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We present and define a privacy-preserving problem called the oblivious set-member decision problem, which
allows a server to decide whether a private secret of a user is a member of his private set in an oblivious
manner. Namely, if the secret belongs to his private set, he does not know which member it is. We propose a
quantum solution to the oblivious set-member decision problem. Compared to classical solutions, the proposed
quantum protocol achieves an exponential reduction in communication complexity, since it only needs O(1)
communication cost.
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I. INTRODUCTION

The 21st century is the era of information. However,
information brings us not only opportunities and fortunes,
but also problems and troubles, such as the overflow of junk
information, the loss of important information, and the leakage
of privacy information. Specifically, among these problems,
how to protect privacy has become the focus of wide attention
these days.

Furthermore, with the rapid development of the technolo-
gies of quantum communication and quantum computation,
researchers began to consider quantum methods to solve
privacy-preserving problems, such as blind quantum comput-
ing [1–5], quantum homomorphic encryption [6], quantum
private query [7–10], quantum bit commitment [11–14],
quantum oblivious transfer [15–17], and so on.

In this paper, we consider an interesting privacy-preserving
problem. Imagine that a user, Alice, has a private secret
and a server, Bob, owns a private set. Bob wants to know
whether Alice’s private secret is a member of his private set,
but Alice does not want him to know her secret (privacy)
and further, which member of his private set it is equal to
(anonymity). In this paper, we call it the oblivious set-member
decision (OSMD) problem. Obviously, OSMD can be used
to privately compute the cardinality of set intersection and
union. In addition, it is also widely applied in fields of
the identifiable and verifiable circumstances as a primitive
protocol. For example, suppose that there is a server and n

users (U1,U2, . . . ,Un) who form a special distributed group
(e.g., health system) via wire or wireless networks, and the
server only provides resources or services for his authorized
users. During the initialization phase, the server randomly
generates a unique secret ki for every legal user Ui . During the
authentication phase, the user requests the server to execute
an OSMD protocol, so that the server can decide whether the
private secret of the user lies in the set K , which consists of all
authorized users’ secrets generated by the server in advance.
If ki ∈ K (but i is unknown), then the user Ui is an authorized
user, and further, the server opens the corresponding resources
or provides services to him or her. Otherwise, the verification
fails. Obviously, it does not reveal any identity information of
the user while executing the OSMD protocol; that is, it satisfies
the request of the anonymous property.

Suppose that Alice has a secret k and Bob a private set
{k1,k2, . . . ,kn}. In classical settings, in order to protect Alice’s
anonymity, it is necessary to make a decision of each k �= ki

by Alice and Bob collaboratively, not just by Bob inde-
pendently. Since k /∈ {k1,k2, . . . ,kn} ⇔ (k �= k1) ∧ (k �= k2) ∧
. . . ∧ (k �= kn), it needs at least O(n) communication costs to
solve the OSMD problem in classical settings. In this paper,
however, we propose a quantum OSMD protocol, which only
needs O(1) communication cost.

II. THE PROTOCOL

A. Definition

We first define oblivious set-member decision problem as
follows:

Definition 1(Oblivious set-member decision problem). Al-
ice has a private secret k and Bob a private set {k1,k2, . . . ,kn}.
Bob wants to know whether Alice’s secret k belongs to the
set of {k1,k2, . . . ,kn} in an oblivious manner. That is, though
Bob finally knows whether k is a member of the set of
{k1,k2, . . . ,kn}, he does not know which member it is and
further does not know Alice’s secret k yet.

Definition 2(Oblivious set-member decision protocol). The
user, Alice, inputs a private secret k and the server, Bob, inputs
a private set {k1,k2, . . . ,kn}. After executing this protocol,
Alice outputs nothing but Bob outputs whether the secret k

belongs to the set of {k1,k2, . . . ,kn}. In addition, this protocol
should satisfy:

Correctness: Bob gets 1 if k is a member of the set of
{k1,k2, . . . ,kn} and 0 otherwise.

Alice’s privacy: Bob cannot get any other secret informa-
tion about the secret k except knowing whether it is a member
of the set of {k1,k2, . . . ,kn}.

Alice’s anonymity: If k is a member of the set of
{k1,k2, . . . ,kn}, Bob should not know which member is equal
to the secret, k. That is, he does not know the specific subscript i
such that k = ki (i ∈ {1,2, . . . ,n}).

Bob’s privacy: Alice cannot know any secret information
about the set of {k1,k2, . . . ,kn}.

B. Protocol

Suppose Alice’s secrets k and Bob’s all kis are the
elements of the set of Z∗

N = {1,2, . . . ,N − 1}. Now, let
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FIG. 1. (Color online) The N -element database created by the
private set of {k1,k2, . . . ,kn}.

us describe the proposed OSMD protocol in detail as
follows:

(1) Bob first generates an N -element database (see Fig. 1),
where the j th element p(j ) = 1 if j = ki (i ∈ [1,n]), and
p(j ) = 0 otherwise (encoding). Then Bob randomly generates
r1,r2, . . . rl ∈ {0,1} and further computes qt (j ) = p(j ) ⊕ rt

for t = 1 to l and j = 1 to N − 1 (encrypting), where l is
a security parameter. Please note that Alice and Bob agree to
let p(0) = 0 and q1(0) = q2(0) = · · · = ql(0) = 0 in advance.

(2) Alice prepares l logN -qubit registers, where one
contains the encoded state |0〉+|k〉√

2
(k is Alice’s secret) and the

others contain l − 1 decoy states: |0〉+|j1〉√
2

,
|0〉+|j2〉√

2
, . . . ,

|0〉+|jl−1〉√
2

(all jis are random integers in Z∗
N ). Furthermore, Alice sends

all l registers to Bob in random order (as shown in Fig. 2) and
makes a record of the order of the sent sequences.

(3) After receiving all registers from Alice, Bob applies an
oracle Ot on the t th register for t = 1 to l and then sends them
back to Alice, where the oracle is and works as follows [9]:

Ot =

⎛
⎜⎝

(−1)qt (0)

. . .
(−1)qt (N−1)

⎞
⎟⎠, (1)

|ψ1〉 = |0〉 + |j 〉√
2

Ot→ |ψ2〉, (2)

|ψ2〉 = |0〉 + (−1)qt (j )|j 〉√
2

. (3)

{ 1, 2, … , } 

Bob
(Server)

Alice
(User)

⋮

|0⟩ 1 +| 1⟩ 1

√2
|0⟩ 2 +| ⟩ 2

√2

|0⟩ +| −1⟩

√2

|0⟩ 1 +(−1) 1( 1)| 1⟩ 1

√2

⋮

|0⟩ 2 +(−1) 2( )| ⟩ 2

√2

|0⟩ +(−1) ( −1)| −1⟩

√2

⋮

⋮

FIG. 2. The exchanged quantum information between Alice and
Bob.

(4) For each decoy state returned from Bob, Alice performs
an honest test. That is, Alice checks whether the superposition

in the returned state was preserved as
|0〉Qi

+|ji 〉Qi√
2

or
|0〉Qi

−|ji 〉Qi√
2

,
since the two possible states are obviously orthogonal, and
further, she knows ji . If Alice finds a cheat of Bob, she will
terminate this protocol. Otherwise, continue to the next step.

(5) For the encoded state returned from Bob, Alice will
perform the unitary operations as follows:

I∏
t=1

Ucnot(1,It )Uswap(1,If )
|0〉 ± |k〉√

2
= |±〉|0〉⊗(m−1), (4)

where m = logN, and there are I ones in the binary represen-
tation of k, with If pointing to the first “1” and It pointing
to the t th “1.” Uswap(1,If ) is a unitary operation which swaps
between the first and the If th qubit. This operation ensures
the first qubit is a 1. In addition, Ucnot(1,It ) is a CNOT gate
operation in which the first qubit is the control qubit and the
It th qubit is a target qubit. After performing the above unitary
operations, Alice measures only the first qubit in the encoded
state on the basis of {|+〉,|−〉}. If she gets |+〉, then qs(k) = 0,
where s is the order of the encoded state in the sent sequences.
Otherwise, qs(k) = 1.

(6) Alice sends qs(k) and s to Bob by the authenticated
classical channel.

(7) After receiving the classical information, qs(k) and s,
Bob computes p(k) = qs(k) ⊕ rs . If p(k) = 1, then he can
decide that Alice’s secret belongs to his private set (i.e., k ∈
{k1,k2, . . . ,kn}). Otherwise, k /∈ {k1,k2, . . . ,kn}.
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C. Analysis

Since the states of |0〉+|k〉√
2

and |0〉−|k〉√
2

are obviously or-
thogonal, it is perfectly possible to distinguish between them
by doing a Von Neumann measurement [7–9]. Furthermore,
Alice can rightly get qs(k) by distinguishing the encoded state
returned from Bob, and further, Bob can privately obtain p(k).
That is, this protocol clearly and rightly works when Alice and
Bob honestly execute the protocol.

On the one hand, Bob’s privacy rests on his encrypting
method, which is a one-time pad. If Alice is honestly executing
this protocol, obviously she can only get qs(k) instead of p(k).
Since qs(k) = p(k) ⊕ rs and rs is unknown and random, so
Alice cannot know p(k). Even if Alice is dishonest, she can
get at most l qt (j )s. However, by these qt (j )s, she cannot
still obtain any p(j ) rightly, because Bob uses a one-time pad
to encrypt p(j ) (that is, all rts are random and unknown).
Therefore, Alice cannot get any secret information about the
private set of {k1,k2, . . . ,kn} in the proposed protocol.

On the other hand, Alice’s privacy depends on Bob’s
impossibility of distinguishing the encoded quantum state
sent from Alice. Two basic elements of quantum theory
enforce this: no-cloning theorem, which forbids the creation
of identical copies of an arbitrary unknown quantum state,
and the Heisenberg uncertainty principle, which implies that
it is impossible to measure the state of any system without
disturbing that system.

To illustrate it concretely, we consider that Bob is dishonest.
For a dishonest Bob, it is possible to perform an intercept
and resend attack. That is, when he receives the state of
|0〉+|j〉√

2
, he first measures it and then prepares and resends a

new state by his measured results. Since he doesn’t know
j , he can’t rightly perform a Von Neumann measurement
to distinguish the received state. If he only applies a simple
projective measurement, he might eventually succeed to pass
the honest test, but not with the probability of more than 1

2 . In

our protocol, however, Alice’s secret state is sent in random
order, that is, it is hidden in other l − 1 decoy states. So, if
Bob wants to get Alice’s secret by this attack, the success
probability is not more than 2−l .

Furthermore, we discuss a more complicated entangle-
measure attack by a dishonest Bob that he is able to prepare
an ancillary system and entangle the ancillary system with the
states transmitted from Alice to him by his local unitary oper-
ations, and afterwards he can measure the ancillary system to
get the partial information about Alice’s secret. For simplicity,
we only consider the encoded state of |0〉+|k〉√

2
. Suppose that the

initial state of the ancillary system is |0〉B and Bob’s dishonest
action when he receives Alice’s register can be described
by a unitary operator ŨQB , which acts on the register Q

and the ancillary system B. We can describe it as follows:

ŨQB |0〉Q|0〉B = √
η0|0〉Q|φ0〉B +

√
1 − η0|V0〉QB, (5)

ŨQB |k〉Q|0〉B = √
ηk|k〉Q|φk〉B +

√
1 − ηk|Vk〉QB, (6)

ŨQB

( |0〉 + |k〉√
2

)
Q

|0〉B = √
η+k

( |0〉 + |k〉√
2

)
Q

|φ+k〉B

+
√

1 − η+k||V+k〉QB, (7)

where |V0〉QB , |Vk〉QB , and |V+k〉QB are a vector orthogonal
to |0〉Q|φ0〉B , |k〉Q|φk〉B , and |+k〉Q|φ+k〉B (|+k〉 = |0〉+|k〉√

2
),

respectively, i.e.,

Q〈0|B〈φ0|V0〉QB = 0, (8)

Q〈k|B〈φk|Vk〉QB = 0, (9)

Q〈+k|B〈φ+k|V+k〉QB = 0. (10)

From Eqs. (5) and (6), we can easily deduce that the following
equation holds:

ŨQB

( |0〉 + |k〉√
2

)
Q

|0〉B = 1√
2

(ŨQB |0〉Q|0〉B + ŨQB |k〉Q|0〉B)

= 1√
2

(
√

η0|0〉Q|φ0〉B +
√

1 − η0|V0〉QB + √
ηk|k〉Q|φk〉B +

√
1 − ηk|Vk〉QB). (11)

If we compute the scalar product between Eqs. (7) and (11), we will obtain the identity

1 =
√

η0η+k

2
B〈φ+k|φ0〉B +

√
η0(1 − η+k)√

2
QB〈V+k|0〉Q|φ0〉B +

√
(1 − η0)η+k√

2
Q〈+k|B〈φ+k|V0〉QB

+
√

(1 − η0)(1 − η+k)√
2

QB〈V+k|V0〉QB +
√

ηkη+k

2
B〈φ+k|φk〉B +

√
ηk(1 − η+k)√

2
QB〈V+k|k0〉Q|φk〉B

+
√

(1 − ηk)η+k√
2

Q〈+k|B〈φ+k|Vk〉QB +
√

(1 − ηk)(1 − η+k)√
2

QB〈V+k|Vk〉QB. (12)

Then we get

1 <

√
η0η+k

2
B〈φ+k|φ0〉B +

√
η0(1 − η+k)√

2
+

√
(1 − η0)η+k√

2
+

√
(1 − η0)(1 − η+k)√

2
+

√
ηkη+k

2
B〈φ+k|φk〉B

+
√

ηk(1 − η+k)√
2

+
√

(1 − ηk)η+k√
2

+
√

(1 − ηk)(1 − η+k)√
2

. (13)

022309-3



RUN-HUA SHI, YI MU, HONG ZHONG, AND SHUN ZHANG PHYSICAL REVIEW A 92, 022309 (2015)

Suppose that the probability of Bob’s passing the honest test
is higher than a certain threshold, i.e.,

η0 > 1 − ε, ηk > 1 − ε, η+k > 1 − ε. (14)

By Eqs. (13) and (14), it gives

1 <

√
η0η+k

2
B〈φ+k|φ0〉B +

√
ηkη+k

2
B〈φ+k|φk〉B

+ 2
√

2
√

ε +
√

2ε, (15)

which implies the following conditions hold:

B〈φ+k|φ0〉B > 1 − 2

(√
2 +

√
ε√
2

)√
ε, (16)

B〈φ+k|φk〉B > 1 − 2

(√
2 +

√
ε√
2

)√
ε. (17)

From Eqs. (16) and (17), it shows that if ε → 0, then
B〈φ+k |φ0〉B → 1 and B〈φ+k |φk〉B → 1. That is, if Bob
wants to be sure that he fully passes the honest test, then
the final states of the ancillary system B for any choice of
k will coincide with |φ0〉B , that is, the states of the ancillary
system B are independent of the secret k.

Furthermore, we give an upper bound to Bob’s information
on the secret k by considering the mutual information I that
connects the classical variable k ∈ {1,2, . . . ,N − 1}, which
labels Alice’s secret, and Bob’s estimation of this variable.
The ancillary system B can be characterized by the quantum
ensemble ε ≡ {pk = 1

N
,ρB(k)} [8], where pk = 1

N
is Alice’s

probability of owning the secret k (assuming that initially Bob
does not have any prior information on the value of k), and

ρB(k) = T rQ(|�〉QB〈�|) = η+kσk + (1 − η+k)σ̃k, (18)

with

|�〉QB = ŨQB

( |0〉 + |k〉√
2

)
Q

|0〉B

= √
η+k

( |0〉 + |k〉√
2

)
Q

|φ+k〉B +
√

1 − η+k|V+k〉QB,

σk = |φ+k〉B〈φ+k|. (19)

From the Holevo bound [18], we obtain

I � χ (ε) = S(ρB) − 1

N

N−1∑
k=0

S(ρB(k)), (20)

where ρB = ∑N−1
k=0 ρB(k)/N is the average state of B. This

allows us to write also

ρB = ησ + (1 − η)σ̃ , (21)

with

σ ≡
N−1∑
k=0

η+k

Nη
σk, σ̃ ≡

N−1∑
k=0

1 − η+k

N (1 − η)
σ̃k, (22)

where η = ∑
k η+k/N is Bob’s average probability of pass-

ing the honest test, which must be greater than 1 − ε.
Equations (18) and (21) can then be exploited to produce the

following inequalities [8]:

S(ρB) � H2(η) + ηS(σ ) + (1 − η)S(σ̃ ), (23)

S(ρB(k)) � η+kS(σk) + (1 − η+k)S(σ̃k), (24)

where H2(x) ≡ −xlogx − (1 − x)log(1 − x) is the binary
entropy. Therefore Eq. (20) gives

I � H2(η) + ηχ

({
η+k

Nη
; σk

})

+ (1 − η)χ

({
1 − η+k

N (1 − η)
; σ̃k

})
, (25)

where χ ({ 1−η+k

N(1−η) ; σ̃k}) is the Holevo information associated
with a source characterized by probabilities 1−η+k

N(1−η) . This
quantity can never be bigger than log2N. (The same applies to
χ ({ η+k

Nη
; σk}), but we are not going to use it.) Therefore we can

write

I � H2(η) + ηχ

({
η+k

Nη
; σk

})
+ (1 − η)log2N. (26)

By Eq. (16), the density matrices σk can be decomposed as the
following expression:

σk = qk|φ0〉〈φ0| + (1 − qk)τk + �k, (27)

where τk are density matrices formed by vectors |ν⊥〉 orthogo-
nal to |φ0〉, �k are traceless operators containing off-diagonal
terms of the form |φ0〉〈ν⊥|, and the probabilities satisfy the
following conditions:

qk = 〈φ0|σk|φ0〉 = 〈φ0|φ+k〉〈φ+k|φ0〉 > 1 − 8
√

ε. (28)

Accordingly, we can also write

σ = q|φ0〉〈φ0| + (1 − q)τ + �, (29)

q = 〈φ0|σ |φ0〉 =
N−1∑
k=0

η+k

Nη
qk > 1 − 8

√
ε. (30)

Therefore, we can get

X
({

η+k

Nη
; σk

})
� S(σ )

� S(q|φ0〉〈φ0| + (1 − q)τ )

� H2(q) + (1 − q)S(τ )

� H2(q) + (1 − q)log2N. (31)

Replacing this into Eq. (26), we finally obtain

I � H2(η) + ηH2(q) + (1 − ηq)log2N, (32)

which implies [by Eq. (30)]

I � c
√

εlog2N. (33)

This means that Alice can limit Bob’s information I by
employing in her tests a value of ε sufficiently small. In turn,
if Bob wants to pass the honest test with high probability, he
must retain low information on Alice’s secret.
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{ 1, 2, … , } 

Bob
(Server)

Alice
(User)

{ ( ) , } ( ) = ( ) ⊕

FIG. 3. The exchanged classical information between Alice and
Bob.

In addition, Alice’s anonymity is based on her privacy,
which ensures that Bob honestly executes the protocol. On the
one hand, obviously Bob cannot directly measure the received
quantum states to get Alice’s secret information. Otherwise
he will not completely pass the honest test. On the other
hand, he cannot yet obtain any correlation between Alice’s
secret and his certain member, only by the received classical
information [qs(k) and s]. Therefore, the proposed protocol
guarantees Alice’s anonymity.

Finally, we evaluate communication costs of the proposed
protocol. As shown in Figs. 2 and 3, we can easily see that the
numbers of the exchanged quantum and classical messages are
2l and 2, respectively, which are all independent of the number
of the elements of the set n, so the communication complexity
is constant, O(1).

III. CONCLUSION

In this paper, we presented and defined the oblivious
set-member decision problem and then proposed a quantum
protocol to solve this problem. In the proposed protocol, the
server first creates a private database by the private set and
then introduces an oracle to perform the phase transformation
on the encoded state, so that he can finally know whether the
user’s secret belongs to his private set in an oblivious manner.
In turn, the user utilizes the decoy technology to prevent
the dishonesty of the server. Specifically, the communication
complexity of the proposed protocol is reduced to the constant,
O(1), instead of O(n). Therefore the proposed protocol is
especially suitable for oblivious set-member decision of the
large-size set or dataset.

Like most classical or quantum secure multiparty pro-
tocols, it can use classical or quantum bit commitment,
zero-knowledge proof, and other verifiable technologies to
ensure that the parties honestly execute the protocol. This is
our future work.
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