dynamics.
In contrast, we will show that the bound obtained for the
nearest-neighbor Hamiltonian considered here coincides with
the QFI in the absence of any noise which is a trivial upper
bound to the QFI.

Using the local Kraus decomposition of the CPT map,
S̃m(θ ) gives

CQ(|ψ〉,S̃m(θ ))=4

(
(�Hnn)2− q2(〈HnnSz〉−〈Hnn〉〈Sz〉)2

N (1 − q2)1+q2(�Hnn)2

)
.

(60)

The states {|m〉, σ⊗N
x |m〉} are both eigenstates of Hnn cor-

responding to the same eigenvalue, where Sz|m〉 = m|m〉,
Szσ

⊗N
x |m〉 = −mσ⊗N

x |m〉. As α|m〉 + βσ⊗N
x |m〉 is an eigen-

state of Hnn for all α,β satisfying |α|2 + |β|2 = 1, it follows
that (�Hnn)2 is invariant for any choice of α, β, and that
for |α| = |β|, 〈HnnSz〉 = 〈Hnn〉〈Sz〉 = 0. Thus, the maximum
value of Eq. (60) is CQ = 4(�Hnn)2 and is achieved by
choosing the state 1√

2
(|ψmax〉 + eiφ|ψmin〉), where φ ∈ (0,2π ]

and |ψmax(min)〉 are eigenstates of Hnn belonging to the
doubly degenerate subspaces corresponding to the maximum
(minimum) eigenvalue, with |α| = |β| = 1/

√
2.

Moreover, as both the minimum and maximum eigenspaces
of the Hamiltonian in Eq. (40) are doubly degenerate, we can
always choose |α| = |β| = 1/

√
2 for which Eq. (60) gives the

trivial bound CQ = 4(�Hnn)2 for both the optimal and pretty
good states.

The reason why the bound of Eq. (55) is trivial for
phase estimation using a nearest-neighbor Hamiltonian in the
presence of local dephasing noise is due to the degeneracy
of the spectrum of Hnn in Eq. (40). States with a different
eigenvalue of Sz belong to the same eigenspace of Hnn, and
the numerator of the second term in Eq. (60) can be optimized
independently of (�Hnn)2. Hence, we are free to choose the
states within a given eigenspace of Hnn such that the numerator
in the second term of Eq. (60) equals zero. One may argue that
restricting the search for the optimal Kraus decomposition over
local Kraus operators in this instance is a bad one. One suitable
choice could be to choose V = eiαθS3 in Eq. (54), where S3

is the Hermitian operator obtained by our construction in
Sec. III B.

B. QFI for pretty good states under local dephasing noise

In this subsection we compare the QFI of pretty good states
using a particular nearest-neighbor Hamiltonian to that of the
product and optimal states in the presence of local dephasing

noise. We find that for a moderate number of probe systems N ,
the pretty good states constructed in Sec. IV A perform better
than product states, but are far from the true optimal states.

The performance of pretty good states for local Hamil-
tonians under various types of local, as well as correlated
noise, was numerically investigated in [37]. In the case of
local Hamiltonians, the relative improvement of the QFI of
entangled states over that of the optimal product state was
numerically computed for a variety of state families, including
the pretty good states of Eq. (26). It was shown that these
states outperform both the product and GHZ states, but perform
significantly worse than the optimal states. We note that the
best results are not achieved with k = �jmax� = �N/2 + 1�
[see Eq. (25)], but with a smaller k, which yields a slightly
reduced performance in the noiseless scenario.

We now investigate the performance of pretty good states
under a scenario where the unitary evolution is generated by
the nearest neighbor Hamiltonian Hnn, given by Eq. (40).
Furthermore, we study the performance of the pretty good
states for frequency estimation, where the QFI obtained per
unit time, F(ρλ(t))/t , has to be optimized over time leading to
an optimal interrogation time topt. Using Eqs. (5) and (6) the
QFI in the presence of local noise is given by

F(ρ(θ )) = 4
∑
i<j

(λi − λj )2

λi + λj

|〈ψi |H |ψj 〉|2, (61)

where ρ(θ ) ≡ Eθ [ρ] =∑i λi |ψi〉〈ψi |.
We shall consider the relative improvement between entan-

gled input states and the optimal product state |+〉⊗N ,

Irel(ψ) = maxt F(Eθ (|ψ〉〈ψ |))/t

maxt F(Eθ (|+〉〈+|⊗N ))/t
, (62)

where, in addition, we calculate Irel(ψ) for the optimal state in
the absence and in the presence of noise. Whereas the former
is simply the equally weighted superposition of the eigenstates
with the smallest and largest eigenvalue of H , the latter has
to be numerically determined. To reduce the computational
effort, we restrict ourselves to the totally symmetric subspace,
i.e., the subspace spanned by Jm

+ |ψmin〉,m ∈ {0, . . . ,2jmax},
where |ψmin〉 is the ground state of H and J+ is the ladder
operator that creates excitations in the spectrum of H . In case
of the nearest-neighbor Hamiltonian Hnn, given by Eq. (40)
we use the operators,

S2 = i

N−1∑
j=1

σ⊗j−1
x ⊗ σy ⊗ σz ⊗ 1⊗N−j−1,

(63)

S3 =
N−1∑
j=1

σ⊗j
x ⊗ 1⊗N−j ,

to define J+. One can easily check that the set {Hnn, S2, S3} is
a valid choice of generators of su(2). As Hnn has a doubly
degenerate ground energy spectrum, any state |ψmin(α)〉 =
cos(α/2)|0101 . . . 〉 + sin(α/2)|1010 . . . 〉, for α ∈ R, is a
ground state of Hnn. Here, we fix α = π/2, as this particular
ground state is invariant under collective spin flips σ⊗N

x , which
is a symmetry of Hnn. This choice of α turns out to numerically
maximize Irel.
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FIG. 2. (Color online) Relative improvement Imax of different
state families for the scenario nearest-neighbor Hamiltonian plus
dephasing noise. The value of k refers to the number of excitations
above the ground state space of S3 [see Eq. (25)]. Note that |+〉⊗N

is the ground state of S3. For all 0 < k � �N/2�, we find increased
performance compared to the product states. However, there exist
states that give rise to higher sensitivity; for example, the optimal
states in the absence of noise. In contrast to the scenario with
local Hamiltonian and dephasing, these states are—at least for small
N—close to the actual optimal states found by numerical algorithms.

Our numerical results are shown in Fig. 2, and the results
are very similar to those obtained for the case of local
Hamiltonians and local noise [37]. Whereas pretty good states
improve the metrological sensitivity, there is a gap to the
performance of optimal states and, in this case, also to the
optimal states in the absence of noise. Again, the optimal
excitation k is generally not �jmax� = �N/2�, but smaller (see
Fig. 2).

VI. CONCLUSION

In this work we use Lie algebraic techniques to construct
states that achieve Heisenberg scaling in precision for a class
of Hamiltonians, namely those with a homogeneously gapped
spectrum, that satisfy the su(2) Lie algebra. This is a subclass
of all Hamiltonians that satisfy the su(2) Lie algebra and
includes local, nearest-neighbor, graph state, and topological
Hamiltonians many of which play an important role in
quantum metrology. For Hamiltonians with a homogeneously
gapped spectrum we identify necessary conditions regarding
the multiplicities of H , for any Hermitian operator to be a valid
generator of the su(2) Lie algebra.

We also investigate the performance of the states con-
structed by our procedure in the presence of local dephasing
noise. Specifically, we calculate a well-known bound on the
QFI [12] and find that, for the case of a local Hamiltonian, our
states achieve the SQL. However, for a particular local Kraus
decomposition of the CPTP map describing local dephasing
noise we discover that the bound of [12] yields the same bound
for a variety of states. Moreover, in the case of nearest-neighbor
Hamiltonians the bound of [12], restricted to a particular local
Kraus decomposition, is equal to the QFI in the absence of
noise, and thus does not yield an informative bound. A tighter

bound in this case can be obtained when optimizing over all
Kraus operators and not just the local ones.

We also numerically determined the actual QFI of the states
constructed by our techniques for the case of a particular
nearest-neighbor Hamiltonian (for the results of the local
Hamiltonian; see Ref. [37]). We discover that—similar to
the scenario with local Hamiltonians—pretty good states
outperform product states. However, they are suboptimal as
there exist other states providing higher sensitivity. It would
be interesting to analyze the states of our construction under the
influence of other types of noise, such as correlated dephasing,
or depolarizing noise.

Several important questions arise with regards to estab-
lishing insightful upper bounds on the QFI. For example,
in searching for the optimal Kraus decomposition in the
case where H = Sz and local dephasing noise, Escher et al.
optimized over the unitary generated by Sx . If the Hamiltonian
is a generator of su(2) one may ask whether in searching for the
optimal Kraus decomposition, it is sufficient to search over all
unitary re-mixings of the Kraus operators generated by either
of the remaining generators of the algebra.

ACKNOWLEDGMENTS

This work was supported by the Austrian Science Fund
(FWF), Grants No. P24273-N16, No. Y535-N16, and No.
J3462.

APPENDIX A: PROOF OF THEOREM 1

In this appendix we provide a proof of Theorem 1 regarding
the construction of pretty good states for noiseless metrology.

Theorem 1. Let {S1, S2, S3} be a set of generators for su(2).
Assume, without loss of generality, that H ≡ S1, and let |ψmin〉
be an eigenstate of S3 corresponding to the smallest eigenvalue.
Then the variance of H with respect to the state,

|ψ〉 =
√

1

N J
(3)k
+ |ψmin〉, (A1)

where N denotes the normalization constant, scales as half the
spectral radius of J2, �( J2), if k = 
 2jmax+1

2 �, where jmax is
related to the maximum eigenvalue of J2 via Eq. (22), and 
·�
is the ceiling function.

Proof. Recall that (�H )2, with respect to a state |ψ〉, is
given by

(�H )2 = 〈ψ |H 2|ψ〉 − 〈ψ |H |ψ〉2. (A2)

Now let |ψ〉 =
√

1
N J

(3)k
+ |ψmin〉, where N =

〈ψmin|J (3)k
− J

(3)k
+ |ψmin〉, with

S3|ψmin〉 = mmin|ψmin〉, (A3)

and recall that the eigenvalues m of S3 lie within the range
−j � m � j . As |ψmin〉 is an eigenstate of S3 with the smallest
possible eigenvalue, it follows that mmin = −c jmax(jmax +
1), where c jmax(jmax + 1) is the maximum possible value
of J2.
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Substituting |ψ〉 into Eq. (A2), and noting that J
(3)†
+ = J

(3)
− ,

yields

(�H )2 = 1

N 〈ψmin|J (3)k
− H 2J

(3)k
+ |ψmin〉

− 1

N 2
〈ψmin|J (3)k

− HJ
(3)k
+ |ψmin〉2. (A4)

Using H ≡ S1 = 1/
√

2(J (3)
+ + J

(3)
− ) [see Eq. (23)] we have

J
(3)k
− H 2J

(3)k
+ = 1

2
(J (3)k

− J
(3)k+2
+ + J

(3)k
− J

(3)
+ J

(3)
− J

(3)k
+

+ J
(3)k+1
− J

(3)k+1
+ + J

(3)k+2
− J

(3)k
+ ),

J
(3)k
− HJ

(3)k
+ = 1√

2
(J (3)k

− J
(3)k+1
+ + J

(3)k+1
− J

(3)k
+ ). (A5)

As J
(3)m
+ |ψmin〉 is an eigenstate of S3, with eigenvalue

c(−jmax + m), it follows that

〈ψmin|J (3)m
− J

(3)n
+ |ψmin〉 ∝ δmn, (A6)

as either J
(3)n
+ |ψmin〉, J

(3)m
+ |ψmin〉 correspond to different

eigenvalues of S3 or

J
(3)n
+ |ψmin〉 = 0,

J
(3)m
+ |ψmin〉 = 0.

Hence, Eq. (A4) reduces to

(�H )2 = 1

2N (〈ψmin|J (3)k
− {J (3)

− ,J
(3)
+ }J (3)k

+ |ψmin〉)

= 1

2N (〈ψmin|J (3)k
− J2J

(3)k
+ |ψmin〉

− 〈ψmin|J (3)k
− S2

3J
(3)k
+ |ψmin〉), (A7)

where we have made use of the expression J2 = S2
3 +

{J (3)
+ ,J

(3)
− }. As 1

N 〈ψmin|J (3)k
− S2

3J
(3)k
+ |ψmin〉 = c2

N (−jmax + k)2,

and 〈ψmin|J (3)k
− J2J

(3)k
+ |ψmin〉 = c2jmax(jmax + 1) = �( J2),

we would like to choose k such that the second term of
Eq. (A7) is as small as possible [i.e., O(1)]. This occurs
for states, J

(3)k
+ |ψmin〉, whose S3 eigenvalue is close to zero.

Hence, we simply apply J
(3)
+ a number of times equal to

k =
⌈

2jmax + 1

2

⌉
. (A8)

Finally, note that 〈ψmin|J (3)k
− J

(3)k
+ |ψmin〉 = N which cancels

the normalization in Eq. (A7). This completes the proof.

APPENDIX B: PROOFS OF LEMMA 1 AND THEOREM 2

In this appendix we determine a class of Hamiltonians
for which the construction of pretty good states for noiseless
metrology given in Sec. III A applies. Given a Hamiltonian,
H ≡ S1, and assuming that H has a homogeneously gapped
spectrum, we show that two Hermitian operators S2, S3,
such that {S1,S2,S3} are generators of su(2) must be of a
particular form (Lemma 1). We then show in Theorem 2 that
in order to determine the Hermitian operators S2, S3 such that
{S1,S2,S3} are generators of su(2) the multiplicities dk of the
homogeneously gapped spectrum of eigenvalues λk of S1 must

necessarily obey the conditions dk+1 � dk and dk = dn+1−k for
all k. In addition, Theorem 2 also provides one possible choice
for the Hermitian operators S2 and S3.

Throughout this appendix we will assume the operators
S2, S3 are Hermitian. Furthermore, we will assume without
loss of generality that the eigenvalues of S1 are arranged
in decreasing order, i.e., λ1 > λ2 > · · · > λN and that the
spectrum of S1 is homogeneously gapped.

We begin by proving Lemma 1.
Lemma 1: Let S1 be given as in Eq. (27) and let S2, S3 be

two Hermitian operators. If the spectrum of S1 is homoge-
neously gapped, i.e., |λk+1 − λk| = c,∀k, and the conditions
in Eq. (28) hold, then

S2 =
n∑

k=1

|k + 1〉〈k| ⊗ S
(k,k+1)
2 + |k〉〈k + 1| ⊗ S

(k+1,k)
2 ,

(B1)

S3 =
n∑

k=1

|k + 1〉〈k| ⊗ S
(k,k+1)
3 + |k〉〈k + 1| ⊗ S

(k+1,k)
3 ,

where S
(k,l)
2 (S(k,l)

3 ) are dl × dk matrices, and S
(k,k+1)
2 =

−iS
(k,k+1)
3 ,∀k.

Proof. Substituting the third equation of Eq. (28) into the
second gives

c2S2 = H 2S2 + S2H
2 − 2HS2H. (B2)

Write

S2 =
n∑

k,l=1

|k〉〈l| ⊗ S
(l,k)
2 , (B3)

where S
(l,k)
2 is a dk × dl matrix. As S2 is Hermitian by

assumption, S
(l,k)†
2 = S

(k,l)
2 . Plugging Eqs. (27) and (B3) into

Eq. (B2) one obtains, after some algebra,

0 =
∑
k,l

[(λk − λl)
2 − c2]|k〉〈l| ⊗ S

(l,k)
2 . (B4)

As the spectrum of S1 is homogeneously gapped by assumption
it follows that

(1) S
(k,k)
2 = 0.

(2) For λk−1 − λk = c and λk+1 − λk = −c, S
(k,k−1)
2 and

S
(k,k+1)
2 can be arbitrary.

(3) For m > 1, S
(k±m,k)
2 = 0.

Hence, the only nonzero matrices in Eq. (B3) are those
immediately above and below the main diagonal, i.e.,

S2 =
n−1∑
k

|k + 1〉〈k| ⊗ S
(k,k+1)
2 + |k〉〈k + 1| ⊗ S

(k+1,k)
2 . (B5)

Following similar arguments as above one finds that

S3 =
n−1∑
k

|k + 1〉〈k| ⊗ S
(k,k+1)
3 + |k〉〈k + 1| ⊗ S

(k+1,k)
3 .

(B6)

We now show how the matrices S
(k,k+1)
2 and S

(k,k+1)
3 are

related. Plugging Eqs. (B5) and (B6) into the first equation of
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Eq. (28) one obtains, after some algebra,∑
k

[
(λk+1 − λk)|k + 1〉〈k| ⊗ S

(k,k+1)
2

+ (λk − λk+1)|k〉〈k + 1| ⊗ S
(k+1,k)
2

]
= ic
∑

k

|k + 1〉〈k| ⊗ S
(k,k+1)
3

+ |k〉〈k + 1| ⊗ S
(k+1,k)
3 . (B7)

As λk − λk+1 = c,∀k by assumption, it follows that S(k,k+1)
2 =

−iS
(k,k+1)
3 . This completes the proof.

We now prove Theorem 2.
Theorem 2. Let S1 be given by Eq. (27) with the eigen-

values of S1 satisfying −λk = λn−k+1, λk − λk+1 = c,∀k ∈
(1, . . . ,n). In addition, let the operators S2, S3 be given as in
Lemma 1. Necessary conditions for Eq. (28) to hold are that
dk+1 � dk for 1 � k � � n

2 �, and dk = dn+1−k . Furthermore,

one possible solution for the matrices S
(k,k+1)
3 is given by the

dk+1 × dk matrix,

S
(k,k+1)
3 =

√
c

2
diag

⎛
⎜⎜⎜⎜⎜⎝
√√√√ k∑

i=1

λi

︸ ︷︷ ︸
d1 times

,

√√√√ k∑
i=2

λi

︸ ︷︷ ︸
(d2−d1) times

, . . . ,

√√√√ k∑
i=k−1

λi

︸ ︷︷ ︸
(dk−1−dk−2) times

,
√

λk︸︷︷︸
(dk−dk−1) times

⎞
⎟⎟⎟⎟⎟⎠. (B8)

Proof. Calculating the commutator between S2 and S3 and
using the fact that S

(k,k+1)
2 = −iS

(k,k+1)
3 (see Lemma 1) one

obtains

[S2,S3] = 2i

(∑
k

|k〉〈k| ⊗ S
(k+1,k)
3 S

(k,k+1)
3

− |k + 1〉〈k + 1| ⊗ S
(k,k+1)
3 S

(k+1,k)
3

)
. (B9)

As [S2,S3] = icH and assuming that n is even, one obtains
the following set of equations:

S
(2,1)
3 S

(1,2)
3 = cλ1

2
1d1 ,

S
(3,2)
3 S

(2,3)
3 − S

(1,2)
3 S

(2,1)
3 = cλ2

2
1d2

...

S
(n/2+1,n/2)
3 S

(n/2,n/2+1)
3 − (B10)

S
(n/2−1,n/2)
3 S

(n/2,n/2−1)
3 = cλn/2

2
1dn/2 ,

S
(n/2+2,n/2+1)
3 S

(n/2+1,n/2+2)
3 −

S
(n/2,n/2+1)
3 S

(n/2+1,n/2)
3 = cλn/2+1

2
1dn/2+1

...

− S
(n−1,n)
3 S

(n,n−1)
3 = cλn

2
1dn

.

Using the singular value decomposition of S
(k,l)
3 , define the

unitary matrices W (k,l) : Hdl
→ Hdl

, and V (k,l) : Hdk
→ Hdk

,
such that

S
(k,l)
3 = W (k,l)D

(k,l)
3 V (k,l)† , (B11)

where D
(k,l)
3 is a dl × dk matrix containing the singular values

of S
(k,l)
3 along its diagonal and zeros everywhere else. Then

the equations in Eq. (B10) read

W (2,1)D
(2,1)
3 D

(1,2)
3 W (2,1)† = cλ1

2
1d1 ,

W (3,2)D
(3,2)
3 D

(2,3)
3 W (3,2)†−

V (2,1)D
(1,2)
3 D

(2,1)
3 V (2,1)† = cλ2

2
1d2 (B12)

...

− V (n,n−1)D
(n−1,n)
3 D

(n,n−1)
3 V (n,n−1)† = cλn

2
1dn

.

For k < n, multiplying the kth equation in Eq. (B12) from
the left by W (k+1,k)† and on the right by W (k+1,k) gives

D
(2,1)
3 D

(1,2)
3 = cλ1

2
1d1 ,

D
(3,2)
3 D

(2,3)
3 − U (2,1)D

(1,2)
3 D

(2,1)
3 U (2,1)† = cλ2

2
1d2

(B13)
...

− V (n,n−1)D
(n−1,n
3 D

(n,n−1)
3 V (n,n−1)† = cλn

2
1dn

,

where U (k+1,k) = W (k+1,k)†V (k,k−1). One possible solution for
Eq. (B13) is given by choosing U (k+1,k) = 1dk

,∀k(1,n − 1)
and V (n,n−1) = 1dn

.
As D

(2,1)
3 is a d1 × d2 diagonal matrix, it follows that in

order for the first equation in Eq. (B13) to hold it is necessary
that d2 � d1 as otherwise D

(2,1)
3 D

(1,2)
3 would contain d1 − d2

zeros in the diagonal. Moreover,

D
(1,2)
3 D

(2,1)
3 = c

2
diag(λ1, . . . λ1︸ ︷︷ ︸

d1 times

, 0, . . . ,0︸ ︷︷ ︸
(d2−d1) times

), (B14)

which, upon substituting in the second equation of Eq. (B13),
gives

D
(3,2)
3 D

(2,3)
3 = c

2
diag(λ1 + λ2, . . . ,λ1 + λ2︸ ︷︷ ︸

d1 times

, λ2, . . . ,λ2︸ ︷︷ ︸
(d2−d1) times

).

(B15)
As D

(3,2)
3 is a d2 × d3 diagonal matrix, the above equation

implies that d3 � d2 as otherwise D
(3,2)
3 D

(2,3)
3 will contain d2 −

d3 zeros. Proceeding recursively one finds that for 1 � k �
n/2, dk+1 � dk and that D

(k+1,k)
3 D

(k,k+1)
3 is a dk × dk diagonal

matrix whose first d1 elements are equal to c
2

∑k
i=1 λk , the
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next d2 − d1 elements are equal to c
2

∑k
i=2 λk , the next d3 − d2

elements are equal to c
2

∑k
i=3 λk , and so on until the last dk −

dk−1 elements which are equal to c
2λk .

Let us now consider the (n/2 + 1)th equation in Eq. (B13)
given by

D
(n/2+2,n/2+1)
3 D

(n/2+1,n/2+2)
3 − D

(n/2,n/2+1)
3 D

(n/2+1,n/2)
3

= cλn/2+1

2
1dn/2+1 . (B16)

From the argument above D
(n/2+1,n/2)
3 D

(n/2,n/2+1)
3 is a dn/2 ×

dn/2 diagonal matrix whose last dn/2 − dn/2−1 elements
are equal to c

2λn/2. As dn/2+1 � dn/2, it follows that

D
(n/2,n/2+1)
3 D

(n/2+1,n/2)
3 is a dn/2+1 × dn/2+1 diagonal matrix

whose first dn/2 elements are equal to the elements of
D

(n/2+1,n/2)
3 D

(n/2,n/2+1)
3 and the remaining dn/2+1 − dn/2 ele-

ments are equal to zero. As λn/2+1 = −λn/2 by assumption
Eq. (B16) becomes

D
(n/2+2,n/2+1)
3 D

(n/2+1,n/2+2)
3

= D
(n/2,n/2+1)
3 D

(n/2+1,n/2)
3 − cλn/2

2
1dn/2+1 . (B17)

As D
(n/2+2,n/2+1)
3 D

(n/2+1,n/2+2)
3 must be a positive semidef-

inite matrix it is necessary that dn/2+1 = dn/2. Proceeding
recursively through the remaining equations in Eq. (B13) one
establishes that in order for D

(n/2+k+1,n/2+k)
3 D

(n/2+k,n/2+k+1)
3

to be a positive semidefinite matrix it is necessary that
dk = dn+1−k and that for n/2 + 1 � k � n, dk � dk+1 thus
proving the theorem. A similar argument holds for the case
where n is odd. This completes the proof.

APPENDIX C: EIGENSPECTRUM OF
NEAREST-NEIGHBOR HAMILTONIAN

In this appendix we determine the eigenvalues and corre-
sponding multiplicities of the nearest-neighbor Hamiltonian
in Eq. (40).

Observation 1. Let

Hnn =
n−1∑
i=1

σ (i)
z σ (i+1)

z . (C1)

Then σ (Hnn) = {λx = n − 1 − 2x | x ∈ (0 . . . n − 1)} where
each λx has multiplicity given by

(2n−1
x

)
.

Proof. As

σz = |0〉〈0| − |1〉〈1|, (C2)

Eq. (C1) reads

Hnn =
∑

m

n−1∑
k=1

(−1)
(∑k+1

i=k mi

)
|m〉〈m|, (C3)

where m ≡ m1 . . . mn. Hence, the spectrum of Hnn is given by

σ (Hnn) = {(−1)(m1+m2) + (−1)(m2+m3) + . . .

+ (−1)(mn−1+mn)| mi ∈ (0,1),∀i ∈ (1, . . . ,n)}.
(C4)

Clearly the maximum eigenvalue of Hnn is n − 1, and occurs
when ∀i ∈ (1, . . . ,n),mi = 0 or 1. The lowest eigenvalue is

−(n − 1) and occurs when mi + mi+1 = 1,∀i ∈ (1, . . . ,n −
1). Furthermore, the second highest eigenvalue is n − 3 and
occurs when all but one of the summands in Eq. (C4) are
positive and one is negative. Similarly it follows that the
spectrum of Hnn is given by

σ (Hnn) = {λx = n − 1 − 2x, | x ∈ (0, . . . ,n − 1)}. (C5)

To obtain the multiplicity of each eigenvalue one simply
looks at the number of different combinations of summing
positive and negative ones in order to yield a specific
eigenvalue. Each summand in Eq. (C4) can be either 1 or −1,
with the former occurring when both mi,mi+1 are the same
and the latter when mi,mi+1 are different. As λ0 contains no
negative summands it follows that the total number of ways
of obtaining λ0 is (2n − 1

0 ). Similarly λ1 can be obtained by
choosing one out of the total of n − 1 summands negative and
this can be done (2n − 1

1 ). It is not hard to see that there are a

total of (2n − 1
x ) different ways to obtain λx . This completes the

proof.

APPENDIX D: UPPER BOUNDS FOR QUANTUM
METROLOGY UNDER LOCAL DEPHASING CHANNEL

In this appendix we derive the upper bounds of Eqs. (57)
and (60) corresponding to phase estimation in the presence
of local dephasing noise using a local and nearest-neighbor
Hamiltonian, respectively. To that end we determine � and �

in Eq. (56), where B = Sx , and the operators Sm in Eq. (52)
are explicitly given by

Sk = p
N−h(k)

2 (1 − p)
h(k)

2 ⊗N
i=1 σ (ki )

z , (D1)

where h(k) is the Hamming weight of the binary vector k and
ki is the i th entry of k. Note that Sk is a diagonal matrix for
all k.

As the matrix elements of Sx in the computational basis are
given by

[Sx]l,k =
{

1, if k ∈ {σ (i)
x l}Ni=1

0, otherwise,
(D2)

where the set {σ (i)
x l}Ni=1 contains all N -dimensional, binary

vectors obtained from l by flipping one of its bits. Simple
algebra gives∑

l,k

Sl [Sx]l kSk = 2p
1
2 (1 − p)

1
2 Sz. (D3)

A similar calculation yields∑
l,k

Sl
[
S2

x

]
l kSk = N (1 − 4p(1 − p))1 + 4p(1 − p)S2

z .

(D4)
Plugging Eqs. (D3) and (D4) into Eq. (55), and recalling that
H = Sz yields Eq. (57).

For the case of the nearest-neighbor Hamiltonian [Eq. (40)]
� and � read

� = 2p
1
2 (1 − p)

1
2 (〈HSz〉 − 〈H 〉〈Sz〉),

(D5)
� = N (1 − 4p(1 − p))1 + 4p(1 − p)�Sz,

which, upon substituting into Eq. (55) yields Eq. (60).
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