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Detecting multipartite spatial entanglement with modular variables
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Interference phenomena of quantum systems have been studied in the context of fundamental aspects of
quantum physics and are considered a necessary resource for quantum information. Here we investigate the
interference of multiparticle wave packets in terms of modular variables, which is a natural and convenient
way to describe two or more interfering wave functions. Through the modular-variable description, interesting
phenomena appear such as the complementarity between the number of wave packets and the width of the peaks
of the momentum distribution. In the multipartite case, this effect produces quantum entanglement. We derive
entanglement criteria that test for bipartite entanglement in generic bipartitions of a multipartite quantum state
and use these criteria to test for genuine D-partite entanglement.
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I. INTRODUCTION

The Young double-slit experiment with individual quanta
has been at the heart of fundamental discussions since the
beginning of quantum mechanics. The early discussions
between Bohr and Einstein concerning the validity of the
complementarity principle and wave-particle duality centered
around the appearance (or not) of double-slit interference when
one attempts to mark the passage of the particle through the
slits [1]. Later, it was shown that the entanglement between
the particles and a quantum “which-path” marker allows one
to register the passage of the particle through the double
slit and subsequently erase that information, recovering an
interference pattern [2–6].

Since the appearance of the seminal Einstein-Podolsky-
Rosen (EPR) paper in 1935 [7], quantum entanglement took
the stage as perhaps the most curious and controversial
aspect of quantum physics [8,9]. The development of Bell’s
inequality in 1965 showed that quantum entanglement between
remote systems could produce experimental results that are
not possible with only classically correlated systems [10].
Quantum entanglement between two systems leads to novel in-
terference effects. Entangled particles passing through double-
slit apertures were shown to exhibit two-particle conditional
interference fringes, where “conditional” means that the inter-
ference pattern depends upon the detection position of both
particles [11–15]. Moreover, a number of complementarity
relations between the one-particle and two-particle fringes
have been demonstrated [16–18].

The difference between classical and quantum physics is
even more striking when one considers systems of three
or more parties. The Greenberger-Horne-Zeilinger (GHZ)
paradox was one of the first examples of an “all-versus-
nothing” proof of the incompatibility of quantum physics with
classical reasoning [19]. Many of the gedanken experiments
considered in the discussion of entanglement also consider
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interference between wave packets of two or more particles,
which is a multiparticle analog to double-slit interference [16].

These concepts have been experimentally tested using
pairs of entangled photons that pass through N -slit apertures
[12,14,15,20–24], which exhibit nonlocal interference effects.
For example, it has been shown that D entangled photons can
be produced so as to produce interference fringes with period
proportional to the de Broglie wavelength of the D-photon
wave packet [12,23,25,26], which has been shown to be
potentially useful for quantum lithography [27]. Additional
experiments include spatial antibunching [20,21], fractional
topological phase of entangled photons [28], tests of quantum
complementarity [4–6,15], quantum contextuality [29], and
quantum information protocols [30]. It is also possible to
produce high-dimensional entangled photons using temporal
wave packets [31,32].

At first, the entanglement in two-particle wave packets
were demonstrated using arguments based on conditionality
of the interference fringes. That is, it was shown that the
phase of the interference fringes obtained by measuring one
particle depended on the detection position of the other
[12,14,33,34]. However, entanglement of these particles was
never explicitly demonstrated. More recently, entanglement
criteria were developed that are especially well suited to
nonlocal Young-like interference effects [24,35]. These em-
ploy modular variables (MVs), which are an alternative
representation of the usual position and momentum variables
and have been shown to be particularly relevant in interference
phenomena [36]. For example, it is well known that increasing
the number of interfering wave packets decreases the width of
the interference peaks. This is well described by the uncertainty
relations between integer and modular components of the
position and momentum variables [24,35,37]. However, these
effects are not quantified by the usual uncertainty relations
based on variances or entropies based on the position and
momentum.

MVs have also been used to develop tests of the GHZ
paradox [38] and quantum contextuality [39,40] for continuous
variables. They provide a natural way to discretize the
continuum, and provide a possible way to apply results from
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quantum information of discrete systems to continuous ones
[41]. It is important to note that this discretization does
not discard information, since complete knowledge of the
continuous variable can be retrieved from the integer and
modular components.

In this paper, we develop entanglement criteria for genuine
entanglement of multipartite wave packets. In Sec. II, we
describe interfering wave packets in terms of MVs and provide
a MV description of a general quantum state. We extend this
description to the multipartite case in Sec. III. In Sec. IV,
we develop an entanglement criteria for genuine multipartite
entanglement and provide numerical results showing its utility.
In Sec. VI, we provide concluding remarks.

II. MODULAR VARIABLE DESCRIPTION OF WAVE
PACKETS

Consider a wave function of the form

�(x) =
N−1∑
n=0

cnψn(x), (1)

where

ψn(x) = ψ0(x − n�) (2)

is a normalized wave function centered at n� and
∑

n |cn|2 = 1.
This wave function is an N -toothed comb of ψ functions, and
might describe a particle passing through an N -slit aperture
[12,14,15,20–24], or multiple temporal wave packets [31,32].
An example of wave function (1) is shown in Fig. 1. Here we
consider generic position and momentum variables, which we
assume to be dimensionless for convenience. The operators
associated with these variables obey the commutation relation
[x,p] = i (we set � = 1 throughout this paper). The Fourier

FIG. 1. (Color online) Probability distributions for (a) N = 3
and (b) N = 7 interfering wave packets. Shown are probability
distributions |�(x)|2 (top) and |�(p)|2 (bottom) for dimensionless
position x and momentum p variables. Insets: The distributions
|g(s)|2. The variable � is a dimensionless length parameter.

transform of Eq. (1) gives the wave function in momentum
space,

�(p) =
N−1∑
n=0

cnφn(p), (3)

where

φn(p) = exp(2iπnlp)φ0(p) (4)

is the Fourier transform of ψn(x). Then,

�(p) = φ0(p)
N−1∑
n=0

cn exp(2iπn�p). (5)

An example of wave function (5) is shown in Fig. 1. Much
can be learned about these wave functions if one recasts them
in terms of modular variables. Choosing a scale factor � with
dimension of length, one can define modular variables for the
continuous x and p variables [35]:

x = n� + r, (6a)

p = m

�
+ s, (6b)

where n is the integer component of x/� and the modular part
is defined as r = (x + �/2) mod (�) − �/2 so that −�/2 <

r < �/2. Similarly, m is the integer component of p� and s =
(p + 1/2�) mod (1/�) − 1/2�. Though the variables r and
s are the “modular” components, we will refer to definitions
(6) as the “modular variable description” of the continuous
variables x and p. Changing to modular variables (6), we can
rewrite wave function (5) as

�(m,s) = φ0

(m

�
+ s

)N−1∑
n=0

cn exp(2iπn�[m/� + s]). (7)

If the ψ0(x) function is well localized around x = 0, with a
support that is small compared to �, then its Fourier transform
φ0(p) ∼ const over the range −1/2� to 1/2�, and we can write
φ0(m/� + s) ≈ φ0(m/�). In this case, the momentum-space
wave function can be rewritten as

�(m,s) ≈ φ0

(m

�

)N−1∑
n=0

cn exp(2iπn�s). (8)

In other words, �(m,s) ≈ φ0(m/�)g(s), where

g(s) =
N−1∑
n=0

cn exp(2iπn�s). (9)

The sum in (9) is a Fourier series of the function g(s), with
discrete coefficients cn. Note that the assumption that φ0(p) ∼
const allows us to write the total wave function as a product
of the integer and modular wave functions. In this respect, we
can consider a pure state |g〉, such that g(s) = 〈s|g〉.

The modular variables (6) and wave function (9) present
a number of interesting properties. For instance, the modular
operators r and s associated with the modular variables r and
s commute [36]. On the other hand, the integer part of the
momentum (position) does not commute with the modular
part of the position (momentum). In fact, these noncommuting
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pairs satisfy a number of uncertainty relations [24,35–37]. In
Ref. [35], it was shown that wave function (9) presents a type of
“squeezing” relation between the integer component n of the
position x, and the modular component s of the momentum. In
this case, the width of the peaks �s ∼ 1/N . This can be seen
in Fig. 1, where we see that the momentum peaks for N = 7
wave packets are narrower than for only N = 3 interfering
wave packets.

In Ref. [24], it was shown that the continuous variable s

and discrete variable n obey the uncertainty relation

H [n] + h[s] � ln
1

�
, (10)

where

H [n] = −
∑

n

Pn ln Pn (11)

is the discrete Shannon entropy and

h[s] = −
∫

dsP (s) ln P (s) (12)

is the differential Shannon entropy of continuous variable s

[42], where here Pn = |cn|2, P (s) = |g(s)|2. This uncertainty
relation is saturated for a state with one cn = 1 and all the rest
zero. Then, H (n) = 0 and h(s) = − ln �.

The above discussion assumed that the wave function is a
superposition of N identical wave packets (shifted in position
space), which allowed for a convenient description in terms
of MVs and the separation of the wave function �(m,s) =
φ0(m)g(s). In Appendix A, we provide the MV description
of a general quantum state ρ and show that it satisfies the
uncertainty relation (10).

Measuring modular variables

We note briefly that probability distributions describing the
integer and modular variables can be determined from their
continuous counterparts in a straightforward way. For example,
if one measures the distribution P (x), then the distributions
P (n) and P (r) can be calculated directly using definitions (6).
The same is true for the momentum variables.

Below we will consider the integer and modular parts of
global variables—say, X—given by the linear combination
of local variables x of a multipartite system. In general, the
global distribution P (X) is a marginal of the joint distribution
P (x1,x2, . . . ), which can be obtained from measurements on
the particles. Then, calculation of P (X) and the probability
distributions corresponding to the integer and modular parts
of X is straightforward.

III. MULTIPARTITE WAVE PACKETS

Consider now a D-partite state of the form

|�D〉 =
N−1∑

n1,...,nD=0

Cn1,...,nD

∣∣ψ1n1

〉∣∣ψ2n2

〉 ⊗ · · · ⊗ ∣∣ψDnD

〉
, (13)

where |ψknk
〉 describes the state of particle k localized around

some position nk�. This could be the passage of D particles
through N -slit apertures. This type of state has been produced
for D = 2 photons [33] and, in Ref. [24], it was shown that

MVs were useful (if not necessary) for demonstrating quantum
correlations such as entanglement and EPR steering from
interference patterns.

The wave function 〈x1, . . . ,xD|�D〉 of the D-partite state
(13) is

�D(x1, . . . ,xD) =
N−1∑

n1,...,nD=0

Cn1,...,nD

D∏
k=1

ψnk
(xk). (14)

Each wave packet ψnk
is given by Eq. (2) and its Fourier

transform φnk
by Eq. (4). The momentum-space wave function

of the D-partite state is

�D(p1, . . . ,pD) =
N−1∑

n1,...,nD=0

Cn1,...,nD

D∏
k=1

φ0(pk)e2iπ�nkpk .

(15)

Rewriting in terms of modular variables, pj = mj

l
+ sj , and

assuming φ0(pj ) ∼ const over the range −1/2� to 1/2�, we
have

�D(p1, . . . ,pD) =
⎧⎨
⎩

D∏
j=1

φ0

(mj

�

)⎫⎬
⎭ × g(�s), (16)

with

g(�s) =
∑

�n
Cn1,...,nD

e2iπ��n·�s , (17)

where �n · �s = n1s1 + · · · + nDsD and the sum is over all
values of the vector �n. The entanglement present in the
state depends upon the coefficients Cn1,...,nD

. For example,
if Cn1,...,nD

∝ δn1,n × · · · × δnD,n, then all particles go through
the nth slit, corresponding to an entangled state, and we have

gn(�s)
1√
N

∑
n

e2iπ��n·�s . (18)

This is similar to a GHZ state [16], where all particles are in
either the zero state or the one state, corresponding to N = 2.
In the case of more than two slits, one might expect novel
multislit multiparticle interference effects to appear.

A number of methods exist to identify entanglement in
discrete variable systems [43]. However, states of the form
(13) describe continuous variable systems. The wave function
corresponding to these entangled states is similar to the one-
particle wave functions illustrated in Fig. 1. In the multipartite
case, we have the same type of squeezing relation between
the number of slits N and the width of the function |g(�s)|2.
However, now the squeezing is in terms of the global variable
�s and appears as quantum entanglement between the particles.

It is well known that squeezing in global variables can
produce entanglement. The most well-known example is the
bipartite EPR state [7], which is simultaneously perfectly cor-
related in the variables x1 − x2 and p1 + p2. The entanglement
can be identified using criteria that are based on the variances
or entropies of these global variables [44–47]. For the EPR
state, both the entropy and the variance of the global variables
above are zero. The EPR state is the limiting case of the more
general two-mode squeezed state.

In the case of state (16), the squeezing is revealed only when
we isolate the integer and modular parts of the position and
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momentum variables. For example, we note in Fig. 1 that the
width of the entire momentum function �(p)|2 does not change
when N increases. As N increases, so does the squeezing in �s
and the correlations between the individual modular variables
sj . However, this does not appear if we consider criteria that
are based solely on the complete position x and momentum p.
It is necessary to consider modular variables. As an example,
consider a state of the form (16) with D = 2. Moreover, let
us consider that the wave functions ψ can be approximated
by Dirac δ functions, and that N = ∞. In this case, it is
straightforward to calculate that the x variables are perfectly
correlated, x1 − x2 = const, suggesting entanglement similar
to the EPR state. However, the probability distribution of the
momentum variable P (p1 + p2) is an infinite comb of Dirac
δ functions centered at integer multiples of 1/�, which has
infinite entropy and infinite variance. Thus, any of the criteria
[44–47] will not detect entanglement. However, isolating
the modular part of the momentum, one can easily check
that they are perfectly anticorrelated, s1 + s2 = const. Thus,
entanglement criteria for modular variables such as [24,35]
can be successfully employed.

The same is true for multipartite entanglement. Entangle-
ment criteria available in the literature for continuous variables
[48–51] involve variances or correlation functions of x and p.
However, as described above, the correlations present in states
of the form (13) are only revealed when modular variables are
considered. In the next section, we provide a criterion to test
for genuine multipartite entanglement that is especially suited
to states of the form (15).

IV. GENUINE ENTANGLEMENT

A state that is biseparable in bipartition A|B can be written
as

σA|B =
∑

k

λkρAk ⊗ ρBk, (19)

where λk � 0. Here, partition A consists of d subsystems and
B consists of D − d subsystems, such that all D systems are
contained in either A or B. Identifying genuine multipartite
entanglement then can be achieved by showing that the
quantum state cannot be written as a convex sum of biseparable
states (19):

σbs =
∑


ησ, (20)

where the index  runs over all possible bipartitions of the
form A|B, η � 0, and

∑
 η = 1. For D systems, there are

2(D−1) − 1 possible bipartitions. Figure 2 shows the possible
bipartitions for D = 3 and D = 4.

We will start by considering an entanglement criteria for
the biseparable pure state |φA〉|φB〉 (subscripts have been
dropped for notational convenience) and then extend the result
to biseparable mixed states.

A. General bipartitions

Let us divide the D-partite system into two bipartitions A

and B, so that A contains d subsystems and B contains D − d

subsystems. Let us define an arbitrary position variable Xj and

FIG. 2. (Color online) Possible bipartitions for (a) D = 3 and (b)
D = 4 subsystems.

momentum variable Pj for bipartitions j = A,B. In general,
these variables can be linear combinations of the individual
position and momentum variables x and p of each subsystem
contained in the partition j . Explicit definition of the variables
is given in Appendix B. We consider the modular-variable
decomposition of each of these partition variables,

Xj = Nj� + Rj (21a)

and

Pj = 1

�
Mj + Sj . (21b)

We now define global modular variables of the whole
system:

N± = NA ± NB (22a)

and

S± = SA ± SB. (22b)

Let us consider first the global variables S±. For the
separable state |σ 〉 = |φA〉|φB〉, we have the probability dis-
tribution P (SA,SB) = |〈SA,SB |σ 〉|2 = PA(SA)PB(SB). From
this, one can calculate the probability density P (S±) for global
variables, which is

P±(S±) = [PA ∗ P ±
B ](S±), (23)

where P ± = P (±S) and ∗ represents a convolution opera-
tion. A continuous variable whose probability density is the
convolution of the probability densities satisfies the entropy
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power inequality [42]. Thus, we can write, for the continuous
Shannon entropy [47],

h(S∓) � 1
2 ln[e2h(SA) + e2h(SB )]. (24)

For the discrete variables N±, we exploit the fact that
the entropy of the sum or difference of two independent
random discrete variables is always greater than the entropy of
each variable [42]. Therefore, we have H (N±) � H (NA) and
H (N±) � H (NB), and we can write

H (N±) � 1
2 ln

[
1
2e2H (NA) + 1

2e2H (NB )
]
. (25)

Then, we can write

H (N±) + h(S∓) � 1
2 ln[e2h(SA) + e2h(SB )]

+ 1
2 ln

[
1
2e2H (NA) + 1

2e2H (NB )
]
. (26)

In Appendix B, we show that variables Xj and Pj defined
in Eq. (21) can be chosen so that the following uncertainty
relation is satisfied:

H (Nj ) + h(Sj ) � − ln �, (27)

where j = A,B. Then, using inequality (27) in inequality (26)
gives

H (N±) + h(S∓)

� ln
1

�
+ 1

2
ln{1 + cosh[2h(SA) − 2h(SB)]}. (28)

Since cosh(x) � 1, we have

H (N±) + h(S∓) � ln

√
2

�
, (29)

which is satisfied by a generic biseparable pure state. Since
any mixed state can be written as a convex sum of pure states,
it follows that from the concavity of the Shannon entropy, for
any state

σA|B =
∑

ηk|φAk〉〈φAk| ⊗ |φBk〉〈φBk| (30)

separable in partition A|B, we have

H (N±)σA|B + h(S∓)σA|B �
∑

λk[H (N±)k + h(S∓)k].
(31)

It follows from η � 0,
∑

k ηk = 1, and Eq. (29) that

H (N±)σA|B + h(S∓)σA|B � ln

√
2

�
. (32)

Thus the criteria also holds for biseparable mixed states. We
note that we made no restriction on the size of the subsystems A

and B. Thus, general inequality (29) can be used for different
definitions of NA, NB , SA, and SB to produce a number of
different inequalities for any bipartition A|B of the system.

The one restriction in our criteria is the choice of Xj and
Pj (j = A,B) and thus Nj and Sj so that inequality (27) is
satisfied. In Appendix B, we show that this amounts to defining
these variables as orthogonal transforms of the original
position and momentum variables of the D subsystems. Thus,
our criteria can be tested for a general class of variables.

Below we will use these inequalities to construct entangle-
ment criteria for the most general biseparable states of form

(20). To do so, it will be convenient to exponentiate both sides
of inequality (32), giving

WA|B(σA|B) �
√

2

�
, (33)

where

WA|B(σA|B) = exp{H (N±)σA|B + h(S∓)σA|B }. (34)

Here we include σA|B in the notation to explicitly denote that
inequality (33) is valid for states separable in partition A|B.
Since the exponential of any real number is real and non-
negative, in general, any state ρ satisfies

WA|B(ρ) � 0, (35)

which is a property that will be helpful below.

B. Multipartite entanglement tests

We will now use the inequalities developed in the last
section, in particular inequality (33), to show how one
can test for genuine D-partite entanglement using the MV
description. Our results are inspired by the continuous variable
entanglement criteria developed in Ref. [51].

For a system composed of D subsystems, there are 2(D−1) −
1 possible bipartitions. Thus, using the method described in
Sec. IV A, we can define variables N± and S± that test each
of these bipartitions separately, resulting in an inequality of
form (33) for each set of variables. Consider an entanglement
criteria designed to identify entanglement in the bipartition
′ applied to the general biseparable state (20). Using the
concavity of the Shannon entropy [42], we have

W′(σbs) �
∑


ηW′(σ), (36)

where W′(ρ) is the entanglement criteria, designed for
bipartition ′ applied to the state σ that is separable
in bipartition . The sum in W′(σbs) thus contains the
bipartition test W′ applied to all possible bipartitions of
the general biseparable state (20). By definition, at least
one of the terms in sum (20) will satisfy inequality (33).
That is, if for a certain term in the sum we have  = ′,
then W, �

√
2/� by inequality (33). If  �= ′, we have

W′, � 0 by inequality (35), which is satisfied by any state.
Thus, for any ′, we have

W′(σbs) � η′W′(σ′) � η′

√
2

�
. (37)

Testing for all possible bipartitions ′ we can sum over the
results, giving

Wsum(σbs) =
∑
′

W′(σbs) �
∑


ηW(σ) �
√

2

�
, (38)

where we used
∑

 η = 1 in the last step. Inequality (38) is
satisfied by any biseparable state of form (20). Violation of
the inequality Wsum(ρ) �

√
2/� is thus a criteria for genuine

D-partite entanglement of state ρ. The challenge is to construct
proper variables that identify this entanglement in interesting
quantum states. In Sec. V, we illustrate this for GHZ-like
states.
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V. EXAMPLE

Let us consider state (13), described by wave functions (14)
and (15) for D = 3 and Cn1,n2,n3 = δn1,nδn2,nδn3,nN−1/2� 3/2.
This corresponds to a state where the three particles are all
found in the same wave packet ψn, similar to a GHZ state. The
three possible bipartitions can be written (aa′)|b, for a,a′,b =
1,2,3. We define X1 = (xa + xa′ )/2, X2 = (xa − xa′)/2, P1 =
pa + pa′ , and P1 = pa − pa′ , so that X1P1 + X2P2 = xapa +
xa′pa′ . Then, from Eq. (15), the wave function �3(P1,P2,pb)
can be written

�3(P1,P2,pb) =
√

�3

N

N−1∑
n=0

e2πni�(P1+pb)φ0

(
P1 + P2

2

)

× φ0

(
P1 − P2

2

)
φ0(pb). (39)

Changing to MVs as defined in Eqs. (21), we have

�3(P1,P2,pb) −→ F (M1,M2,mb)g(S1,S2,sb), (40)

where

g(S1,S2,sb) =
√

�3

N

N−1∑
n=0

e2πin�(S1+sb). (41)

The momentum-space wave function φ0 is broad, so we can
approximate φ0(p) ≈ φ0(m/�) and we write

F (M1,M2,mb) = φ0

(
M1 + M2

2�

)
φ0

(
M1 − M2

2�

)
φ0

(mb

�

)
.

(42)

We can change now to the global variables N± and S± defined
in Eq. (22), where NA = N1, NB = nb, SA = S1, and SB = sb.
Since the function g(S1,S2,sb) does not depend upon S2, we
can write

g(S+,S−) = �

2
√
N

N−1∑
n=0

e2πin�S+ . (43)

The function g(S+,S−) factors into a product of the functions
f (S−) = √

�/2 and

g(S+) =
√

�

2N

N−1∑
n=0

e2πin�S+ . (44)

f (S−) = √
�/2 is analogous to passage through a single slit

aperture of width 2� centered at the origin, so that P (N−) =
δN−,0 and H (N−) = 0. The entropy h(S+) defined in Eq. (12)
can be calculated from the probability distribution P (S+) =
|g(S+)|2, giving

P (S+) = �

2N

N−1∑
n,n′=0

e2πi(n−n′)�S+ . (45)

The entropy h(S+) can be calculated using Eq. (45). Values
of WA|B − √

2/� are given in Fig. 3. Violation can be achieved
for N � 2. From symmetry, all bipartitions violate by the
same amount, giving Wsum = WA|B �

√
2/�, which identifies

genuine tripartite entanglement.
For GHZ states with D subsystems, similar calculations

can be performed. For any bipartition, variables can be

-0.9

-0.675

-0.45

-0.225

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

FIG. 3. (Color online) The dimensionless quantity WA|B −√
2/� as a function of the number of interfering wave packets N for

GHZ-like states. Negative values indicate entanglement. The variable
� is a dimensionless length parameter. Entanglement is identified for
all N � 2. For N = 1, the state is separable.

defined so that N− = NA − NB = const and P (S+) is given by
Eq. (45). Thus, for any bipartition, we obtain the same values of
WA|B reported in Fig. 3, and we can identify genuine D-partite
entanglement since Wsum = WA|B �

√
2/�.

VI. CONCLUSION

We derived entanglement criteria for bipartite entanglement
in generic bipartitions of a multipartite quantum state using
modular variables. These inequalities were used to construct
entanglement tests for genuine multipartite entanglement. Our
results should be useful for exploring novel quantum inter-
ference phenomena involving multiple particles. For example,
we showed that these criteria detect genuine entanglement
in a generalized GHZ-like state of D particles all passing
through the same slit of an N -slit aperture. Since these states
exhibit correlations in both discrete and modular (continuous)
variables, our entanglement criteria might find use in novel
quantum information protocols. For example, the discrete
correlations might be used to construct a shared cryptographic
key between several users, while the correlations in the
modular components are used only for security checks.

ACKNOWLEDGMENTS

Financial support was provided by the Brazilian funding
agencies Fundação Carlos Chagas Filho de Amparo à
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APPENDIX A: MODULAR-VARIABLE DESCRIPTION
OF ARBITRARY WAVE FUNCTIONS

In Sec. II, we showed that MVs appear naturally for periodic
wave functions. Here we show that the MV description can be
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safely used to analyze any wave function. In other words, the
uncertainty relation (10) is valid in the most general sense.

Consider the generic wave function ψ(x), and its Fourier
transform

φ(p) =
∫ ∞

−∞
dxe2πixpψ(x). (A1)

Using the MVs defined in Eqs. (6), we have

φ(m,s) =
∑

n

e2πi�ns

∫ �/2

−�/2
dre2πir(m/�+s)ψn(r), (A2)

where ψn(r) is the original wave function in the region
n�/2 � x < (n + 1)�/2. In the example given in Sec. II, the
function φ(m,s) factored into functions φ0(m/�) and g(s). In
the general case, this is no longer true, and the variable s cannot
be written in terms of a “modular wave function” g(s). Still,
the probability distribution P (s) can be calculated by summing
over the m variable as

P (s) =
∑
m

|φ(m,s)|2, (A3)

giving

P (s) = 1

�

∑
n,n′

In,n′e2πi�s(n−n′). (A4)

Here we have used the fact that
∞∑

m=−∞
e2πim(r−r ′)/� = 1

�
δ(r − r ′), (A5)

and defined

In,n′ =
∫ �/2

−�/2
drψn(r)ψ∗

n′(r). (A6)

Using the normalization of ψ(x),∫
|ψ(x)|2dx =

∑
n

Indr = 1, (A7)

we can rewrite P (s) as

P (s) = 1

�
+ 2

�

∑
n,n′,n<n′

Re(In,n′ ) cos 2π�s(n − n′). (A8)

One can see that 0 � P (s) � 1 and that P (s) is normalized
in the region −1/2� � s � 1/2�, showing that P (s) is a
bona fide probability distribution. In fact, P (s) is analogous
to the probability distribution of a general quantum state
written in the plane-wave basis exp(i2πn�s). The probability
distribution p(n) for this state is p(n) = In,n. Since probability
distributions p(n) and P (s) correspond to a quantum state,
they satisfy the uncertainty relation (10). Moreover, a general
mixed state � can be written as a convex sum of pure states
|ψj 〉, which leads to probability distributions

P�(s) =
∑

j

λjPj (s) (A9)

and

p�(n) =
∑

j

λjpj (n), (A10)

with λj � 0 and
∑

λj = 1. Since each Pj (s) and pj (n) satisfy
(10), P�(s) and p�(n) also satisfy the uncertainty relation (10).

APPENDIX B: ENTROPIC UNCERTAINTY RELATION
FOR COMPOSITE SYSTEM

Here we prove the general uncertainty relation (27) with
j = A,B for the variables defined in Eqs. (22). Consider
the most general pure state for partition A, given by wave
function �(�x). Here, �x = (x1, . . . ,xd ) is a d-dimensional
vector describing the position of the d subsystems contained
in partition A. The Fourier transform is

�( �p) =
∫

d �x2πi �x· �p�(�x), (B1)

where �p = (p1, . . . ,pd ). Let us change to a new, generic set
of variables

Xk =
d∑

j=1

akjxj (B2a)

and

Pk =
d∑

j=1

αkjpj , (B2b)

so that �x · �p = �X · �P . We can rewrite the wave function as

�( �P ) =
∫

d �Xe2πi �X· �P �( �X). (B3)

Let us now define modular variables for these new variables
as

Xk = Nk� + Rk (B4)

and

Pk = 1

�
Mk + Sk. (B5)

Following the calculation in Appendix A, we can calculate the
probability distribution P (�S), giving

P (�S) = 1

�d

∑
�N, �N ′

I �N, �N ′e
2πi�( �N− �N ′)· �S, (B6)

where

I �N, �N ′ =
∫ �

−�

d �R� �N ( �R)�∗
�N ′ ( �R), (B7)

and � �N( �R) is the wave function �( �X) in the region � �N � �X �
� �N + �1. Suppose now that Xk and Pk were defined so that
X1 = XA and P1 = PA, giving N1 = NA and S1 = SA. The
probability distribution P (SA) can be obtained by integrating
over all of the Sk variables with k �= 1. We then have d − 1
integrals of the form∫ 1/2�

−1/2�

e2πi�NSdS = sin Nπ

�Nπ
= 1

�
δN,0, (B8)

where the right-hand side is true for integer values of N , as is
the case. We have

P (SA) = 1

�

∑
N2,...,Nd

∑
NA,N ′

A

I
N2,...,Nd

NA,N ′
A

e2πi�(NA−N ′
A)SA, (B9)
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where we defined

I
N2,...,Nd

NA,N ′
A

= δN2,N
′
2
· · · δNd,N ′

d
I �N, �N ′ . (B10)

Probability distribution P (SA) is completely analogous to that
of a mixed state, given by P�(S) of Eq. (A10). Thus, P (SA)
satisfies the uncertainty relation

H (NA) + h(SA) � − ln �. (B11)

[1] Quantum Theory and Measurement, edited by J. A. Wheeler and
W. H. Zurek (Princeton University Press, Princeton, NJ, 1983).

[2] M. O. Scully, B. G. Englert, and H. Walther, Nature (London)
351, 111 (1991).

[3] T. J. Herzog, P. G. Kwiat, H. Weinfurter, and A. Zeilinger, Phys.
Rev. Lett. 75, 3034 (1995).

[4] Y.-H. Kim, R. Yu, S. P. Kulik, Y. Shih, and M. O. Scully, Phys.
Rev. Lett. 84, 1 (2000).

[5] S. P. Walborn, M. O. T. Cunha, S. Pádua, and C. H. Monken,
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