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Bound states, scattering states, and resonant states in PT -symmetric open quantum systems
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We study a simple open quantum system with a PT -symmetric defect potential as a prototype in order to
illustrate a number of general features of PT -symmetric open quantum systems; however, the potential itself
could be mimicked by a number of PT systems that have been experimentally studied quite recently. One key
feature is the resonance in continuum (RIC), which appears in both the discrete spectrum and the scattering
spectrum of such systems. The RIC wave function forms a standing wave extending throughout the spatial
extent of the system and in this sense represents a resonance between the open environment associated with the
leads of our model and the central PT -symmetric potential. We also illustrate that as one deforms the system
parameters, the RIC may exit the continuum by splitting into a bound state and a virtual bound state at the band
edge, a process which should be experimentally observable. We also study the exceptional points appearing in
the discrete spectrum at which two eigenvalues coalesce; we categorize these as either EP2As, at which two
real-valued solutions coalesce before becoming complex-valued, and EP2Bs, for which the two solutions are
complex on either side of the exceptional point. The EP2As are associated with PT -symmetry breaking; we
argue that these are more stable against parameter perturbation than the EP2Bs. We also study complex-valued
solutions of the discrete spectrum for which the wave function is nevertheless spatially localized, something
that is not allowed in traditional open quantum systems; we illustrate that these may form quasibound states in
continuum under some circumstances. We also study the scattering properties of the system, including states that
support invisible propagation and some general features of perfect transmission states. We finally use our model
as a prototype for the construction of scattering states that satisfy PT -symmetric boundary conditions; while
these states do not conserve the traditional probability current, we introduce the PT current which is preserved.
The perfect transmission states appear as a special case of the PT -symmetric scattering states.
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I. INTRODUCTION

A. Two non-Hermitian systems: Open quantum systems
and PT -symmetric systems

In the conventional formulation of quantum mechanics, the
Hamiltonian operator H describing a given physical system is
generally required to satisfy the Hermitian symmetry H = H †,
a sufficient (but not necessary) condition to obtain a real-valued
energy spectrum. Since the theory was originally developed,
however, a number of researchers have found it useful to
introduce non-Hermitian elements to the Hamiltonian, either
as an extension of the original theory to accommodate certain
physical situations [1–13] or as a useful reformulation in
others [14–34]. In the latter case, various non-Hermitian
Hamiltonians have been introduced to describe open quantum
systems.

Open quantum systems generally consist of a finite system
coupled with an infinite environment and thereby give rise
to an energy spectrum with both discrete and continuous
eigenvalues; the continuum is associated with the environ-
mental degrees of freedom, while the discrete eigenvalues
are a consequence of scattering due to the finite system.
Some of the discrete eigenvalues can be complex, a signature
of resonance phenomena in open systems. Resonances are
associated with transient phenomena such as transport and
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exponential decay [14,15,20–22,25,27,30,31,33,35–37] and
may be viewed as generalized solutions of the Schrödinger
equation with complex eigenvalues [33,35,37] or as complex
poles of the analytically continued S matrix, among other
perspectives [34,38].

The reason why open quantum systems may accommodate
complex eigenvalues can be summarized as follows. Eigen-
functions that are normalizable in open quantum systems,
namely bound states and norm-preserving scattering states, lie
within the Hilbert space and can only have real eigenvalues.
This corresponds to the fact that the Hamiltonian operator is
Hermitian in the Hilbert space. However, even the standard
Hamiltonian operator may be non-Hermitian in a space wider
than the Hilbert space [37]. Open quantum systems indeed can
harbor un-normalizable eigenfunctions, which lie outside the
Hilbert space and can have complex eigenvalues depending on
the boundary conditions. (Note, however, that we can still give
a probabilistic interpretation for such eigenfunctions [37,39].)

While usually hidden in the boundary conditions, this
non-Hermitian aspect of open quantum systems manifests
itself when we trace out the continuous degrees of free-
dom associated with the environment; the resulting effective
Hamiltonian is then explicitly non-Hermitian. This effective
Hamiltonian has only finite degrees of freedom remaining,
corresponding to the discrete portion of the open quantum
system, which is usually of primary interest. The first and
most celebrated example in the literature may be the optical
potential in nuclear physics. It was perhaps first introduced as a
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phenomenological potential but various researchers, Feshbach
in particular, formulated it more rigorously [14,15,40].

In the case of the well-known tight-binding model this
formulation leads to an energy-dependent effective potential;
see Appendix C of Ref. [30]. With the boundary condition
of incoming energy we then have an effective Hamiltonian
with a positive imaginary complex potential at the point
where the discrete system couples to the environment, which
represents an effective gain (or a source). On the other hand,
a negative imaginary complex potential appears where the
discrete system couples to the environment with the boundary
condition of outgoing energy, which represents an effective
loss (or a sink).

As a recent development in the study of non-Hermitian
physics, systems with both gain and loss have attracted a
great deal of attention over the past two decades. Bender and
Boettcher in 1998 demonstrated that one may relax Hermiticity
in favor of parity-time (PT ) symmetry in quantum mechanics
and still obtain a real-valued energy spectrum in certain regions
of parameter space [41,42]. This has led some researchers to
consider whether quantum mechanics could be reformulated in
terms of PT symmetry; see, for example, Refs. [43–47] and
particularly the references appearing in Refs. [48,49]. This
theoretical question, in turn, inspired the idea of constructing
physical systems that exhibit PT symmetry in the form of
balanced gain and loss components arranged in a spatially
symmetric manner.

A number of investigations have been carried out along
these lines, both theoretically and experimentally, particularly
in the realm of optics [50–61], but also with examples in
condensed-matter physics [62], simple electronic circuits [63],
coupled mechanical oscillators [64–66], and mesoscopic su-
perconducting wires [67]. A number of intriguing phenomena
have been studied in the optical context, including power
oscillations [50,51,53], double refraction [50], unidirectional
invisibility [55,56,58,68], and localized states with novel
transient behavior [59].

One central issue in the investigation of PT -symmetric
systems is PT symmetry breaking. In many PT -symmetric
systems, one finds a transition between a phase in which all
states are PT symmetric and a phase in which at least some
states are not; the former is often referred to as the unbroken
PT -symmetric phase and the latter as the broken phase. At
the PT -symmetry breaking point, two real eigenvalues on
the unbroken side coalesce and reappear on the other side of
the transition as a complex-conjugate pair; their associated
eigenfunctions are no longer PT symmetric individually, but
only so as a pair (i.e., they appear as a state |ψ〉 and its
partner PT |ψ〉). We emphasize that at the transition point
the eigenstates are not merely degenerate, but coalesce into a
single state with a fixed universal phase between them [69,70],
as verified by experiment [71–73].

The PT -symmetry breaking point, where the eigenstates
coalesce, is an example of an exceptional point [74]. Similar
transitions occur even in open quantum systems described by
a Hamiltonian that is Hermitian within the Hilbert space. In
this case the exceptional point is typically associated with the
appearance of a resonance state (along with its antiresonance
partner) [75–77] after two real eigenvalues collide. While the
large majority of studies on exceptional points appearing in

the literature focus on the case of two coalescing eigenvalues
(EP2s), the standard nomenclature is to refer to an exceptional
point at which N eigenvalues coalescence as an EPN [70,78].
In this paper we divide the EP2s into two further subcategories:
we refer to an EP at which two real-valued solutions meet to
form complex-conjugate partners as an EP2A; meanwhile, we
refer to an EP at which two complex solutions with negative
(positive) imaginary part coalesce to form two new solutions
with negative (positive) imaginary part as an EP2B.

B. PT -symmetric open quantum system

In this paper, we combine these two non-Hermitian systems
in order to analyze a PT -symmetric open quantum system.
Specifically, we incorporate a centralized PT -symmetric
scattering potential ±i� into an infinite tight-binding chain
with otherwise real-valued site potentials. In the perspective
given above, we can interpret this model as an otherwise
standard open quantum system except that two sites are
equipped with a direct environmental influence, one with
+i� that injects energy into the chain and the other with
−i� that represents an energy drain. This may be realized
as an optical lattice array in which one waveguide attenuates
photon propagation (the “lossy” component) and a second has
a compensating amplifying character (the “gain” component).
We observe how the PT -symmetric gain and loss modify the
usual open quantum system properties under two different
boundary conditions: outgoing waves and scattering waves.
For both of these we first consider the general case, including
solutions that are PT asymmetric, and then further investigate
the solutions for which the boundary conditions themselves
satisfy PT symmetry.

First we consider the boundary condition consisting of
purely outgoing waves (often called the Siegert boundary
condition) [27–29,32,37,79–83], which yields the discrete
spectrum for the system, including all bound states and
other solutions. We also observe the location of all EPs and
other spectral features of interest. Here we demonstrate that
for moderately small values of the PT parameter �, the
spectral characteristics remain typical of traditional Hermitian
open quantum systems. However, as we increase � explicitly
non-Hermitian spectral properties emerge.

We find a resonance state with vanishing decay width for
certain specific values of �. In the context of a Hermitian
open quantum system we would refer to this as a bound
state in continuum (BIC) (see, e.g., Refs. [84–89] and
references therein). While BICs typically appear owing to
geometric effects and their wave functions discontinuously
vanish outside a finite support, the present phenomenon results
in a delocalized wave function with an eigenvalue that appears
directly in the scattering continuum. For this reason, we refer
to this state as a resonance in continuum (RIC).

We further demonstrate the presence of localized states
with complex eigenvalues that have recently been observed
in an experiment [59] and have since been considered in
the theoretical works Refs. [61,66]. We note that, unlike the
RIC, these complex bound states appear over a wide range
of parameter values, and, as observed in Ref. [59], the real
part of the eigenvalue for these states may appear in the
scattering continuum. Here we clarify that these localized
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FIG. 1. (Color online) Geometry for PT -symmetric optical lat-
tice with scattering potential given in Eq. (2).

states have complex-conjugate values that sit in the first
Riemann sheet in the complex energy plane, something that
is not allowed in Hermitian open quantum systems. We
also emphasize that while these states are indeed localized,
they are not stationary states of the Hamiltonian. Instead, in
an experiment they demonstrate either an amplifying or an
absorbing characteristic [59]. However, given that the real
part of these eigenvalues may reside within the continuum,
in Ref. [61] the author classifies these states as a type of
generalized BIC. By contrast, in this paper we emphasize
that since these solutions are localized but nonstationary they
would generally behave in a manner that is quite distinct from
the usual concept of a BIC. That having been acknowledged,
we further point out that there are some parameter ranges
for which the imaginary part of the eigenvalues for these
states will be very small, and hence they should take on a
quasibound-state behavior for these parameter values, similar
to the quasibound state in continuum (QBIC) appearing in
Refs. [90,91]. Specifically, these states should behave as bound
states on time scales t < �2/4, where the gain-loss defect
parameter � exceeds the energy scale of the embedding optical
bandwidth; we propose that these states might be detectable,
for example, in a PT -symmetric optical fiber loop array with
a defect region [59] that is modified to imitate our potential
introduced in Sec. II below (see Fig. 1).

We then focus our attention on the ordinary bound-state
solutions appearing in our system and demonstrate that
the wave function for these states satisfies PT -symmetric
boundary conditions. Further, we clarify that the wave function
for virtual bound states (with real eigenvalue) is also PT
symmetric, despite the fact that these states do not appear in
the usual diagonalization scheme.

We then consider the case of scattering wave boundary
conditions. In the general case (PT -asymmetric scattering
waves) we observe that the parameter choices associated with
the RIC result in a divergence in the reflection and transmission
coefficients. This phenomenon has previously appeared in the
literature, in which it is referred to as a spectral singularity
[92–98], and physically can be associated with both lasing and
coherent perfect absorption [99–101]. We then demonstrate
that a subset of the scattering wave solutions yield perfect
transmission through the scattering region. In the special case
in which the scattering potential is pure imaginary, we show
that one can obtain perfect transmission for any continuum
scattering states by appropriately choosing the value of �;
this property approximately holds when small real-valued
defects are introduced. We further demonstrate in this case
that invisibility (perfect transmission with no scattering phase
shift) can be obtained at discrete values within the continuum.

In Sec. II we present our prototype model for an open
quantum system with a PT -symmetric defect potential. Then
in Sec. III we study the model under the boundary condition of

outgoing waves, which yields the discrete spectrum associated
with the defect potential. For the simplest case of a purely
complex defect potential, we locate all EPs in the spectrum
and characterize the properties of the spectrum in their vicinity;
we further locate the RIC eigenvalues and write the associated
wave function as an outgoing plane wave from the defect
region. We also identify the parameter ranges that give rise
to the localized states with complex eigenvalues and point
out the situation in which some of these solutions might
behave as quasibound states. In Sec. III D we generalize this
picture by considering a potential with both real and imaginary
defects. Here we demonstrate that as one deforms the system
parameters, the RIC may exit the continuum by splitting into a
bound state and a virtual bound state at the band edge. We note
that traditional real-valued bound states also may appear for
this more general potential. We study in closer detail the formal
properties of the bound states in Sec. IV, demonstrating that
they satisfy PT -symmetric boundary conditions as expected.
We also consider the CPT norm for these states, which we
believe has only previously been investigated in closed PT
systems.

We then turn to the scattering boundary conditions in
Sec. V, which we use to characterize the RIC in greater detail.
We also show that a subset of the scattering wave solutions give
rise to perfect transmission through the scattering region, and
in the case of a purely imaginary defect potential, there are two
scattering solutions that support invisible signal propagation.
We further demonstrate a connection between the localization
transition in the discrete spectrum and the perfect transmission
states that might be useful from the perspective of designing
systems with predictable transport properties. We also point
out a possible application in the form of a “switch” that is
sensitive to invisible transmission originating from the left
(right), but ignores such transmission from the right (left).
In Sec. VI we demonstrate that a scattering wave solution
can be obtained that itself satisfies PT -symmetric boundary
conditions. We also introduce the PT current, which is
conserved for the (general) scattering wave solutions in our
system and which experiences a divergence associated with
the perfect transmission states. We summarize our work and
make concluding remarks in Sec. VII. We also present some
details of the calculations from the main text in two appendixes.

II. PT -SYMMETRIC OPTICAL LATTICE MODEL

In the present paper, we study a tight-binding model with
a PT -symmetric scattering defect potential, which can be
realized as an optical lattice array or could be approximated
by a modified version of the PT -symmetric optical fiber loop
array with a defect studied in Ref. [59] or other systems
appearing in the literature [60,102]. Our tight-binding model
takes the form

H = −th

∞∑
x=−∞

(|x + 1〉〈x| + |x〉〈x + 1|) +
∑

x

V (x)|x〉〈x|,

(1)

where we hereafter put th to unity and evaluate all energy
variables in this unit. Note that we have also put the lattice
constant a to unity; we evaluate the wave number in this unit
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everywhere. The defect potential in Eq. (1) is specified as

V (x) =
⎧⎨
⎩

ε1 + i� for x = −1,

ε0 for x = 0,

ε1 − i� for x = −1,

(2)

where ε0, ε1, and � are all real, with V (x) = 0 otherwise, such
that our scattering potential is confined to the central sites
|x| � 1. The positive imaginary part of the complex potential
contributes a factor exp[−i(i|�|)t] = exp(|�|t) to the time
evolution and hence is interpreted as being influenced by a
particle bath that constantly injects energy as +i|�|. That with
a negative imaginary part is similarly interpreted as a particle
bath that constantly drains energy as −i|�|.

The off-diagonal part of the Hamiltonian (1) is Hermitian
(real symmetric), while the diagonal potential is not. It
nonetheless satisfies the condition V (x)∗ = V (−x), which
guarantees that the system is PT symmetric [50,51,103].
Stated explicitly, the parity transformation P swaps the
potentials at x = −1 and x = +1, while the time-reversal
operator T (which is complex conjugation) flips them back
to the original configuration. We note that several studies on
PT -symmetric tight-binding models may be found in the
literature, some of which are related to our model above
[61,104–107].

The Schrödinger equation H |ψ〉 = E|ψ〉 for the Hamilto-
nian (1) can be written explicitly in the following way. First, let
us consider the projection 〈x|H |ψ〉 = E〈x|ψ〉 for the system
component outside of the scattering potential |x| � 2, in which
case V (x) ≡ 0. We thus obtain

−ψ(x − 1) − ψ(x + 1) = Eψ(x), (3)

where ψ(x) = 〈x|ψ〉. The solution is given by ψ(x) = e±ikx

with the eigenvalue

E(k) = −2 cos k, (4)

which defines the scattering continuum for our system in the
range |E(k)| � 2 with k ∈ [−π,π ]. To solve the eigenvalue
problem in the scattering region, we hold the continuum
dispersion E(k) and evaluate the Schrödinger equation for
x = 0 and ±1, by which we obtain

−ψ(−2) − ψ(0) + (ε1 + i�)ψ(−1) = E(k)ψ(−1), (5)

−ψ(−1) − ψ(1) + ε0ψ(0) = E(k)ψ(0), (6)

−ψ(2) − ψ(0) + (ε1 − i�)ψ(1) = E(k)ψ(1). (7)

A given solution ψ(x) must satisfy these equations, subject
to a specific choice for the boundary conditions. In Sec. III
we consider the boundary condition for resonant states that
consist of purely outgoing waves, while in Sec. V we consider
the boundary conditions for scattering states.

For later reference, let us present in Fig. 2 a typical
distribution of the eigenvalues of the Hermitian tight-binding
model, that is, for � = 0. We heavily make use of the terms in
the figure.

The complex E plane in Fig. 2(a) consists of two Riemann
sheets; they are connected by a branch cut that extends over the
range −2 � E � +2. The first sheet corresponds to the upper
half of the complex k plane in Fig. 2(b), while the second sheet
corresponds to the lower half. More specifically, the upper
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FIG. 2. (Color online) A typical distribution of the eigenvalues
of the Hermitian tight-binding model on (a) a complex energy plane
and (b) a complex k plane. Note that we evaluate the energy in the
unit of th = 1 and the wave number in the unit of a = 1.

half (Im E > 0) of the first Riemann sheet in the complex
E plane corresponds to the first quadrant of the complex k

plane, the lower half (Im E < 0) corresponds to the second
quadrant, the upper half of the second sheet corresponds to the
third quadrant, and the lower half corresponds to the fourth
quadrant. Notice that we can go, for example, from the upper
half of the first sheet over to the lower half of the second sheet
continuously through the branch cut, which corresponds to
moving from the first quadrant to the fourth quadrant in the
complex k plane.

The scattering states continuously surround the branch cut
on the real axis of the complex E plane. We hereafter refer
to the scattering continuum as the energy band and to the
end points of the continuum as the band edges, following the
custom of condensed-matter physics. In the complex k plane,
the scattering continuum is on the real axis, which is restricted
to the first Brillouin zone −π < k � +π ; note that the line
Re k = −π is identified with the line Re k = +π as a result of
the lattice periodicity.

Bound states can exist on the first Riemann sheet below
and above the energy band, that is, to the left (E < −2) and
to the right (E > 2) of the scattering continuum. Those below
the band lie on the positive imaginary axis of the complex k

plane, while those above the band lie on the positive part of
the line Re k = +π . Notice that the bound states here have
purely real eigenvalues; in other words, they never exist on the
first and second quadrants of the complex k plane except on
the lines Re k = 0 and Re k = +π . We show below that once
we introduce the non-Hermiticity, complex eigenvalues can
appear in the first Riemann sheet (and therefore on the upper
half of the complex k plane); this is one critical difference
between Hermitian and non-Hermitian open systems.

The resonant states appear in the lower half of the second
Riemann sheet, which is the fourth quadrant of the complex
k plane, while their antiresonant partners reside on the upper
half of the second sheet, which is the third quadrant of the
complex k plane. These are related to one another through
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time-reversal symmetry [33]. Virtual (or antibound) states can
also appear to the left and right of the branch cut on the second
Riemann sheet, which respectively correspond to the negative
(Im k < 0) parts of the lines Re k = 0 and Re k = +π .

III. OUTGOING-WAVES BOUNDARY CONDITION
AND DISCRETE SPECTRUM

In the present section our first consideration is the resonant
states; there are several ways of computing these states [32].
We here use the Siegert boundary condition [27–29,32,37,79–
83], which dictates that the system has outgoing waves only;
this is equivalent to looking for all poles of the S matrix.
The solutions of the resulting polynomial equation give the
discrete eigenvalues associated with the scattering region, as
shown below.

Our purely outgoing-wave function takes the form

ψ(x) =

⎧⎪⎨
⎪⎩

Be−ikx for x � −1,

ψ(0) for x = 0,

Ceikx for x � 1.

(8)

This boundary condition gives ψ(±2) = eikψ(±1), which
brings Eqs. (5)–(7) into a closed form [29].

We thereby obtain⎛
⎝−λ + ε1 + i� −1 0

−1 ε0 −1
0 −1 −λ + ε1 − i�

⎞
⎠

⎛
⎝ψ(−1)

ψ(0)
ψ(1)

⎞
⎠

= E(λ)

⎛
⎝ψ(−1)

ψ(0)
ψ(1)

⎞
⎠, (9)

in which we have introduced λ ≡ eik for convenience. In
this notation the continuum dispersion Eq. (4) takes the
form

E(λ) = −(λ + λ−1). (10)

We obtain nontrivial solutions for the discrete eigenvalues
λj when the determinant of the matrix in Eq. (9) vanishes. This
is equivalent to the solutions of the quartic equation P (λj ) = 0,
with

P (λ) ≡ (
ε2

1 + �2
)
λ4 + ε0

(
ε2

1 + �2
)
λ3

−(
1 − ε2

1 − 2ε0ε1 − �2
)
λ2 + (ε0 + 2ε1)λ + 1.

(11)

For a given solution λj , the physical energy eigenvalue is
determined from E(λj ) and the associated wave number
is given as kj = −i ln λj . We emphasize that the number
of solutions (four), is greater than the matrix dimension
(three); this is because the matrix itself depends on the energy
eigenvalue through the variable λ.

In the remainder of this section we investigate the four
discrete eigenvalue solutions of the quartic equation P (λj ) = 0
in detail; first, we study the case of a purely imaginary defect
potential with ε0 = ε1 = 0 in Sec. III A. Here we locate all EPs
and characterize the behavior of the spectrum in the vicinity of
these points. We further identify the RIC and write the wave
function of this state as a plane wave originating from the

impurity sites. We also discuss the complex-valued localized
states and their asymptotic localization properties as well as
drawing attention to the parameter ranges in which some of
these states will behave as quasibound states.

In Sec. III D we generalize this picture to consider the case
ε1 �= 0 to illustrate two points (we keep ε0 = 0 for now). First
we note that the EP2As still appear in the spectrum for the ε1 �=
0 case, while the EP2Bs vanish. This suggests that the EP2As
may be more robust against parameter perturbations than the
EP2Bs, on which we comment in relation to experimental
results. Second, we demonstrate that as we increase the value
of ε1, one of the RICs approaches the band edge and eventually
exits the continuum by splitting into a bound state and a virtual
bound state.

A. Discrete spectrum for ε0 = ε1 = 0:
Exceptional points, resonant states in continuum,

and quasibound states in continuum

We first consider the discrete eigenvalue spectrum for the
simplest case of our Hamiltonian ε0 = ε1 = 0, for which the
only nonhomogeneous element remaining in the system is the
gain-loss pair governed by the PT parameter �. In this case,
the quartic polynomial P (�) given in Eq. (11) simplifies to a
quadratic in λ2, yielding the four solutions

λ1,4 = ± 1√
2�

√
1 − �2 +

√
1 − 6�2 + �4,

λ2,3 = ± 1√
2�

√
1 − �2 −

√
1 − 6�2 + �4. (12)

We plot the real and imaginary parts of the resulting energy
eigenvalues Ej = −λj − λ−1

j as a function of � in Figs. 3(a)
and 3(b), as well as the real and imaginary parts of the
associated wave number kj = −i ln λj in Figs. 3(c) and 3(d).
Figures 3(e) and 3(f) are parametric plots in the complex
E plane and the complex k plane in the range of � � 0. In
Figs. 3(a), 3(b), and 3(e), solutions plotted with solid curves
appear in the first Riemann sheet of the complex E plane while
those plotted with a dotted curve appear in the second sheet;
the former are the solutions with positive imaginary parts of
kj and the latter are those with negative parts in Figs. 3(d) and
3(f). The first and second Riemann sheets of the complex E

plane respectively corresponds to the upper and lower halves
of the complex k plane; a branch cut running from E = −2
to E = 2 connects the two Riemann sheets. We realize from
the Siegert boundary condition (8) that every solution on
the first Riemann sheet has a positive imaginary part of the
wave number and hence its wave function is bounded in x

space, while every solution on the second Riemann sheet has
a wave function that diverges along the leads of the optical
array.

We immediately observe one critical difference between
Hermitian and PT -symmetric open quantum systems: In the
PT -symmetric case, solutions with complex eigenvalues are
allowed to appear in the first Riemann sheet, with localized
wave functions. This is in stark contrast to the Hermitian
case, in which complex-valued solutions are allowed to appear
only in the second sheet, where they give rise to delocalized
resonance and antiresonance states.
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FIG. 3. (Color online) Discrete eigenvalue spectrum for the simplest case ε0 = ε1 = 0: (a) Re Ej and (b) Im Ej against the PT parameter
�; (c) Re kj and (b) Im kj against �; parametric plots of (e) [Re Ej (�), Im Ej (�)] and (f) [Re kj (�), Im kj (�)] in the complex plane. In (e) and
(f), the solid circles indicate some of the eigenvalues at � = 0, while the open circles indicate those in the limit � → ∞; the arrows indicate
how the eigenvalues evolve as � is increased from 0 to ∞. Note that we evaluate the energy in the unit of th = 1 and the wave number in the
unit of a = 1.

Let us summarize the evolution of the discrete eigenvalues
from � = 0 to +∞ along the lines of Fig. 3(e); the change
for negative � is symmetric as this just amounts to swapping
the gain and loss elements. At � = 0, one eigenvalue is at the
lower edge of the continuum E = −2 and another at the upper
edge E = +2 [solid circles in Figs. 3(e) and 3(f)]. There are
also two eigenvalues at E = −∞ and at E = +∞ both on the
real axis of the second Riemann sheet.

As we increase � from 0, the eigenvalues at E = ±2
separate off from the band edges and move outward, while
the eigenvalues at E = ±∞ move inwards, all four along

the real axis of the second Riemann sheet of the complex
energy plane. These eigenstates are referred to as virtual
bound states or antibound states in the sense that they are
real-valued solutions that are spatially delocalized [33,37,108].
The positive pair of solutions and the negative pair each
coalesce at a point on the real axis of the second Riemann
sheet at � = �̄A = √

2 − 1, which is a second-order EP. We
label this point � = �̄A as an EP2A and the region up until
this point 0 < � < �̄A as Region I. After passing the EP2A,
all four eigenvalues become complex on the second sheet,
forming two resonance-antiresonance pairs symmetrically on
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the positive and negative sides. In the vicinity of the EP2A, the
eigenvalues can be expanded in the characteristic form [74,77]

E−
A (�) = −

√
2(1 +

√
2) ± 1

21/4
√

−1 + √
2

√
�̄2

A − �2

(13)
for the resonance-antiresonance pair with negative real part
and

E+
A (�) =

√
2(1 +

√
2) ± 1

21/4
√

−1 + √
2

√
�̄2

A − �2 (14)

for the resonance-antiresonance pair with positive real part.
The derivation of these expressions is detailed in Appendix A.

We can regard Region I as the PT -unbroken phase and the
EP2A at � = �̄A as the PT -symmetry breaking point. As we
see in Fig. 3, Region I is the only continuous parameter region
in which all discrete energy eigenvalues are real.

As we continue to increase �, the complex eigenvalues
eventually turn around and then return to the real energy axis
at � = �0

RIC = 1. Although each pair of the energy eigenvalues
are degenerate when they reach the real axis, their wave
numbers are all distinct, as can be seen in Figs. 3(c) and 3(f),
and therefore this point represents a degeneracy in the standard
sense, not a coalescence in the sense of the EP. We refer to
these states as RICs for reasons described in Sec. III B (also
see Sec. V B), and we refer to the region �̄A < � < �0

RIC as
Region II.

As we further increase � such that � > �0
RIC, the four

solutions pass through the branch cut running from E = −2 to
E = 2 and emerge on the first Riemann sheet of the E plane.
This is equivalent to the observation that these solutions now
have an effective wave number kj with positive imaginary
part as shown in Figs. 3(d) and 3(f). This implies that the
wave function for these states ψj (x) ∼ eikj |x| is localized,
although the real part of the eigenvalues lies within the range
−2 < Re E < 2 [see Fig. 3(a)]. These types of states were
recently observed in an experiment based on light transmission
through an effectivePT -symmetric array of optical fiber loops
[59] in which they gave rise to a pair of exponentially growing
and decaying localized states within the continuum.

As � reaches the value � = �̄B = 1 + √
2, these states

coalesce on the imaginary axis of the complex energy plane
at � = �̄B = 1 + √

2, two on the positive side and the other
two on the negative side, which is another second-order
EP (this time occurring in the first Riemann sheet). We
refer to this point as an EP2B because it involves a pair
of complex eigenvalues coalescing before becoming another
pair of complex eigenvalues; we also refer to the region
�0

RIC < � < �̄B as Region III. In the vicinity of the EP2B,
the eigenvalues can be expanded as

E−
B (�) = −i

√
2(−1 +

√
2) ± i

21/4
√

1 + √
2

√
�2 − �̄2

B

(15)
for the two eigenvalues with negative imaginary part and

E+
B (�) = i

√
2(−1 +

√
2) ± i

21/4
√

1 + √
2

√
�2 − �̄2

B (16)

for the two with positive imaginary part, similar to the
expressions near the EP2A above (see Appendix A).

After surpassing the EP2B, two eigenvalues move to the
origin while the other two go off to ±i∞, all on the imaginary
axis of the first Riemann sheet of the complex energy plane.
We refer to this region � > �̄B as Region IV. Since � � 1
generally holds here, we may expand the solutions in Eqs. (12)
in powers of 1/� to show that two of these solutions behave
as E1,4 ≈ ±i(� − 2/�); note that in the limit � → ∞, these
two solutions asymptotically approach the simple value of the
gain or loss component of the PT parameter �, as indicated
in Fig. 3(b), where these two solutions (blue curves) approach
the two diagonal (red) lines. Indeed, as shown in Appendix B,
the solution E1 ∼ +i� is localized at site x = −1, while
the solution E4 ∼ −i� is localized at the x = 1; hence,
these two solutions gradually begin to mimic the original
uncoupled gain-loss pair for large �. We comment further
on the asymptotic localization properties of these states and
show that the solutions E2,3 behave as quasibound states in the
continuum in Sec. III C.

We emphasize that the physics in Regions I and II could
arise in Hermitian open quantum systems as well; explicitly
non-Hermitian properties appear in Regions III and IV with
the appearance of the RIC and then the complex eigenvalues
on the first Riemann sheet.

B. Resonant state in continuum

Here we describe the RICs at the point � = �0
RIC in greater

detail. As summarized above, the eigenvalues here appear
on the real axis, embedded in the energy continuum that
spans −2 � E � 2. At a glance, these states appear similar to
BICs, which in Hermitian systems appear as resonances with
vanishing decay width [84–89]. However, closer inspection
reveals that these states are fundamentally different from BICs.

For example, in the (Hermitian) double-impurity open
quantum system model studied in Ref. [88] it is shown that
BICs appear as localized states between the two impurities; due
to interference, the wave function for the BIC states vanishes
identically outside of the impurity region. More generally,
BICs often appear for geometrical reasons and hence are
strictly confined in some spatial area.

The present RICs, however, take the form

ψRIC(x) =

⎧⎪⎪⎨
⎪⎪⎩

∓ 1√
6
e±iπ(x+1)/4 for x � −1,

1√
3

for x = 0,

∓ 1√
6
e∓iπ(x−1)/4 for x � 1,

(17)

at � = �0
RIC, for the respective eigenvalues ERIC = √

2 (with
kRIC = ±3π/4) and ERIC = −√

2 (with kRIC = ±π/4).
We refer to these points as RICs in part because the wave

function for these states is delocalized, as demonstrated in
Eq. (17), and because these states satisfy the Siegert boundary
condition for outgoing waves. We comment further on this
naming convention in Sec. V B from the perspective of the
scattering wave boundary conditions. We note that these are
also equivalent to the spectral singularities that have previously
appeared in the literature [92–98]. In Sec. III D we also show
that for the case ε1 �= 0, an RIC may approach the continuum
edge and split into a bound state and a virtual bound state.
However, we add one further brief comment here to emphasize
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that the RIC is not an EP, as the eigenstates do not coalesce,
having different wave numbers, and hence no fractional power
expansion such as Eqs. (13) and (14) is possible in this case.

C. Quasibound states in continuum

The solutions E1,4 from Region IV (or either pair of
solutions from Region III) correspond to the localized states
with complex eigenvalues that were recently experimentally
observed in Ref. [59], in which the authors investigated
light transmission through an effective PT -symmetric optical
lattice realized by periodically switching gain and loss in
two optical fiber loops [57,59]. As reported in Ref. [59],
when a localized defect is introduced into the effective
array (both a shift in PT pairing strength as well as a
phase defect), a pair of localized complex-conjugate modes
appears within the continuum exhibiting exponential growth
and decay in the power spectrum. Indeed, our solutions
E1,4 ≈ ±i(� − 2/�) in Region IV appear directly in the
center of the energy continuum (with Re E1,4 = 0) and would
also give rise to an exponential power output (growth or loss)
as

∫ ∞
−∞ |ψ1,4(x,t)|2dx ∼ e±2t/� .

While the author of Ref. [61] interprets these types of
localized states with complex eigenvalue as examples of an
effective BIC based on the fact that the real part of each
solution may reside within the continuum, we note that since
these states decay or grow exponentially, they would generally
behave in a manner that is quite distinct from the usual concept
of the BIC. However, the other pair of solutions E2,3 also have
the real part of the eigenvalue residing within the continuum,
yet behave quite differently in Region IV. Indeed we can
show that the eigenvalues for these two solutions behave as
E2,3 ≈ ±i2/�2 such that the complex part of the eigenvalue
for these states becomes arbitrarily small for increasing values
of �. Hence, these states should behave as effective BICs
on time scales satisfying t < �2/4, similar in concept to
the QBIC introduced in Refs. [90,91], which are resonance
states in the continuum with extremely long lifetime (also see
Refs. [109,110]).

As shown in Appendix B, the respective wave functions
for the solutions E2,3 are exponentially localized around the
site x = 0, while those for the solutions E1,4 are localized
around the PT impurities at x = ±1; we also show that the
localization for the solutions E1,4 is very narrow as it scales
for � � 1 as 1/ ln �, while that for the quasibound states
E2,3 is very broad, scaling as �2/2. We believe that these
quasibound states should be observable, for example, in an
experiment similar to either Ref. [59] or Ref. [60] in which
the PT -symmetric defect potential is modified to mimic our
potential appearing in Fig. 1.

D. Discrete spectrum for ε1 �= 0: EP stability and RIC splitting
at localization threshold

As we relax the restriction ε1 = 0, most of the basic features
that we observed in the simplest case in Secs. III A–III C
remain, although these become somewhat distorted as shown
for ε1 = 0.2 in Figs. 4(a)–4(d). Here we observe that the
EP2As split into two pairs, one pair of which moves outwards
and away from the origin on the � axis, while the other pair

moves inwards towards the origin (for larger values of ε1, the
latter pair will eventually collide at the origin, before becom-
ing complex valued). While we obtained compact analytic
expressions for the eigenvalue expansions in the vicinity of
the EP2As for the case ε1 = 0, here those expressions become
significantly more cumbersome. Nevertheless, following an
intuitive generalization of the methods presented Appendix A
one may still easily obtain numerical versions of Eqs. (14) and
(13) in the vicinity of the EP2As in the more general case.

On the other hand, the EP2Bs that we studied in Sec. III A
immediately vanish from the spectrum for ε1 �= 0, as can be
seen in Fig. 4(b) and the inset of Fig. 4(a); we can also
see these coalescences vanish by comparing Figs. 3(e) and
3(f) (for ε1 = 0) with Figs. 4(c) and 4(d). Indeed, it can be
shown that the EP2As also survive the generalization for
ε0 �= 0, while the EP2Bs do not reemerge. This seems to
indicate that type EP2A EPs are more stable against parameter
perturbations than those of type EP2B. We note that several
experimental studies have been conducted in which an EP2A
has been observed by simply passing directly through the EP
while varying a single parameter [53,60,63], but experimental
observation of EP2Bs have tended to rely on encircling the
EP [71,73] or mapping out the complex eigenvalue structure
around the EP in a two-dimensional parameter space [111]
(although Ref. [72] provides an exception where the EP2B
is observed more directly). Theoretically, we believe that the
underlying reason for this is that the EP2As seem to vanish
from the real parameter space only when they collide with
another EP2A (see Ref. [77] for another simple example
where this occurs), while the EP2Bs do not need to collide
with another EP in order to exit into the complex parameter
space.

The RICs, meanwhile, are also split apart in the parameter
space, appearing at ±�+

RIC and ±�−
RIC, given by

�±
RIC(ε1) =

√
1 ± |ε1|

√
2 + ε2

1, (18)

which we explicitly indicate by red crosses in Figs. 4(a) and
4(b). As we increase ε1 from 0, the RIC wave numbers for �±

RIC,
which we refer to as k±

RIC in Fig. 4(d), move away from the
ε1 = 0 values of π/4 and 3π/4 [previously shown in Fig. 3(f)]
and approach π/2 and the upper band edge π , respectively. In
the latter case, the RIC at �−

RIC eventually reaches the upper
band edge; we can find the precise value of ε1 where this occurs
from the condition

P [λ = −1; ε1,�
−
RIC(ε1)] = 0, (19)

which yields ε1 = 1/2. At this precise point, one of the EP2As
also touches the band edge and overlaps with the RIC. Then
for ε1 > 1/2 the RIC exits the continuum and we find that it
splits into a bound state and a virtual bound state as shown
in Figs. 4(e) and 4(f) for the case ε1 = 0.6. We also show
the evolution of the wave numbers k±

RIC in the complex k

plane in Fig. 5 as the system evolves from ε1 = 0 to ε1 = 1.5.
Here both k±

RIC move rightward on the real axis, excepting that
k−

RIC splits into a bound-state–virtual-bound-state pair beyond
ε1 = 1/2.

Another key difference in the ε1 �= 0 case (as well as the
ε0 �= 0 case) is the appearance of one or (at most) two bound
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FIG. 4. (Color online) Discrete eigenvalue spectrum for the case ε0 = 0. (a) Im Ej and (b) Im kj against the PT parameter � for ε1 = 0.2;
parametric plots of (c) [Re Ej (�), Im Ej (�)] and (d) [Re kj (�), Im kj (�)] in the complex plane for ε1 = 0.2; (e) Im Ej and (f) Im kj vs the PT
parameter � for ε1 = 0.6. In (c) and (d), the solid circles indicate some of the eigenvalues at � = 0, while the open circles indicate those in the
limit � → ∞; the arrows indicate how the eigenvalues evolve as � is increased from 0 to ∞. Note that we evaluate the energy in the unit of
th = 1 and the wave number in the unit of a = 1.

states. The bound-state properties are discussed in greater
detail in Sec. IV below.

IV. FORMAL PROPERTIES OF THE BOUND STATES

We now turn to a closer investigation of the bound states
that appear for various parameter ranges of ourPT -symmetric
prototype model. Our focus here is on the traditional bound
states with real energy eigenvalues; however, we briefly
comment on the virtual bound states and the localized states

with complex eigenvalue at points for which they are also
relevant to our discussion.

We first briefly discuss in Sec. IV A the parameter ranges for
which bound states exist in our prototype model for the general
case ε0 �= 0, ε1 �= 0 and comment on the easiest method for
finding bound states for a given set of parameter values.
Then in Sec. IV B we explore the symmetry properties of
the wave function for the bound-state solutions and verify that
they satisfy PT -symmetric boundary conditions; indeed, the
virtual bound states (antibound states) are also PT symmetric.
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FIG. 5. (Color online) Movement of the wave numbers of RICs,
k±

RIC, in the complex k plane as ε1 increases from 0 to 1.5. Note that
we evaluate the energy in the unit of th = 1 and the wave number in
the unit of a = 1.

Finally, in Sec. IV C we investigate the CPT norm [45] for the
bound states.

A. Existence of bound states for the general
case ε0 �= 0 and ε1 �= 0

As we illustrated in Fig. 2, the bound states of Hermitian
tight-binding models can only exist on the real axis of the
first Riemann sheet, below and above the energy band (this
is also true for our present model). For our non-Hermitian
system, such bound states do not appear in the particular case
of ε0 = ε1 = 0, as seen in Figs. 3(e) and 3(f); however, these
do appear for ε0 �= 0 or ε1 �= 0. For example, one bound state
appears above the upper band edge in the case ε1 > 0 (within a
specific range of � values); this state is evidenced in Fig. 4(d)
by the portion of the trajectory that lies on the positive side
(Im k > 0) of the line Re k = +π .

In general, we can write the wave number for the bound
states as kj = iκj + δjπ , with κj > 0 and in which δj = 0
for bound states below the lower band edge and δj = 1 for
bound states above the upper band edge (the same formula
also holds true for virtual bound states, except that κj < 0 in
that case). Then, for a given set of parameter values, we can
test for the presence of bound states within the spectrum by
plugging λj = eikj = ±e−κj into P (λj ) = 0 from Eq. (11);
any real solution that yields 0 < λj < 1 represents a bound
state below the lower band edge, and any solution with
−1 < λj < 0 represents a bound state above the upper band
edge. Meanwhile, real solutions satisfying λj > 1 (λj < −1)
represent virtual bound states below (above) the lower (upper)
band edge. In Figs. 6(a) and 6(b) we plot numerical solutions
of (11) for the representative case ε0 = 0.01 and ε1 = −1.1.
Here we find that there exist two bound states below the lower
band edge in the parameter domain � < 0.45. There are are
also a resonance and an antiresonance in this domain with the
real part of the energy eigenvalue above the upper band edge.

We define the unbrokenPT -symmetry region as any portion
of the parameter space for which all of the solutions are real

valued (any combination of bound states and virtual bound
states). For example, given ε1 < 0 we show in Fig. 6(c) the
range of parameter values that yield real values for all four
solutions of the dispersion equation. In the following Sec. IV B,
we explicitly demonstrate that both bound states and virtual
bound states satisfy PT -symmetric boundary conditions.

B. Verification that real-valued bound states satisfy
PT -symmetric boundary conditions

Here we verify that the real-valued bound states discussed
in Sec. IV A automatically satisfy PT -symmetric boundary
conditions. To accomplish this, we again write the wave
number of an arbitrary bound state in the form kj = iκj + δjπ ,
where δj = 0 for a bound state below the lower band edge and
δj = 1 for a bound state above the upper band edge. With this
formalism, the wave equation (8) for the bound states takes
the form

ψj (x) =

⎧⎪⎨
⎪⎩

Beκx−iδj πx for x � −1,

ψ0 for x = 0,

Ce−κx+iδj πx for x � 1.

(20)

In order for ψj to be a PT -symmetric eigenstate of our
Hamiltonian H , it must satisfy the condition PT ψj = eiθψj .
Note that at any point we could introduce the state ψ̃j (x) =
eiθ/2ψj (x), which is then an eigenstate of PT with eigenvalue
1. Applying thePT operator to the bound-state wave function,
we obtain

PT ψj (x)=

⎧⎪⎨
⎪⎩

C∗eκx+iδj πx = (
C∗
B

)
Beκx−iδj πx for x � −1,

ψ∗
0 for x = 0,

B∗e−κx−iδj πx = (
B∗
C

)
Ceκx+iδj πx for x � 1,

(21)

where in the last step we have taken advantage of the fact that
−π is physically equivalent to π in the Brillouin zone structure
of our model. If we assume ψ∗

0 = Fψ0, then we can write the
quantity C∗/B = B∗/C = F as a phase factor F = eiθ .

Now, for a PT -symmetric solution of our Hamiltonian, we
see that we must augment the outgoing boundary condition in
Eq. (8) with an additional condition B = e−iθC∗, which gives
ψ(−1) = e−iθψ(1)∗. We apply this condition to rewrite the
matrix form of the Schrödinger equation in Eq. (9) as⎛

⎝−λ + ε1 + i� −eiθ 0
−e−iθ ε0 −1

0 −1 −λ + ε1 − i�

⎞
⎠

⎛
⎝ψ(1)∗

ψ(0)
ψ(1)

⎞
⎠

= E(λ)

⎛
⎝ψ(1)∗

ψ(0)
ψ(1)

⎞
⎠. (22)

Taking the determinant of this modified equation yields the
exact same condition for discrete eigenvalues P (λj ) = 0 as
we previously encountered at the beginning of Sec. III. Hence,
any real-valued bound state of the Hamiltonian H in Eq. (1)
is automatically an eigenstate of the PT -symmetry operator
with eigenvalue eiθ .

We may obtain the explicit form for the coefficient B =
eiθC∗ from the first and third lines of Eq. (22). For simplicity
here, let us choose θ = 0, such that B = C∗. We then find the
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FIG. 6. (Color online) (a) Real part and (b) imaginary part of the roots λ of the polynomial P (λ) in Eq. (11) for ε1 = −1.1 and ε0 = 0.05.
The two real roots 0 < λ < 1 become complex at � = 0.45. (c) A region of unbroken PT symmetry (with all four solutions real-valued) in
the parameter space (ε0,ε1,�). Note that we evaluate the energy in the unit of th = 1 and the wave number in the unit of a = 1.

real and imaginary parts of B = BR + iBI as

BR = λ(1 + λε1)

1 + �2λ2 + 2ε1λ + ε2
1λ

2
ψ0,

BI = �λ

1 + �2λ2 + 2ε1λ + ε2
1λ

2
ψ0, (23)

with λ = eikj = e−κ+iδj π .
As a final comment, we note that, according to the argument

we have presented here, the wave function for the virtual
bound states (residing in the second Riemann sheet in the
complex energy plane) must also satisfy PT symmetry. This
can immediately be seen by simply replacing the form of the
wave number for the bound state kj = iκj + δjπ with that
for the virtual bound states kj = −iκj + δjπ (with κj > 0 in
either case) and proceeding with the argument as presented
above.

However, we note that the bound states with complex
energies are not PT symmetric, which can be seen by writing
the wave number for these states in the form kj = κj + i�j ,
with �j < |π | and noting that we can no longer make the sign

replacement in the final line of Eq. (21) as these states reside
within the Brillouin zone, rather than at the edges as do the
bound states and virtual bound states.

C. CPT norm of the bound states

We now set out to write the appropriate normalization
condition for the bound-state wave function that we obtained
in Sec. IV B. For a nonsymmetric Hamiltonian H , the
completeness relation among its eigenstates ψn(x) assumes
the form

∞∑
x=−∞

ψL
n (x)ψR

m (x) = δn,m, (24)

where ψR
n (x) are right eigenstates and ψL

n (x) are left eigen-
states. If H is PT symmetric, we identify

ψL
n (x) = CPT ψR

n (x),

022125-11



GARMON, GIANFREDA, AND HATANO PHYSICAL REVIEW A 92, 022125 (2015)

where the operator C [45] satisfies, in the unbroken region, the
three algebraic equations

[C,PT ] = 0, [C,H ] = 0, C2 = 1. (25)

The completeness relation for a PT -symmetric Hamiltonian
then reads

∞∑
x=−∞

[CPT ψn(x)]ψm(x) = δn,m. (26)

Since the C operator commutes with the Hamiltonian H , the
bound states ψj (x) of H in the unbroken region must also be
eigenstates of C and, because C2 = 1, the resulting eigenvalues
must be Cj = ±1 [45,46]. (How the C operator might act on
the complex-valued solutions in the broken region is a question
presently under investigation).

In order to assign the correct eigenvalue Cj to each
eigenstate ψj (x), we first evaluate the so-called PT norm
as

∞∑
x=−∞

[PT ψj (x)]ψk(x) =
∞∑

x=−∞
ψj (−x)∗ψk(x) = (−1)j δj,k.

(27)
We see that the PT norm is not positive definite [112], with
alternating signs ±1 among the bound states ψj (x); hence, we
assign the eigenvalues Cn to be ±1 according to the sign of
(27) in order to obtain the positive norm introduced in Eq. (26).

In either case, we may write the PT norm for our bound
states given in Eq. (20) as

NPT
j ≡

∞∑
x=−∞

ψj (−x)∗ψj (x) = (B∗2 + B2)
∞∑

x=1

e−2κj x + ψ2
0 ,

(28)
where κj is the imaginary component of the wave number from
kj = iκj + δjπ . For convenience, we introduce B̃ = B/ψ0;
we then obtain

NPT
j = ψ2

0

(
2
B̃2

r − B̃2
i

e2κj − 1
+ 1

)
. (29)

The explicit form of the coefficient B is given by Eq. (23),
where λ = e−κ for the bound states below the lower band
edge and λ = −e−κ for the bound states above the upper band
edge. In Fig. 7 we show the PT norm for the two bound states
previously shown in Figs. 6(a) and 6(b) that appear below the
lower band edge; we see that the PT norm for one of these
states is positive, giving the eigenvalue of the C operator as 1,
while for the other the norm is negative, giving the eigenvalue
of the C operator as −1.

V. SCATTERING STATES, THE RESONANCE IN
CONTINUUM, AND PERFECT TRANSMISSION

In this section we consider typical (PT -asymmetric)
scattering boundary conditions for our PT -symmetric open
quantum system; we consider PT -symmetric scattering solu-
tions later in Sec. VI. In Sec. V A we write the generic wave
function for these states and then obtain a matrix equation for
the relevant scattering coefficients. We then explicitly write the
transmission and reflection for the simplest case with a pure
imaginary potential, namely ε0 = ε1 = 0. We perform these

0.8

−0.2

0.6

0.4

0.2 0.4 0.6 0.8

0.2

0.0

FIG. 7. (Color online) Real part of the roots λ of the polynomial
Eq. (11) and normalization constant N corresponding to two bound
states below the lower band edge in the domain 0 < � < 0.45 for
ε1 = −1.1 and ε0 = 0.05. One bound state has a positive norm and
the other has a negative norm; the eigenvalues of the C operator are
therefore +1 and −1, respectively. A similar picture holds for bound
states appearing above the upper band edge. Note that we evaluate
the energy in the unit of th = 1 and the wave number in the unit of
a = 1.

calculations for both left-to-right and right-to-left scattering
and we verify that the transmission and reflectance satisfy
established relations that generally hold in PT systems.

In Sec. V B we discuss the RIC in detail from the perspective
of the scattering wave solutions; here we note that the
RIC automatically satisfies the Siegert boundary condition
for outgoing waves and argue that these states represent
a resonance between the background continuum and the
PT -symmetric defect potential.

While the RIC is a discrete state embedded in the scattering
continuum, we discuss in Sec. V C outstanding scattering
states, namely perfectly transmissive states, meaning that the
transmission is unity while the reflectance vanishes. For the
simplest case in which the defect potential is pure imagi-
nary with ε0 = ε1 = 0 we demonstrate that by appropriately
choosing � we can obtain perfect transmission at any given
value of k in the spectrum; this property approximately holds
in the case in which ε0 and ε1 are nonzero but take on
small values. We also demonstrate that the appearance of the
perfect transmission state at the band edges coincides with a
delocalization transition, an observation which may be useful
from an engineering perspective as one aims to construct
devices with specific transmission properties.

We also examine the case in which not only the transmission
is unity, but also there is no phase shift as the scattering
wave passes through the defect region. In this case the signal
is transmitted not only perfectly, but invisibly. Further, we
demonstrate that for a precise choice of parameters, the
system exhibits an interesting switching behavior in which
the central scattering site at x = 0 responds to the otherwise
invisible left-to-right transmission signal but remains dormant
in response to the right-to-left signal (or vice versa).

A. PT -asymmetric scattering states

Here we find scattering states of our PT -symmetric model
(1) under the potential (2). We limit most of the detailed calcu-
lations to the simplest case ε0 = ε1 = 0 but the generalization
to the case ε0 �= 0 and ε1 �= 0 is straightforward. We first solve
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the Schrödinger equations (5)–(7) for left-to-right scattering
by assuming a wave function of the form

ψ(x) =

⎧⎪⎨
⎪⎩

Aeikx + Be−ikx for x � −1,

ψ(0) for x = 0,

Ceikx for x � 1,

(30)

where k resides within the scattering continuum 0 � k � π .
The term with the coefficient A gives the incoming wave,
while the B term is the reflected wave and the C term is
the transmitted wave. Note that its eigenvalue is real: E =
−2 cos k.

We have four parameters A, B, C, and ψ(0) to fix under the
three conditions given by the Schrödinger equations (5)–(7).
Substituting the ansatz (30) into them yields⎛

⎝ε1 + i� + λ −λ 0
1 −(1 + ε0λ + λ2) λ2

0 −1 1 + (ε1 − i�)λ

⎞
⎠

×
⎛
⎝ A

ψ(0)
C

⎞
⎠ = −λB

⎛
⎝1 + (ε1 + i�)λ

λ

0

⎞
⎠. (31)

Let us limit ourselves from this point to the simplest case
ε0 = ε1 = 0. Although the overall phase of the wave function
(30) does not affect physical quantities, it turns out that it is
easiest to assume B ∈ R. We can represent the coefficients as

A = B
i sin k − �2e2ik cos k

(� + 2 sin k)� cos k
, (32)

C = B
i sin k

(� + 2 sin k)� cos k
, (33)

ψ(0) = B
i(1 − i�eik) sin k

(� + 2 sin k)� cos k
, (34)

and thereby obtain the transmission and reflection amplitudes
as

tl = C

A
= i sin k

i sin k − �2e2ik cos k
, (35)

rl = B

A
= (� + 2 sin k)� cos k

i sin k − �2e2ik cos k
, (36)

which are followed by the transmission and reflection proba-
bilities as

TL→R := |tl|2 = sin2 k

sin2 k + (�−2 sin k)(� + 2 sin k)�2 cos2 k
,

(37)

RL→R := |rl|2 = (� + 2 sin k)2�2 cos2 k

sin2 k + (� − 2 sin k)(�+2 sin k)�2 cos2 k
.

(38)

Note that TL→R + RL→R is, in general, not unity because we
have a source and a sink and therefore the particle number is not
conserved. Instead, the usual probability conservation relation
is replaced with a generalized rule for PT -symmetric systems
that relates the left-to-right and right-to-left transmission
properties [113], as shown below.

Hence, we next consider the right-to-left scattering solution
given by the ansatz

ψ(x) =
⎧⎨
⎩

Be−ikx for x � −1,

ψ(0) for x = 0,

Ceikx + De−ikx for x � 1,

(39)

in which we again have 0 � k � π , the D term is the incoming
wave, the C term is the reflected wave, and the B term is
the transmission wave. Note again that its eigenvalue is real:
E = −2 cos k.

Again substituting this ansatz into the Schrödinger equa-
tions (5)–(7), we obtain⎛

⎝1 + (ε1 + i�)λ −1 0
λ2 −(

1 + ε0λ + λ2
)

1
0 −λ ε1 − i� + λ

⎞
⎠

×
⎛
⎝ B

ψ(0)
D

⎞
⎠ = −λC

⎛
⎝ 0

λ

1 + (ε1 − i�)λ

⎞
⎠. (40)

After assuming C ∈ R this time, we obtain for the case ε0 =
ε1 = 0 the coefficients as

D = C
i sin k − �2e2ik cos k

(� − 2 sin k)� cos k
, (41)

B = C
i sin k

(� − 2 sin k)� cos k
, (42)

ψ(0) = C
i(1 − i�eik) sin k

(� − 2 sin k)� cos k
, (43)

and the amplitudes

tr = B

D
= i sin k

i sin k − �2e2ik cos k
, (44)

rr = C

D
= (� − 2 sin k)� cos k

i sin k − �2e2ik cos k
, (45)

which, in turn, lead to the right-to-left transmission and
reflection probabilities

TR→L := |tr |2 = sin2 k

sin2 k + (� − 2 sin k)(� + 2 sin k)�2 cos2 k

≡ TL→R, (46)

RR→L := |rr |2 = (� − 2 sin k)2�2 cos2 k

sin2 k+(� − 2 sin k)(�+2 sin k)�2 cos2 k

� RL→R. (47)

The left-right asymmetry in (47) comes from the fact that the
P and T symmetries are individually broken in our system.

We nonetheless note that we have tl = tr ≡ t , such that
the transmission is equal for the left-to-right and right-to-left
scattering; this is a general property of PT systems. Further,
we note that the relations

t(−k) = t(k) and rl(−k) = rr (k) (48)

are satisfied, which also hold for PT systems in general
[113,114]. Finally, the usual probability conservation property
for Hermitian systems (T + R = 1) is here replaced with
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FIG. 8. (Color online) (a) The left-to-right transmission probability (37), which is equal to the right-to-left transmission (46), (b) the
left-to-left reflection probability (38), and (c) the right-to-right reflection probability (47), all in the simplest case of ε0 = ε1 = 0. Note that the
scale of the vertical axis varies from panel to panel. Note that we evaluate the energy in the unit of th = 1 and the wave number in the unit of
a = 1.

[113–115]

|t(k)|2 ± |rl(k)rr (k)| = 1, (49)

which we can easily verify by using Eqs. (35), (36), (44),
and (45). This is a result of the fact that Eqs. (41)–(43) are
obtained from the corresponding Eqs. (32)–(34) by taking the
complex conjugate and flipping the sign of k, which is just
the PT operation in the wave-number space. Note that the
sign choice appearing in Eq. (49) is fixed by the sign of the
quantity 1 − |t(k)|2 = 1 − T ; it can easily be shown that for
the present case with ε0 = ε1 = 0 the sign changes in this
quantity generally occur at arcsin(±�/2).

B. Scattering wave perspective on the resonance in continuum

We explain the RIC, which we introduced in Sec. III as a
discrete resonant eigenstate, here from the perspective of the
scattering states presented in Sec. V A. More specifically, we
show that the RICs appear as singularities in the transmission
and reflection probabilities (37), (38), (46), and (47) on the
real axis. In this sense, it is a discrete state embedded in the
scattering continuum.

Let us recall that in Sec. III the RICs appear as the points
where two solutions meet on the real energy axis; in Fig. 3(e)
for the simplest case ε0 = ε1 = 0, this happens at E = ±√

2
for � = 1. This is not an EP, however, because each of them
has a different (real) value of k; namely, k = ±π/4, ±3π/4 in
the simplest case, as shown in Fig. 3(c) or 3(f).

We here show that these points indeed have the properties
of the resonant states in the sense that they have divergent
transmission and reflection probabilities. We plot in Fig. 8 the
transmission and reflection probabilities for both Eq. (30) and
Eq. (39) in the case ε0 = ε1 = 0 for positive 0 � � � 5; they
are symmetric with respect to k = 0. All probabilities have
poles at k = ±π/4 and k = ±3π/4 with � = 1, namely for
the RICs. These are the only instances at which any of the
probabilities diverges for real k.

From this perspective, the poles are indeed discrete states
embedded in the scattering continuum. Let us explain why they
are resonant states in continuum. These poles are associated
with the zeros of the coefficient A in the wave function (30)

and the coefficient D in the wave function (39), as we can
see in Eqs. (35), (36), (44), and (45). Exactly at these zeros
A = 0 and D = 0, the wave functions (30) and (39) have only
outgoing waves, which indeed matches the Siegert bound-
ary condition (8) for resonant states [27–29,32,37,79–83].
Therefore, the poles of the transmission and reflectance shown
in Fig. 8 are resonance poles. In a resonance state with
Re k > 0, particles are ejected from the central area and flow
away towards x = ±∞; in a state with Re k < 0, which is
historically called an antiresonance state, particles flow into
the central area and vanish. We indeed saw this from another
perspective in Eq. (17), in which the RIC took the form
of an outgoing plane wave outside of the central scattering
region.

In the Hermitian scattering problem, the particle number is
conserved and hence the Siegert boundary condition can only
be satisfied at discrete complex values of k and E, which give
the location of the resonance poles; it can never be satisfied for
real values of k and E in the Hermitian case. Under the Siegert
boundary condition, the particles flow away from the scattering
region and hence the particle number in this area decays
in time, which can be described only by a complex energy
eigenvalue [37]. Hence, a resonance pole in the Hermitian
case is strongly tied to an eigenstate with complex E and k.

In the PT -symmetric case, however, the particle number is
not conserved because we have a source and a sink. Hence, it
is possible for particles to emerge out of the scattering region
(or vanish into it) as a stationary state without changing the
particle number in this region. This is indeed what happens
with the resonant states in continuum: Because Im E = 0 and
Im k = 0 for these poles, the wave function stretches over all
space as a stationary state.

In this sense, it is a remarkable characteristic of PT -
symmetric systems that we have resonances resting within
the real energy continuum. This is why we specifically refer to
these as resonance states in continuum; these states represent
a resonance between the open environment associated with
the leads and the PT -symmetric potential. We further note
that in the special case ε1 = 0 and � = 1, one or two RICs
appear for any values of ε0, although again one or the other
RIC exits the continuum at ε0 = ±1 and splits into a bound
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state and a virtual bound state, as previously discussed in
Sec. III D.

C. Perfect transmission, invisibility, and applications

In the present section, we turn our attention from the RIC
poles to the scattering continuum itself. More specifically,
we now study the system parameters that give rise to perfect
transmission such that T = 1, while the reflectance vanishes
R = 0. We also examine the phase associated with the perfect
transmission in order to observe the case in which invisibility
is obtained, and we comment on several points below that may
be useful from an engineering perspective.

The condition to obtain perfect transmission in the left-to-
right [right-to-left] case is immediately apparent in Eq. (30)
[Eq. (39)], namely B = 0 [C = 0]. This condition is realized
whenever the determinant of the 3 × 3 matrix on the left-hand
side of Eq. (31) [Eq. (40)] vanishes. Hence, we obtain left-to-
right [right-to-left] perfect transmission at a given value k =
k̃X,j within the continuum whenever the condition MR(λ̃R,j) =
0 [ML(λ̃L,j) = 0] is satisfied, where λ̃X,j = eik̃X,j and

ML,R(λ) = (ε1 ∓ i�)λ4 + [
ε2

1 + �2 + ε0(ε1 ∓ i�)
]
λ3

+ ε0
(
1+ε2

1+�2
)
λ2+[

ε2
1 + �2 + ε0(ε1 ± i�)

]
λ

+ ε1 ± i� = 0. (50)

Since MX(λ) is a quartic polynomial for either case X = L,R,
for a given set of parameter values we generally obtain four
values k̃L,j for left-to-right and four values k̃R,j for right-to-left
perfect transmission. However, some of these solutions might
turn out to be complex-valued and hence must be discarded.

In the simplest case ε0 = ε1 = 0, Eq. (50) for the left-
to-right transmission gives the factorized form ML(λ) =
i�(1 + iλ)(1 − iλ)(1 − i�λ − λ2). The two linear factors give
two �-independent solutions as k̃L,1 = π/2 and k̃L,2 = −π/2
with energy E = 0 appearing directly at the center of the
transmission band. Meanwhile the quadratic factor gives the
solutions

k̃L,{3,4} =
{

cos−1(±√
4 − �2/2) for −2 < � < 0,

cos−1(±√
4 − �2/2) − π for 0 < � < 2.

(51)

These four solutions are plotted as the solid curves in Fig. 9(a);
note that the real parts of the wave numbers for the eigenvalues
Re kj are also plotted as the dotted curves, for reasons
described below. From an applications perspective, we note
for this case we can obtain perfect transmission at any given
value of k ∈ [−π,π ] by choosing the appropriate value of �.

So far we have only considered the intensity of the trans-
mitted signal, but not the associated phase information. While
perfect transmission does maintain the signal intensity, if there
is a phase shift between two leads, an observer may still be
able to detect the presence of impurities in the scattering region
by performing a time-of-flight measurement [116]. We can
investigate the phase shift for the perfect transmission states by
calculating the eigenvector (A,ψ(0),C)T on the left-hand side
of the singular matrix (31) for our four perfect transmission
solutions. For the case of the two perfect transmission values

k̃L,1 = π/2 (λ̃L,1 = i) and k̃L,2 = −π/2 (λ̃L,2 = −i) we have⎛
⎝i(� ± 1) ∓i 0

1 0 −1
0 −1 1 ± �

⎞
⎠

⎛
⎝ A

ψ(0)
C

⎞
⎠ = 0, (52)

which yields A = C without any phase shift between the leads
and

ψ(0) = (1 ± �)A. (53)

Left-to-right invisibility holds for these two cases; indeed, as
we discuss below, right-to-left invisibility will also hold for
k = ±π/2. As a further point, notice from Eq. (53) that we
can arbitrarily adjust ψ(0) by tuning the parameter � and still
maintain perfect transmission; for the special case � = ∓1 we
can even eliminate it entirely.

Performing a similar calculation for the �-dependent
perfect transmission states k̃L,3 and k̃L,4 reported in Eq. (51)
reveals that a phase shift is always present for these states, apart
from the special case k = ±π/2 for a specific value of �. To
summarize, invisibility can only be achieved at k = ±π/2 for
arbitrary �.

For right-to-left transmission in the simplest case ε0 =
ε1 = 0, we obtain from the lower sign in Eq. (50) the factor-
ized equation MR(λ) = −i�(1 + iλ)(1 − iλ)(1 + i�λ − λ2).
Hence, for the right-to-left transmission we again obtain
perfect transmission at k̃R,1 = π/2 and k̃R,2 = −π/2, but for
the �-dependent perfect transmission states we have instead

k̃R,{3,4} =
{

cos−1(±√
4 − �2/2) − π for −2 < � < 0,

cos−1(±√
4 − �2/2) for 0 < � < 2,

(54)

as plotted in Fig. 9(b). Notice that the expressions (54) are just
reversed from the left-to-right case reported in Eq. (51); this
is a natural result for a PT -symmetric system since switching
our scattering orientation amounts to swapping the position
of the gain and loss impurities. Again in this case we can
evaluate the scattering wave coefficients to find that D = B

and hence we have no phase shift for the perfect transmission
states k̃R,{1,2} = ±π/2; this shows that these states yield
bidirectional invisibility.

Here the response at the site 0 is given by

ψ(0) = (1 ∓ �)D. (55)

If we choose, say � = −1, the invisible right-to-left wave has
a finite value of ψ(0) at k = +π/2, but from Eq. (53) the left-
to-right transmission gives no response at the same frequency.
Hence, the site 0 in this scenario can act as a kind of switch
that responds to the otherwise invisible signal transmission in
one direction but ignores signals from the other direction.

In Figs. 9(c) and 9(d) we plot the left-to-right perfect
transmission for more general parameter values with ε0 = 0,

ε1 = 0.08 and ε0 = −0.1,ε1 = 0, respectively. We note that
the range of the continuum that is capable of supporting perfect
transmission has been reduced slightly in comparison to the
“cleaner” case in Figs. 9(a) and 9(b) for these relatively small
values of the impurity energies. For larger impurity values the
range of coverage for perfect transmission is further reduced.

We also note the following connection between the perfect
transmission scattering states and the bound states of the
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FIG. 9. (Color online) The wave numbers for perfect transmission (solid curves) as a function of � for fixed values of ε0 and ε1; the wave
numbers Re kj for discrete eigenvalues are also shown in the background with dotted curves, except for bound states, which appear as solid
lines at either k = 0 (lower band edge) or ±π (upper band edge). We used the following parameter values: (a) left-to-right transmission for
ε0 = ε1 = 0, (b) right-to-left transmission for ε0 = ε1 = 0, (c) left-to-right transmission for ε0 = 0,ε1 = 0.08, and (d) left-to-right transmission
for ε0 = −0.1,ε1 = 0. Note that we evaluate the energy in the unit of th = 1 and the wave number in the unit of a = 1.

discrete spectrum. Notice that in the background of Figs. 9(a)–
9(d) we have plotted the real part of the wave numbers Re kj

for the discrete eigenvalues as the dotted curves. However, the
wave numbers for the bound states are marked with solid lines
appearing at either k = 0 (lower continuum edge) or k = ±π

(upper continuum edge). Focusing on Figs. 9(c) and 9(d), we
note that the appearance of the perfect transmission scattering
state exactly coincides with the appearance (or disappearance)
of a bound state at the edges of the Brillouin zone k = 0 or
k = ±π ; see [117].

This is a rather intuitive result if we consider the behavior of
the bound-state wave function at the delocalization transition,
where it brushes against one of the band edges before
becoming a virtual bound state in the second Riemann sheet.
On one side of this transition we have a bound state with a wave
function that is localized in the defect region, while on the
other side we have a virtual bound state with a wave function
that diverges into the leads (one can even view this state as
being localized in the leads [33]). At precisely the transition
between these two states, we have a wave function that spreads
out evenly throughout the chain, which here supports perfect
transmission from one lead to the other.

This explains the connection between the delocalization
transition and the appearance of the perfect transmission
state at either edge of the scattering continuum, which may
provide an intuitive approach to designing systems with
desired transport properties. We notice that a somewhat similar
transition appears in Ref. [107].

VI. PT -SYMMETRIC SCATTERING WAVE SOLUTIONS

This section is devoted to more mathematical interest. We
here investigate the PT -symmetric properties of the scattering
wave solutions. Previously we demonstrated in Secs. III and
IV that the discrete states satisfy PT -symmetric boundary
conditions in certain regions of parameter space; however, we
note that, despite the fact that the eigenvalue E = −2 cos k

associated with the scattering states is always real, in Sec. V
these states generically satisfied PT -asymmetric boundary
conditions.

This motivates us to investigate whether the scattering states
themselves can obey PT -symmetric boundary conditions. We
show in Secs. VI A and VI B that we indeed always have PT -
symmetric scattering states. In the former, we PT symmetrize
the scattering wave function previously obtained in Sec. V.
In the latter, we present a more direct and systematic way
of finding a PT -symmetric scattering wave with the use of
the Jost solutions. We then introduce the concept of the PT
current in Sec. VI C.

A. PT symmetrization of the scattering wave solutions

We can construct a PT -symmetric solution out of an
asymmetric solution ψ(x) by writing

ψPT (x) = ψ(x) + PT ψ(x). (56)

Let us apply this strategy to the scattering solution (30). The
PT transformation results in the changes i →−i and x →−x,
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as well as the complex conjugation of coefficients A and C; we
recall that B is real by assumption in the relations (32)–(34)
for the simplest case ε0 = ε1 = 0. Note that the real-valued
wave number k (the momentum) is invariant under the action
of PT , since both P and T result in a sign flip separately for
this quantity. Substituting our result into Eq. (56) we obtain a
PT -symmetric solution for 0 � k � π given by

ψ
(L)
PT (x) =

⎧⎨
⎩

(A + C∗)eikx + Be−ikx for x � −1,

ψ(0) + ψ(0)∗ for x = 0,

(A∗ + C)eikx + Be−ikx for x � 1,

(57)

with the relations (32)–(34) producing

A + C∗ = −B
e2ik�

2 sin k + �
, (58)

ψ(0) + ψ(0)∗ = B
2 sin k

2 sin k + �
, (59)

for the simplest case ε0 = ε1 = 0. Note that the component
ψ

(L)
PT (0) is real. If we choose the normalization as φPT (0)(L) =

1 we obtain

φ
(L)
PT (x) =

⎧⎨
⎩

− �
2 sin k

eik(x+2) + (
1 + �

2 sin k

)
e−ikx for x � −1,

1 for x = 0,

− �
2 sin k

eik(x−2) + (
1 + �

2 sin k

)
e−ikx for x � 1,

(60)

for 0 � k � π , as our first PT -symmetric solution.
We can instead start from the right-to-left scattering wave

Eq. (39). Following a similar procedure as above, we obtain

ψ
(R)
PT (x) =

⎧⎨
⎩

Ceikx + (B + D∗)e−ikx for x � −1,

ψ(0) + ψ(0)∗ for x = 0,

Ceikx + (B∗ + D)e−ikx for x � 1,

(61)

for 0 � k � π , where we used the assumption C ∈ R in this
case. In the simplest case ε0 = ε1 = 0 we have

B + D∗ = C
e−2ik�

2 sin k − �
, (62)

ψ(0) + ψ(0)∗ = C
2 sin k

2 sin k − �
. (63)

After again choosing our normalization such that φ
(R)
PT (0) = 1,

we obtain

φ
(R)
PT (x) =

⎧⎨
⎩

(
1 − �

2 sin k

)
eikx + �

2 sin k
e−ik(x+2) for x � −1,

1 for x = 0,(
1 − �

2 sin k

)
eikx + �

2 sin k
e−ik(x−2) for x � 1,

(64)

for 0 � k � π , as our second PT -symmetric solution, which
is indeed obtained simply by flipping the sign of k in the first
solution (60): We therefore conclude that the solution (60)
holds for the entire first Brillouin zone −π < k � π .

B. Jost solutions

The solutions in Sec. VI A seem somewhat strange because
of the asymmetry with respect to the inversion of k. In this
section we obtain an alternative PT -symmetric solution by
directly finding the Jost solutions of the original Schrödinger
equation (5)–(7). We find a solution of a more symmetric form,

which is indeed a superposition of the solutions (60) and (64).
We again restrict ourselves to the simplest case ε0 = ε1 = 0.

Let us briefly overview the way of constructing a scattering
wave solution out of the Jost solutions. When the potential
vanishes far away from the origin, we can assume a solution
of the form of a plane wave there. The solutions thus defined
under the boundary conditions [118,119],

f±(x) = αe±ikx as x → ∞, (65)

with an appropriate constant α are called the Jost solutions.
They, however, do not generally satisfy boundary conditions
at the origin. We therefore take a superposition of the two Jost
solutions so that it may satisfy the boundary conditions at the
origin, which yields a scattering wave solution.

Since the potential vanishes for x � 2 in the present case,
we can use Eq. (65) in the region x � 1. Let us now construct
thePT -symmetric Jost solutions. SincePT eikx = eikx , we set

f±(x) = α∗e±ikx as x → −∞, (66)

which we can use in the region x � −1. These Jost solutions,
however, do not satisfy the boundary conditions at x = 0.
Indeed, the Schrödinger equation for x = 1, namely Eq. (7),
gives

f±(0) = −f±(2) + [−E(k) − i�]f±(1)

= α[−e±2ik + (eik + e−ik − i�)e±ik]

= α(1 − i�e±ik) (67)

for ε1 = 0, while the Schrödinger equation for x = −1, Eq. (5),
gives

f±(0) = −f±(−2) + [−E(k) + i�]f±(−1)

= α∗[−e∓2ik + (eik + e−ik + i�)e∓ik]

= α∗(1 + i�e∓ik). (68)

We can make Eqs. (67) and (68) continuous at the origin by
choosing

α = 1 + i�e∓ik, (69)

which makes f±(0) = 1 ± 2� sin k + �2, but the resulting
solution f±(x) does not satisfy the Schrödinger equation for
x = 0, Eq. (6) (even after setting ε0 = 0 for the present case).

The physical solution that satisfies the Schrödinger equation
(6) must be given by a linear combination of the two Jost
solutions,

φPT (x) = A+f+(x) + A−f−(x), (70)

with two superposing coefficients A±, which we set so that
φPT (x) may satisfy Eq. (6). Let us define the Jost functions
(not to be confused with the Jost solutions) by

F±(k) = −f±(−1) − f±(1) − E(k)f±(0)

= −(1 − i�e±ik)e∓ik − (1 + i�e∓ik)e±ik

+ (eik + e−ik)(1 − i�e±ik)(1 + i�e∓ik)

= 2�(� ± 2 sin k) cos k. (71)

The Schrödinger equation (6) is then reduced to

A+F+(k) + A−F−(k) = 0, (72)

which fixes the ratio between A+ and A−.
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By normalizing the function by φPT (0) = 1, we can express the final result as follows:

φPT (x) =
⎧⎨
⎩

(
1 − �

2 sin k

)
1−i�eik

2 eikx + (
1 + �

2 sin k

)
1−i�e−ik

2 e−ikx for x � −1,

1 for x = 0,(
1 − �

2 sin k

)
1+i�e−ik

2 eikx + (
1 + �

2 sin k

)
1+i�eik

2 e−ikx for x � 1.

(73)

This is indeed a linear combination of Eqs. (60) and (64) in
the form

φPT (x) = 1

2

(
1 + �

2 sin k

)
ψ

(R)
PT (x) + 1

2

(
1− �

2 sin k

)
ψ

(L)
PT (x);

(74)

however, the domain extends over the entire first Brillouin
zone −π < k � π .

C. PT current

Because we have a source and a sink, the discrete states
generally do not conserve the particle number and the
scattering states do not conserve the current. We here, however,
introduce a current that is conserved for a PT -symmetric
scattering state, which we refer to as the PT current.

The standard current is defined in a one-dimensional
continuous space as

j = Re[ψ(x)∗p̂ψ(x)]

= 1

2i

[
ψ(x)∗

d

dx
ψ(x) − ψ(x)

d

dx
ψ(x)∗

]
, (75)

which would normally be independent of x, but this does not
generally hold true in aPT -symmetric non-Hermitian system.
We here instead introduce the PT current

jPT = 1

2

[
ψ(x)∗

d

dx
ψ(−x) − ψ(−x)

d

dx
ψ(x)∗

]
. (76)

We can prove that the PT current is independent of x for an
eigenfunction ψ(x) with real eigenvalue E of the Hamiltonian

HPT = − d

dx2
+ VPT (x), (77)

with PT VPT (x) = VPT (−x)∗ = VPT (x). Computing the x

derivative of the PT current (76), we indeed have

d

dx
jPT (x) = 1

2i

[
ψ(x)∗

d2

dx2
ψ(−x) − ψ(−x)

d2

dx2
ψ(x)∗

]

= 1

2i
{ψ(x)∗[VPT (−x) − E]ψ(−x) − ψ(−x)

× [VPT (x)∗ − E]ψ(x)∗} = 0. (78)

Notice that it vanishes identically for a PT -symmetric eigen-
function, because we then have ψ(x)∗ = ψ(−x) in Eq. (76).

In the discretized space of the one-dimensional tight-
binding model, the standard current is given by

j = 1

2i
{ψ(x)∗[ψ(x+1)−ψ(x)]−ψ(x)[ψ(x+1)∗−ψ(x)∗]}

= 1

2i
[ψ(x)∗ψ(x + 1) − ψ(x)ψ(x + 1)∗], (79)

while the PT current is given by

jPT = 1
2 [ψ(x)∗ψ(−x − 1) − ψ(−x)ψ(x + 1)∗]. (80)

For a PT -asymmetric left-to-right scattering state of the form
(30), the (traditional) current (79) is

j = sin k ×
{

|A|2 + |B|2 for x � −2,

|C|2 for x � 1,
(81)

which are generally not equal along the two leads, as we
showed in Sec. V. The PT current (80), on the other hand, is

jPT = sin k ×
{

−iB∗C for x � −2,

iBC∗ for x � 1,
(82)

= |B|2 sin2 k

(� + 2 sin k)� cos k
, (83)

which is conserved on both sides of the scattering region. We
plot the PT current in Fig. 10; the singularities appearing
here correspond to the left-to-right perfect transmission states
previously shown in Fig. 9(a).

VII. CONCLUSION

In this paper we have combined two types of non-Hermitian
systems, open quantum systems and PT -symmetric systems,
in order to study a simple example of a PT -symmetric open
quantum system. This system took the form of a tight-binding
model with a PT -symmetric defect potential as shown in

k

Γ

FIG. 10. (Color online) The PT current (83) without the factor
|B|2 in the simplest case ε0 = ε1 = 0. Note that we evaluate the
energy in the unit of th = 1 and the wave number in the unit of a = 1.
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Fig. 1, which might be physically realized as an optical lattice
array or approximated in a variety of PT systems with a
defect scattering center [59,60,102]. We used this model to
illustrate a number of quite general features of PT -symmetric
open quantum systems, including properties of the discrete
spectrum, as well as the scattering states.

In Sec. III we studied the RIC as a feature of the discrete
spectrum, illustrating that it represents a resonance state
appearing directly within the conduction band (scattering
continuum) as it crosses from the second Riemann sheet of
the complex energy plane into the first sheet. In Sec. III B we
showed that this state takes the form of an outgoing plane wave
from the impurity region into the leads. As a result, this feature
also appears in the scattering continuum and hence we returned
to it in Sec. V in which we studied the scattering properties of
the system; in Sec. V B we described that the RIC represents a
resonance between the open environment associated with the
leads of the system and the PT -symmetric defect potential. In
this sense, the RIC can be viewed as a quite particular feature
of PT -symmetric open quantum systems.

We also showed in Sec. III D that the RIC may exit the
conduction band as we modify the system parameters by
splitting into a bound state and a virtual bound state at the
edge of the continuum; we believe that this effect should be
experimentally observable, perhaps in a modified version of
the experiments presented in Ref. [59] or [60]. We also point
out that it has been previously illustrated that a bound state (or
virtual bound state) appearing near the edge of the continuum
should generally result in an enhancement of the long-time
nonexponential decay that is known to appear in open quantum
systems [108]. Since both a bound state and a virtual bound
state appear near the band edge in the case when the RIC exits
the continuum, this may result in an even greater enhancement
of the nonexponential effect that could also offer an interesting
basis for experimental study.

We illustrated another key difference from Hermitian open
quantum systems in that complex-valued solutions are allowed
to appear in the first sheet of the complex energy plane in
the PT -symmetric case. These appear as pairs of localized
states, one with an amplifying characteristic and the other
with an absorbing characteristic, as observed experimentally
in Ref. [59]. We also pointed out that some of these states
may behave as quasibound for large values of the PT defect
parameter �; these again might be observable in a system that
imitates our defect potential.

We evaluated general scattering properties of PT -
symmetric open quantum systems in Sec. V, in which we cal-
culated the transmission and reflectance for a PT -asymmetric
scattering wave solution in Sec. V A and verified that these
satisfy known symmetry relations [113–115]. We also studied
perfect transmission states in Sec. V C, with invisible solutions
as a subset of these, and illustrated a connection between
perfect transmission at the band edges and a delocalization
transition of the bound state in the discrete spectrum.

After noting that the eigenvalue E = −2 cos k associated
with the scattering states is always real, in Sec. VI we
used our model as a mathematical prototype to illustrate
the construction of scattering wave solutions that themselves
satisfy PT -symmetric boundary conditions (just as the bound
state in the discrete spectrum is well known to satisfy such

boundary conditions, as we have illustrated in Sec. IV). In
Sec. VI C we wrote the PT current for these solutions and
pointed out that the previously studied perfect transmission
states appeared as a special case.
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APPENDIX A: EP EIGENVALUE EXPANSION
IN THE CASE ε0 = ε1 = 0

Here we briefly detail the eigenvalue expansions obtained
in the vicinity of EP2As [Eqs. (14) and (13)] and EP2Bs
[Eqs. (15) and (16)] for the case ε0 = ε1 = 0, following a
variation on the method developed in Ref. [77]. First we
find it useful to rewrite the polynomial equation P (λ) = 0
from Eq. (11) directly in terms of the energy eigenvalue
E. We accomplish this through the substitution λ = −(E +√

E2 − 4), which yields the equivalent equation p(Ej̃ ) = 0,
with

p(E) = �2E4 + (�4 − 4�2 − 1)E2 + 4. (A1)

(Note that we have chosen different labeling j̃ for the solutions
of this alternative form of the dispersion equation in order to
emphasize that there is no consistent labeling that will hold
between the sets of solutions as we cross the EP [111].)

The basic idea for our calculation is that we take advantage
of the fact that the derivative of the eigenvalues blow up at
the EPs to study the system properties nearby. First we take
a full derivative of the polynomial equation dp/d� = 0 and
rearrange to obtain

2�E4 + 4�(�2 − 2)E2

∂E/∂�
+ 2E[2�2E2 + �4 − 4�2 − 1] = 0.

(A2)
Since ∂E/∂� diverges, we obtain a useful relationship
between E = Ē and � = �̄ at the EP by setting the second
term on the right-hand side above to zero, which yields

Ē(� = �̄) = ±
√

1 + 4�̄2 − �̄4

√
2�̄

. (A3)

We can then plug this formula back into the original polyno-
mial dispersion given in Eq. (A1) to find the locations of the
EPs in parameter space as � = ±�̄A and � = ±�̄B, where

�̄A =
√

2 − 1, �̄B = 1 +
√

2. (A4)

We then find the locations of the eigenvalue coalescence points
by plugging these values back into Eq. (A3) to find E(�̄A) =
±|ĒA|, E(−�̄A) = ±|ĒA|, E(�̄B) = ±i|ĒB|, and E(−�̄B) =
±i|ĒB|, with

|ĒA| =
√

2(1 +
√

2) and |ĒB| =
√

2(
√

2 − 1). (A5)
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Following Ref. [77], we can now write a generic expansion
in the vicinity of each the EPs as

EA(�) = |ĒA| + α1,2

√
�2 − �̄2

A,

EA(�) = −|ĒA| + α3,4

√
�2 − �̄2

A, (A6)

and

EB(�) = i|ĒB| + β1,2

√
�2 − �̄2

B,

EB(�) = −i|ĒB| + β3,4

√
�2 − �̄2

B. (A7)

To find the expansion coefficients α1,2, for example, we define
�2 ≡ �2 − �̄2

A, plug this into Eq. (A2), and expand in powers
of �. Carrying this out for both cases, we obtain

α1,2 = α3,4 = ±i
1

21/4
√

−1 + √
2
,

β1,2 = β3,4 = ±i
1

21/4
√

1 + √
2
. (A8)

Putting Eqs. (A5) and (A8) into Eq. (A6) and Eq. (A7), we
obtain the expansion associated with the EPs as reported in
Sec. III A.

APPENDIX B: PROPERTIES OF COMPLEX LOCALIZED
STATES IN REGION IV FOR THE CASE ε0 = ε1 = 0

In this appendix we detail the properties of the complex
localized states in Region IV [see Fig. 3(b)] for the case ε0 =
ε1 = 0, as discussed near the ends of Secs. III A and III C of
the main text. We can generally expect the condition λ � 1 to
hold throughout this region of the parameter space. Hence, we
begin by expanding the solutions of λj , which are reported in
Eq. (12), in powers of 1/�, to obtain

λ1,4 ≈ ± i

�

(
1 + 1

�2

)
, λ2,3 ≈ ±i

(
1 − 1

�2

)
. (B1)

We use Ej = −(λj + λ−1
j ) to obtain expansions for the energy

eigenvalues immediately as

E1,4 ≈ ±i

(
� − 2

�

)
, E2,3 ≈ ±i

2

�2
, (B2)

as reported in the main text.
To elucidate the asymptotic properties of the wave function

for these eigenvalues, we make use of the first and third rows

from Eq. (9) to write

ψ(∓1)

ψ(0)
= 1

−λ ± i� − E(λ)
= λ

1 ± iλ�
. (B3)

First, let us evaluate the localization properties for ψ1 asso-
ciated with the eigenvalue E1 ∼ i�, which appears to be the
uncoupled gain site in the limit � → ∞. The calculation for
the wave function ψ4 proceeds along similar lines. Applying
λ1� = i(1 + 1/�2), we find

ψ1(−1)

ψ1(0)
≈ −i�,

ψ1(+1)

ψ1(0)
≈ i

1

2�
. (B4)

Choosing our normalization such that ψ1(−1) = 1, we
have ψ1(0) ≈ i/� and ψ1(1) ≈ −1/(2�2). We then use
λ1 = eik1 ≈ i/� to write the wave function (8) as

ψ1(x) ≈

⎧⎪⎨
⎪⎩

−i�
(

i
�

)|x|
for x � −1,

i
�

for x = 0,

i
2�

(
i
�

)x
for x � 1,

(B5)

or

|ψ1(x)|2 ∼ e−|x+1| ln �, (B6)

which shows that the state is localized around the gain site x =
−1 with the localization length 1/ ln �. A similar calculation
for E4 ≈ −i� shows that the wave function for this eigenvalue
is localized around the loss site x = 1. They become sharper
and sharper as we increase �.

For the eigenvalues E2,3 in Region IV, we can use λ2,3 ≈ ±i

to find
ψm(∓1)

ψm(0)
≈ ∓i

1

�
(B7)

for both eigenvalues with m = 2,3. This indicates that the
site 0 is the localization center for the wave functions ψ2,3.
Let us therefore normalize the wave functions according to
ψm(0) = 1. Because the wave numbers are expanded as

k2,3 = −i ln λ2,3 ≈ −i ln

[
±i

(
1 − 1

�2

)]

≈ ±π

2
+ i

1

�2
, (B8)

we obtain the wave functions as

ψ2,3(x) ≈

⎧⎪⎨
⎪⎩

∓ 1
�
e±iπ |x|/2e−|x|/�2

for x � −1,

1 for x = 0,

± 1
�
e±iπx/2e−x/�2

for x � 1,

(B9)

which shows that the localization length is �2/2. In other
words, they become broader and broader as we increase �.
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