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Experimental construction of a W superposition state and its equivalence
to the Greenberger-Horne-Zeilinger state under local filtration
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We experimentally construct a three-qubit entangled W superposition (WW̄ ) state on an NMR quantum
information processor. We give a measurement-based filtration protocol for the invertible local operation (ILO)
that converts the WW̄ state to the Greenberger-Horne-Zeilinger (GHZ) state, using a register of three ancilla
qubits. Further we implement an experimental protocol to reconstruct full information about the three-party WW̄

state using only two-party reduced density matrices. An intriguing fact unearthed recently is that the WW̄ state,
which is equivalent to the GHZ state under an ILO, is in fact reconstructible from its two-party reduced density
matrices, unlike the GHZ state. We hence demonstrate that, although the WW̄ state is interconvertible with the
GHZ state, it stores entanglement very differently.
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I. INTRODUCTION

Explorations of multiqubit entanglement have unearthed
several families of states with curious quantum properties and
there have been many attempts in recent years to characterize
all the denizens of this quantum zoo [1–3]. The situation
becomes complicated for systems of more than two qubits
and correspondingly the classification of their entanglement
turns out to be more involved [4,5].

Pure entangled states of three qubits fall into two categories,
namely, the Greenberger-Horne-Zeilinger (GHZ) class or
the W class, under stochastic local operations and classical
communication (SLOCC) [6,7] with the maximally entangled
GHZ and W states being given by

|GHZ〉 = 1√
2
(|000〉 + |111〉),

(1)
|W〉 = 1√

3
(|001〉 + |010〉 + |100〉).

The entanglement of the GHZ state is fragile under qubit
loss; i.e., when any one of the qubits is traced out, the other
two qubits become completely disentangled [2,8]. Hence if
one of the parties decides not to cooperate, the entanglement
resources of the GHZ state cannot be used. In contradistinction
to the GHZ state, the W -state residual bipartite entanglement
is robust against qubit loss [2].

It has been shown by Linden et al. that almost every
pure state of three qubits can be completely determined
by its two-party reduced density matrices [9]. The two
inequivalent entangled states, namely, the W and GHZ states,
have contrasting irreducibility features: while GHZ states
have irreducible correlations and cannot be determined from
their two-party marginals [10,11], W states are completely
determined by their two-party marginals [12–14]. Tripartite
entanglement has been studied extensively in the context of
optics [15–20] and NMR [21–27].
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Recently, the entanglement properties of a permutation
symmetric superposition of the W state and its obverse
W̄ = 1/

√
3(|011〉 + |101〉 + |110〉) have been characterized

[28–30]:

|WW̄ 〉 = 1√
2
(|W 〉 + |W̄ 〉)

= 1√
6
(|001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉).

(2)

While this state (referred to henceforth as the WW̄ state)
belongs to the GHZ entanglement class, its correlation infor-
mation (in contrast to the GHZ state) is uniquely contained in
its two-party reduced states. The argument for reconstructing
the three-qubit WW̄ state from its two-party reduced states
runs along lines similar to the original argument of Linden
et al. [9]. If we assume another state to have the same two-party
reduced density matrices as the WW̄ state, this constraint can
be used to prove that the new state is no different from the
original WW̄ state [29,30].

In this work we focus on the WW̄ state. We provide an
explicit measurement-based filtration scheme to filter out the
|GHZ〉 state from the WW̄ state. Further, we experimentally
construct and tomograph the WW̄ state on an NMR quantum
information processor of three coupled qubits. We exper-
imentally demonstrate that the information about tripartite
correlations present in this state can indeed be completely
captured by its two-party reduced density matrices. We recon-
struct the experimental density matrices using complete state
tomography and compare them with the theoretically expected
states and also compute state fidelities. The GHZ class of states
are an important computational resource [1] and it has been
shown that states that are SLOCC equivalent to these can be
used for the same kind of quantum information processing
tasks [2]. Therefore, it is expected that the WW̄ state will
also prove useful for quantum computation. Furthermore, the
quantification of the tripartite correlation information present
in this state is easier as compared to the GHZ state, as
entanglement measurement requires only two-qubit detectors.

The paper is organized as follows. Section II describes
how we obtain the GHZ state from the WW̄ state by local
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filtration based on projective measurements using a register
of three ancilla qubits. Section III describes the experimental
creation of the WW̄ superposition state on a three-qubit NMR
quantum information processor. Section III A contains the
details of the molecule used, the NMR pulse sequence for
WW̄ state construction and the results of state tomography.
The information content of the WW̄ state as captured from its
two-party marginals is described in Sec. III B. We conclude
in Sec. IV with some remarks about GHZ and WW̄ types
of three-qubit entanglement and the relationship between the
entanglement class and how information about entanglement
is stored in a quantum state.

II. FILTRATION PROTOCOL TO SHOW THE SLOCC
EQUIVALENCE OF W W̄ AND GHZ

Measurement-based local filters have been used for en-
tanglement manipulation in the context of violation of Bell
inequalities as well as for the detection of bound entangled
states [31–33]. No local operations can convert a state from
the GHZ class to the W class. However, surprisingly, it has
been shown that the WW̄ state is in the GHZ class, deriving
from the fact that it is related to the GHZ state via the SLOCC
class of operations given by [29,30]

|GHZ〉 ≡ A ⊗ A ⊗ A|WW̄ 〉, (3)

with

A = 1√
3

(
1 ω

1 ω2

)
(4)

being an invertible local operation (ILO), where ω = eι 2π
3

denotes the cube root of unity. We have used “≡” instead of
an equality sign in Eq. (3) because A is a nonunitary operator
that does not preserve the norm and the two sides in Eq. (3) do
not have the same norm.

We now proceed to reinterpret A as an action on an
ensemble of identically prepared WW̄ states and implement
the operation described in Eq. (3). In this process, we will
have to discard some copies and the new ensemble that we
construct with each member in the filtered GHZ state will
have fewer copies as compared to the original ensemble of
WW̄ states. These aspects will be brought out more clearly
when we describe the measurement-based filtration protocol
to realize the ILO.

Since A acts on each of the qubits locally, we first want
to realize the operation A on a single qubit. The nonunitary
operator A has a singular valued decomposition,

A = UDV, (5)

where the unitary operators U and V are given by

U = eι π
2√
2

(
e−ι π

6 −eι π
3

eι π
6 −e−ι π

3

)
, V = 1√

2

(−ι ι

ι ι

)
, (6)

and the nonunitary diagonal operator D is given by

D =
(

1 0
0 1√

3

)
. (7)

The operators U and V are unitary and can be implemented
via a local Hamiltonian evolution. Therefore, we now turn to
the implementation of D on a one-qubit state.

From the two columns of the operator D we define two
vectors:

|u1〉 =
(

1
0

)
and |u2〉 = 1√

3

(
0

3
1
4

)
. (8)

These vectors are orthogonal to each other but are not
normalized. We now extend the Hilbert space of the system by
adding an ancilla qubit. We extend the vectors u1 and u2 to the
composite Hilbert space formed by the ancilla and the system
to obtain two four-dimensional vectors:

|ξ1〉 =

⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ and |ξ2〉 = 1√

3

⎛
⎜⎜⎝

0
3

1
4

0√
3 − √

3

⎞
⎟⎟⎠. (9)

The vectors |ξ1〉 and |ξ2〉 are not only mutually orthogonal but
also normalized.

Using these orthonormal vectors |ξ1〉 and |ξ2〉, we construct
the orthogonal projectors P1 and P2:

P1 = |ξ1〉〈ξ1| =

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠,

(10)

P2 = |ξ2〉〈ξ2| = 1√
3

⎛
⎜⎜⎝

0 0 0 0

0 1 0
√√

3 − 1
0 0 0 0

0
√√

3 − 1 0
√

3 − 1

⎞
⎟⎟⎠.

We define the projection operator P = P1 + P2. The effect of
the projector P on the composite system of the single qubit
and a one-qubit ancilla turns out to be

P =
(

D �

� D′

)
4×4

, (11)

where D is the diagonal part of the singular value decompo-
sition of the operator A given in Eq. (7), the complementary
matrix D′ = I − D, and the matrix � can be obtained readily
from Eq. (10).

If we prepare the ancilla in the state |0〉〈0| with the system
being in an arbitrary state ρ, the action of P on the composite
system is given by

P (|0〉〈0| ⊗ ρ)P =
(

DρD Dρ�

�ρD �ρ�

)
. (12)

If we measure the projector P on the composite system
(system and ancilla), whenever the measurement gives a
positive answer, the state after measurement is given by the
right-hand side of Eq. (12). We retain only these cases and
discard the state whenever the outcome of the measurement
is negative. Further, on the final state given in Eq. (12), we
measure the projector |0〉〈0| on the ancilla alone. As before, if
the outcome is positive we retain the state, and if the outcome
is negative we discard the state. In the case where the outcome
is positive, the resultant state is |0〉〈0| ⊗ DρD and upon
discarding the ancilla we get the state of the system to be DρD.
This completes the application of the nonunitary invertible
operator D on ρ. Sandwiching this operation between the
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unitary transformations U and V as given in Eq. (5), we achieve
the application of the ILO operator A on ρ.

The scheme is easily extendable to 2 ⊗ 2 ⊗ 2 systems,
where we locally implement A on each of the three qubits.
We imagine that the tripartite system is divided between
Alice, Bob, and Charlie and each of them can perform local
operations at their location. We begin with the state |WW̄ 〉 for
the three qubits, attach a one-qubit ancilla to each qubit, and
measure the local projector P for each qubit. If the outcome
of these measurements (which amount to a measurement of
P ⊗ P ⊗ P ) is positive we retain the state, otherwise we
discard the state. Then on each ancilla, we measure the
projector |0〉〈0| and retain the cases in which all the outcomes
are positive. Upon discarding the ancillas, the resultant state
is the application of D on each qubit. When we sandwich this
process between the unitaries U and V on each qubit, we get
the final state as |GHZ〉. This process of measurement-based
filtration is schematically explained in Fig. 1. To decide when
to discard and when to retain the outcome, we require classical
communication between Alice, Bob, and Charlie. Since we
discard the output state in a number of cases, the size of the
ensemble obtained in the end is smaller than the size of the
original ensemble.

The reason that we have to discard a number of cases
is connected with the nonunitary nature of the operation.
Since the operation is not unitary, it can be implemented only
probabilistically and therefore discarding some of the cases is
inevitable. The outcome of the measurement of P ⊗ P ⊗ P

in the affirmative, followed by the affirmative outcome of the
measurement of |0〉〈0| for each of the ancilla qubits, indicates

WW̄ ∈ HA ⊗HB ⊗HC

|0 0

|0

(V ⊗ V ⊗ V ) WW̄

Discard the ancillas

|GHZ A ⊗ A ⊗ A WW̄

Alice Bob Charlie

allicnAallicnA

Ancilla
Measure

Measure

Keep if all outcomes “yes”.
Needs Classical Comm.

Keep if all outcomes “yes”.
Needs Classical Comm.

Implement V V V

⊗
⊗

⊗

P P P

|0 0| ⊗ I |0 0| ⊗ I I ⊗ |0 0|

U U UImplement

FIG. 1. Schematic diagram of the filtration scheme to implement
the nonunitary ILO transformation that converts a WW̄ state to a
GHZ state.

that the operation D has been implemented successfully. For
the cases when the answer is not affirmative for any one or
more of the measurements, the output state is not the desired
state and we discard the same. This is the reason that the
process is called a filtering process.

III. NMR IMPLEMENTATION

To prepare the WW̄ state on a three-qubit NMR quantum
information processor, we employ the three fluorine (spin-1/2)
qubits of trifluoroiodoethylene. The molecular structure and
NMR parameters of this three-qubit system are adequate
for the kind of manipulations involved in quantum state
preparation and are given in Fig. 2(a). Average fluorine
longitudinal T1 relaxation times of 5.0 s and T2 relaxation times
of 1.0 s were experimentally determined. The equilibrium
fluorine NMR spectrum obtained after a π

2 readout pulse is
shown in Fig. 2(b).

The system was first initialized into the |000〉 pseudopure
state using the standard spatial averaging technique [34], with
the density matrix given by

ρ000 = (1 − ε)ρI + ε|000〉〈000| (13)

with a thermal polarization of ε ≈ 10−5 and ρI = I/8 being
a normalized 8 × 8 identity operator. NMR is an ensemble
technique dealing with zero trace observables and only the
deviation density matrix can be experimentally observed. The
pure (pseudopure) state in Eq. (13),

|000〉〈000| = 1

ε
ρdev + ρI, (14)

(a)

(b)

(2)

(1)

(3)

F

F

F

I

ν1=9497.0Hz J12=69.8Hz

ν2=0.0Hz J23=−129.0Hz

ν3=−13897.0Hz J13=47.5Hz

0.0 −0.425.025.4 −37.0

ωF (in ppm)

Spin 1 Spin 2 Spin 3

|11 10 01 00 10 00 11 01 10 00 11 01

FIG. 2. (Color online) (a) Molecular structure and NMR param-
eters (chemical shifts and J coupling in Hz) and 19F NMR spectrum
of trifluoroiodoethylene. The three fluorine spins correspond to
the three-qubit system. (b) The 1D 19F NMR thermal equilibrium
spectrum obtained after a π

2 readout pulse. The NMR transitions of
each qubit are labeled by the corresponding logical states of the other
two qubits.
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can hence be obtained by normalizing the deviation density
matrix (ρdev = ρ000 − ρI) by the factor ε and adding ρI to
it [35]. The experimentally obtained density matrices were to-
mographed by standard state tomography procedures [36–38].
The three-qubit experimental density matrix was tomographed
using a set of eleven detection operators defined by {III, IIX,
IXI, XII, IIY, IYI, YII, YYI, IXX, XXX, YYY}, and the two,
two-qubit reduced density matrices were determined using
a set of four detection operators defined by {III, IXI, IYI,
XXI} and {III, IIX, IIY, IXX}, respectively, with I denoting
the identity (or no-operation) operator and X(Y) denoting a
spin-selective π

2 pulse of X(Y) phase on a specified qubit.
The fidelity of the reconstructed state was computed using the
Uhlmann-Jozsa fidelity measure [39,40]:

F = [Tr(
√√

ρtheoryρexpt
√

ρtheory)]2, (15)

where ρtheory and ρexpt denote the theoretical and experimental
density matrices, respectively.

A. W W̄ construction scheme

The circuit to construct a WW̄ state consists of several
single-qubit and two-qubit gates. A single-qubit gate, Ui[α]y ,
acting on the ith qubit, achieves a rotation by the angle α

around the y axis with a corresponding unitary matrix given by

Ui[α]y =
(

cos α
2 − sin α

2

sin α
2 cos α

2

)
. (16)

A two-qubit controlled-rotation gate CRij [φ]y , implements
the single-qubit rotation Uj [φ]y on the target qubit j about
the y axis, if the control qubit i is in the state |1〉. The CNOTij

gate implements a controlled-NOT operation with the ith qubit
as the control and the j th qubit as the target.

The sequence of gates to construct a WW̄ state, starting
from the initial pseudopure state |000〉, is given as follows:

|000〉
↓ U1[− π

3 ]y
↓

1
2

(√
3|000〉 − |100〉

)

↓ CR12

[
2 cos−1 (1/

√
3)

]
y

↓

1
2

(√
3|000〉 − 1√

3
|100〉 −

√
2
3 |110〉

)

↓ CR21[− π
2 ]y

↓
1
2

(√
3|000〉 − 1√

3
(|100〉 + |110〉 + |010〉)

)

↓ CNOT13 ↓
1
2

(√
3|000〉 − 1√

3
(|101〉 + |111〉 + |010〉)

)

↓ CNOT23 ↓
1
2

(√
3|000〉 − 1√

3
(|101〉 + |110〉 + |011〉)

)

↓ U1[ π
2 ]y

U2[ π
2 ]y

U3[ π
2 ]y

↓
1√
6
(|001〉 + |010〉 + |011〉 + |100〉 + |101〉 + |110〉).

(a)

(b)

|0

|0

|0

U1[−α]

CR12[β]

CR21[−γ] U1[
π
2
]

U2[
π
2
]

U3[
π
2
]

1

2

3

α

y

y

β
2

x

β
2

x

γ
2

y

γ
2

y x x y y

y

y

τ12 τ12 τ13 τ23 3τ12

T
O
M
O
G
R
A
P
H
Y

FIG. 3. (Color online) (a) Quantum circuit showing the sequence
of gates required to construct the WW̄ state, starting from the
pseudopure state |000〉. The gate operations are described in the
main text and all the rotations take place about the y axis. (b) NMR
pulse sequence to create a WW̄ state. All the pulses are low-power
selective pulses represented by shaped blocks. Solid black shapes
are π refocusing pulses, white shapes correspond to pulses of π

2 flip
angle, and the gray shaded shapes are labeled with their specific
flip angles and phases. The axes of rotation are specified at the top of
each pulse. Vertical dotted red lines show the correspondence between
the quantum circuit and the experimental pulse sequence. All pulses
are of phase x unless otherwise labeled. The values of the rf pulse
flip angles used are α = π

3 , β = 2 cos−1 ( 1√
3
), and γ = π

2 , and τij

represents an evolution under the Jij coupling. The last 3τ12 period
is used to compensate the extra phase acquired (as described in the
text).

The quantum circuit to construct the WW̄ state on a three-qubit
system is given in Fig. 3(a).

The NMR pulse sequence to create the WW̄ state, starting
from the pseudopure state |000〉 is given in Fig. 3(b). All the
pulses are shaped pulses, labeled by the corresponding axes
of rotation and the flip angles; τij denotes an evolution period
under the Jij coupling. Refocusing (π ) pulses are applied in
the middle of the evolution periods to compensate for chemical
shift evolution and pairs of π pulses are introduced at 1/4
and 3/4 of the evolution periods to eliminate undesired J

evolutions. After the evolution interval τ23 and the [π
2 ]y on

the third qubit (corresponding to a CNOT23 gate), the state
obtained is

√
3

2 |000〉 − 1
2
√

3
(ι|101〉 + |110〉 + ι|011〉). There is

an undesirable extra relative phase of “ι” that has accumulated
between two of the basis vectors. This undesired extra phase
factor is compensated for during the evolution interval 3τ12.
The implementation of the last module (simultaneous [ π

2 ]y
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FIG. 4. (A1,B1) Normalized amplitude and (A2,B2) phase time-
domain profiles of a spin-selective and a nonselective rf pulse,
respectively. (A3,B3) Frequency-domain pulse profile versus fre-
quency offset of a spin-selective and a non-selective rf pulse,
respectively. (A4,B4) Simulated magnetization excitation profiles
versus frequency offset in response to a 90◦ spin-selective and a
nonselective rf pulse, respectively.

pulses on all the three qubits) results in the desired WW̄ state
with no extra relative phase. Spin-selective excitation was
achieved using Gaussian-shaped pulses of duration 265 μs,
digitized with 1000 points, and exciting a bandwidth of
8000 Hz. The pulse profiles are robust with good selectivity and
give rise to a uniform spin response in the desired frequency
range. The excitation profile of the shaped pulse is uniform
up to 6000 Hz of the bandwidth, with very low intensity
tails extending up to ±10 000 Hz. The three fluorine spins
resonate over a very large bandwidth of 68 ppm and hence
uniform nonselective excitation cannot be achieved by a single
nonselective pulse. The nonselective excitation rf pulse we
designed comprises a set of three Gaussian shaped pulses that
are applied at different spin frequency offsets and frequency
modulated to achieve simultaneous excitation. This shaped
pulse is of 400 μs in duration, digitized by 1500 points.
The pulse excites bandwidths of 5000 Hz centered at the
three spin frequency offsets (9497, 0, and −13 897 Hz, with
the zero-frequency offset being on-resonance) and achieves
an almost hat-shaped excitation profile around the respective
resonance frequency offsets. Figure 4 depicts simulations of
the shaped rf pulse profiles to investigate their rf amplitude
and frequency offset sensitivity, with panels A and B showing
details of a selective and a nonselective rf pulse, respectively.

ppm
−115.2−115.4 ppm −152.2 ppm0.0 −0.425.025.4 −37.0

ωF (in ppm)

Spin 1 Spin 2 Spin 3

|11 10 01 00 10 00 11 01 10 00 11 01

FIG. 5. The one-dimensional 19F NMR spectrum corresponding
to the creation of the WW̄ state. The NMR transitions of each qubit
are labeled by the corresponding logical states of the other two qubits.

Figures 4(A1) and 4(A2) show the pulse shape profile in the
time domain with normalized amplitude and phase profiles for
a spin-selective rf pulse, while Figs. 4(B1) and 4(B2) show the
same profiles for a nonselective rf pulse. The frequency domain
profiles in Figs. 4(A3) and 4(B3) are the Fourier transforma-
tions of the shaped pulses, with spectral amplitude and phase
plotted versus the frequency offset for a spin-selective and a
nonselective rf pulse, respectively. Figures 4(A4) and 4(B4)
depict the excitation profile corresponding to a 90◦ excitation
pulse versus frequency offset, where Mx and My are the x and
y components of the magnetization vector. The spin response
was simulated for a single-spin Bloch model using the Bruker
NMRSIM package.

The NMR spectrum of the WW̄ state obtained by a
sequence of selective rotations on the initial pseudopure state
is shown in Fig. 5. Each spin multiplet has two resonance
peaks (as compared to four resonance peaks for the thermal
equilibrium state). The expected NMR spectral pattern of an
ideal WW̄ state should contain resonance peaks of equal
magnitude and phase, and deviations from ideal spectral
peak intensities and phases in the experimentally obtained
spectrum can be attributed to imperfections in the rf pulse
calibrations and to relaxation during the selective pulse
durations.

The tomograph of the experimentally constructed WW̄ state
is shown in Fig. 6. The experimentally tomographed state
was compared with the theoretically expected state and the
density matrices match well, within experimental error, with
a computed state fidelity of 0.96 [the fidelity was computed
from Eq. (15)].

B. Reconstruction of W W̄ from two-party reduced
density matrices

A protocol was developed [12] to validate the surprising as-
pect of multiparty correlations asserted by Linden et al. [9,41]
that the information about three-party correlations of almost all
pure three-qubit states (except for GHZ-type states) is already
contained in their corresponding two-party reduced states. We
delineate below the argument for how a general three-qubit
pure state, ρABC , can be completely determined by using any
of the equivalent sets (ρAB,ρAC), (ρAB,ρBC), or (ρAC,ρBC)
of reduced two-party states. The reduced single-qubit reduced
state ρA and the two-qubit reduced state ρBC share the same
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FIG. 6. The real (Re) and imaginary (Im) parts of the (a)
theoretically expected and (b) experimental density matrices for the
WW̄ state reconstructed using full state tomography. The rows and
columns of the bar graphs depict the computational basis of the
three qubits in binary order from |000〉 to |111〉. The experimentally
tomographed state has a fidelity of 0.96.

set of eigenvalues and can hence be written as [12]

ρA =
∑

i

pi
A|i〉〈i|,

(17)
ρBC =

∑
i

pi
A|i; BC〉〈i; BC|,

where {|i〉} are the eigenvectors of ρA with eigenvalues {pi
A},

and {|i; BC〉} are the eigenvectors of ρBC with eigenvalues
{pi

A}. Furthermore, the three-qubit pure states that are com-
patible with ρA and ρBC are given by

|ψABC ; α〉 =
∑

i

eιαi

√
pi

A|i〉 ⊗ |i; BC〉. (18)

Similarly, the three-qubit pure states that are compatible with
ρC and ρAB are given by

|ψABC ; γ 〉 =
∑

k

eιγk

√
pk

c |k; AB〉 ⊗ |k〉, (19)

where {|k〉} are the eigenvectors of ρC with eigenvalues {pk
c },

and {|k; AB〉} are the corresponding eigenvectors of ρAB . Since
the pure state |ψABC〉 is compatible with both ρAB and ρBC ,
we can now consistently find the values of αi and γk while
ensuring that |ψABC ; α〉 = |ψABC ; γ 〉.

We used the set of two, two-party reduced states (ρAB,ρBC),
to reconstruct the full three-qubit WW̄ state. The reconstructed
density matrix for the WW̄ state, using two sets of the
corresponding two-qubit reduced density matrices (ρAB,ρBC),
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FIG. 7. The real (Re) and imaginary (Im) parts of the tomo-
graphed density matrix for the WW̄ state. (a) The two-qubit reduced
density matrix ρAB . (b) The two-qubit reduced density matrix ρBC .
(c) The entire three-qubit density matrix ρABC , reconstructed from
the corresponding two-qubit reduced density matrices. The rows and
columns in the bar graphs encode the computational basis of the
qubits, from |00〉 to |11〉 for two qubits and from |000〉 to |111〉
for three qubits. The fidelity between the three-qubit state (ρABC)
reconstructed from the two-qubit density matrices and the three-qubit
state obtained by complete three-qubit state tomography is found to
be 0.91.

is given in Fig. 7. The two-party reduced states were able to
reconstruct the three-party WW̄ state with a fidelity of 0.91,
which matches well with the full reconstruction of the entire
three-qubit state given in Fig. 6(b).

IV. CONCLUSIONS

We described a measurement-based filtration scheme to
demonstrate the ILO equivalence of the WW̄ state with the
GHZ state. We experimentally implemented an NMR-based
scheme to construct a WW̄ state. We were able to show
that the three-qubit density operator ρABC obtained by full
state tomography matches well with the same three-qubit
state reconstructed using a set of two-party reduced density
operators (ρAB,ρBC). Thus, although the WW̄ state belongs to
the same entanglement class as the GHZ state, the two states
store information about multiparty correlations in completely
different ways. We thus experimentally demonstrated an
interesting feature of multiqubit entanglement, namely, that
two different entangled states belonging to the same SLOCC
class can still have their correlations exhibiting contrasting
irreducible properties.

Since distinguishing entangled states is still a hard task,
our work can be used as a benchmark to further classify
how different entangled states store information about their
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correlations. Our work also has important implications for
comparing the utility of different kinds of entangled states
to perform the same computational task. We were unable
to find a suitable molecular architecture to experimentally
implement the ILO, since this requires each of the three
qubits to be coupled to a separate one-qubit ancilla. However,
it is a worthwhile exercise to look for an experimental
implementation of the filtering protocol to perform the ILO. A
further issue with such an implementation is the involvement

of projective measurements, which are not straightforward to
achieve using NMR.
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