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Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics
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It remains a challenge for theory to simulate nonperturbative and non-Markovian quantum dissipative dynamics
at low temperatures. In this study we suggest a Hermitian non-Markovian stochastic master equation suitable
for dissipative dynamics at arbitrary temperatures. The memory effect of the bath is embedded within two real
correlated Gaussian noises. This scheme is numerically verified by the hierarchical equation of motion and
symmetry preserving for a symmetric two-level system. An exemplary application is carried out for the dynamics
over a broad range of temperatures to investigate the temperature dependence of the Rabi frequency shift and the
non-Markovianity.
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I. INTRODUCTION

A quantum system is inevitably coupled to its environment.
When the coupling is weak and the memory time of the
environment is short compared to the system time, a Markovian
approximation leads to a good description. However, experi-
ments have depicted that the Markovian approximation fails to
describe the dynamics of various quantum systems in physics,
chemistry, and biology [1–3]. The interest in non-Markovian
dynamics is thus renewed [4–10].

To deal with dissipative dynamics, it is a widely accepted
assumption that the bath is consisted with independent quan-
tum harmonic oscillators linearly coupled to the system within
the framework of system-bath separation, which is normally
called the Caldeira-Leggett model [11]. With this approach,
the impact of the bath on the system is fully characterized
by its response function. The Caldeira-Leggett model has
become the standard model for the theoretical description
of quantum dissipation and continues to receive attentions,
such as the hierarchy of equations of multiple-time correlation
functions [12], time-convolutionless master equations for non-
Markovian dynamics for two-level systems (TLSs) [13,14],
and effect of the initial system-environment correlations [15],
to name but a few.

The stochastic method is useful for attacking quantum
dissipative dynamics, partially because the Feynman-Vernon’s
influence functional [16] based on the Caldeira-Leggett model
provides a natural measure for stochastic processes. Percival
and coworkers have done pioneering work with stochastic
unraveling in the Markovian case [17]. For non-Markovian
dynamics, the direct implementation of the above observation
led to many further developments, with the quantum Monte
Carlo method [18] and the quasiadiabatic propagator path
integral approach [19] being two successful examples.

However, the quantum Monte Carlo is only suitable for
short-time dynamics due to the numerical sign problem, and
the quasiadiabatic propagator path integral method is only
good for short memory cases. A more efficient strategy is
to derive a stochastic differential equation (SDE) for the
dissipative dynamics by decoupling the influence functional.
In this case there are two key factors affecting the numerical
performance of the SDE. One is the number of stochastic
processes in the SDE, which is obvious and is not discussed
in further detail. The other is the extent of the stochastic

reduced density matrix (SRDM) to preserve the general and
problem-specific properties of the reduced density matrix
(RDM). Here the general properties refer to the norm con-
servation, the hermicity, and the positivity of the RDM, and
the problem-specific properties, to the symmetry properties
of the system. The SRDM will not necessarily preserve
these properties, although its stochastic average has to do
so. Generally speaking, the more properties of the RDM the
SRDM preserves, the better numerical performance the SDE
method will assume.

One can decouple the whole system-bath interaction in
terms of stochastic processes and reach the SDE for reduced
dynamics. This idea was carried out by Shao [20] and Stock-
burger et al. [21–23] independently using different strategies.
These two approaches are equivalent as far as the Caldeira-
Leggett model is concerned. Please note that Shao’s approach
can go beyond the linear dissipation model and may apply to
an arbitrary system-bath interaction and arbitrary bath. Also,
starting from Shao’s approach, one of us and coworkers have
been the first to rigorously derive the hierarchical equation
of motion (HEOM) [24,25], which was originally proposed
by Tanimura and Kubo as the semiclassical approximation
for high-temperature dissipative dynamics [26]. The SDE
is non-Hermitian and has three real stochastic processes.
Thus if written in the language of wave-function description,
the forward propagation and backward propagation satisfy
different sets of equations which are not Hermitian conjugated
to each other. The non-Hermitian nature of the SDE affects the
numerical performance and thus its application as a numerical
tool is limited.

One can also partially decouple the influence functional
to get a Hermitian SDE. Strunz, Yu, and coworkers only
decoupled the coupling between the forward and the back-
ward paths in the influence functional and put forward a
stochastic Schrödinger equation for open systems, called the
non-Markovian quantum state diffusion (NMQSD) equation
[27–32]. It is a Hermitian SDE and thus assumes a much better
numerical performance. But it contains an unknown kernel,
which can only be determined self-consistently by assuming
some ansatz. The kernel is only explicitly solvable for some
special cases and one has to solve it case by case [33,34] or
with the functional expansion [35]. The lack of an explicit
expression of the kernel and a straightforward way to solve it
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hinders the application of the NMQSD method to most general
cases.

This work presents a Hermitian non-Markovian stochastic
master equation (SME) for the RDM with two real correlated
colored noises. On one hand, the hermicity and lower number
of noises will make the current scheme more efficient nu-
merically than that proposed by Stockburger et al. [22] and
Shao [20]. On the other hand, this Hermitian SME does not
contain unknown kernels and is much easier to implement
than NMQSD for all kinds of applications [27]. It thus
partially overcomes the shortcomings of the above-mentioned
stochastic approaches and is suitable for long-time dynamics
at arbitrary temperatures. The rest of the paper is organized
as follows. Section II gives the theoretical derivation of the
Hermitian SME. Preliminary results for the temperature-
dependent dynamics of a symmetric TLS are carried out in
Sec. III. Section IV gives a brief summary.

II. HERMITIAN STOCHASTIC DIFFERENTIAL
EQUATION

This work focuses on the linear dissipation dictated by the
Caldeira-Leggett model,

Ĥ = Ĥs + Ĥb + f (ŝ)g(b̂), g(b̂) =
∑

j

cj x̂j , (1)

where Ĥs and Ĥb are the Hamiltonians of the subsystem of
interest and the heat reservoir, respectively. ŝ is the system
operator coupled to the bath, while x̂j is the position operator
of the j th mode in the environment.

As the sole quantity needed for the bath is its response
function, different methods will be equivalent to each other as
long as they can represent the response function correctly. The
stochastic decoupling scheme is the simplest among various
schemes for accomplishing this task. The SDE originally
proposed by Shao in Ref. [20] can decouple the dissipative
interaction,

i�dρ̂s = [Ĥs,ρ̂s]dt +
√

�/2[f (ŝ),ρ̂s]dμ2

+ i
√

�/2{f (ŝ),ρ̂s}dμ1, (2)

i�dρ̂b = [Ĥb,ρ̂b]dt +
√

�/2[g(b̂),ρ̂b]dμ1

+ i
√

�/2{g(b̂),ρ̂b}dμ2, (3)

if the initial condition is deterministic and factorized as
ρ̂tot(0) = ρ̂s(0)ρ̂b(0). Generally, ρ̂s(0) is taken according to
the process under investigation and ρ̂b(0) is the Boltzmann
distribution with respect to the bath Hamiltonian Ĥb. In
the above equation μa(a = 1,2) are two classical Wiener
processes with the properties

M〈dμa,t 〉 = 0, M〈dμa,tdμb,t 〉 = δabdt. (4)

Here δab is the Kronecker δ function. ρ̂s is the SRDM for the
system of interest. Please note that in this work the SDE is in
the Itô sense and the stochastic integral is the Itô integral as
well. The full dynamics of the dissipative system is recovered
by the stochastic average of the stochastic density matrix ρ̂tot =
M〈ρ̂s ρ̂b〉, withMmeaning the stochastic average over the two
Wiener processes. This point can be justified by using Eq. (4)
and the fact that ρ̂s/b(t) is independent of dμa,t due to the Itô

nature of the SDE. And the RDM will be obtained through
the stochastic average after tracing over the bath degrees of
freedom, i.e., ρ̃s = M〈ρ̂s tr(ρ̂b)〉.

Equation (2) is Hermitian, so is expected to have a much
better performance compared to a non-Hermitian one once the
trace of the bath tr(ρ̂b) is solved. However, the factorization
condition for the bath ρ̂b = ∏

j ρ̂b,j (j refers to the bath degree
of freedom) is destroyed and the modes in the bath do not
evolve independently of each other. Hence the trace from
Eq. (3) cannot be known straightforwardly. To remedy this
problem, one may take an alternative way to calculate the
trace by introducing two more real Wiener processes μ3,4 and
using the following SDE for the bath instead:

i�dρ̃b = [Ĥb,ρ̃b]dt +
√

�/2[g(b̂),ρ̃b](dμ1 + idμ4)

+ i
√

�/2{g(b̂),ρ̃b}(dμ2 + idμ3). (5)

One can steadily verify that Eqs. (2) and (5) also yield the
Liouville equation for the whole dissipative system. Once the
trace of ρ̃b in Eq. (5) is solved, one knows that in Eq. (3) by
averaging over the stochastic processes μ3,4; that is, tr(ρ̂b) =
M3,4(tr(ρ̃b)). To proceed, one invokes the formal solution of
Eq. (5);

ρ̃b(t) = e
− i

�

∫ t

0 [Ĥbdτ+g(b̂)dq+
τ ]

+ e−βĤb/Tr(e−βĤb )

× e
i
�

∫ t

0 [Ĥbdτ+g(b̂)dq−
τ ]

− , (6)

where e+ and e− denote the time and antitime ordering
exponentials, respectively, and q+ and q− are the forward
and backward paths:

q+ =
√

�/2(μ1 + iμ4 + iμ2 − μ3),

q− =
√

�/2(μ1 + iμ4 − iμ2 + μ3).

The trace of the bath in the above equation can be known from
the influence functional,

tr(ρ̃b(t)) = F[q+,q−] = exp

{
− 1

�

∫ t

0
(dq+

τ − dq−
τ )

×
∫ τ

0
[αR(τ − s)(dq+

s − dq−
s )

+ iαI (τ − s)(dq+
s + dq−

s )]

}
,

which leads to the following expression for the trace:

tr(ρ̃b(t)) = exp

{
2
∫ t

0
(dμ2,τ + idμ3,τ )

×
∫ τ

0
[αR(τ − s)(dμ2,s + idμ3,s)

+ αI (τ − s)(dμ1,s + idμ4,s)]

}
.

The stochastic average over the Wiener processes μ3 and μ4

actually is a Gaussian-type functional integration,

M3,4tr[ρ̃b(t)] =
∫

D[μ3]D[μ4] exp

{
− 1

2

4∑
a=3

∫ t

0
dμa,τ

×
∫ t

0
δ(τ − s)dμa,s

}
tr[ρ̃b(t)]. (7)
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Here δ is the Dirac δ function. The functional integration
in the above equation is straightforward. Performing a few
rearrangements after the integration one finally gets the trace
of the matrix ρ̂b,

tr(ρ̂b) = e

1
2

2∑
a,b=1

∫ t

0 dμa,τ

∫ t

0 [δabδ(τ−s)− 1
2 Gab(τ−s)]dμb,s

, (8)

where G(t − τ ) is the Green’s function for the matrix function
�(t − τ ),

� =
(

cδ(t − τ ) + αR(t − τ ) �(t − τ )αI (t − τ )
�(τ − t)αI (τ − t) cδ(t − τ )

)
, (9)

with c = 1/2 and � the Heaviside step function, taking values
of 0 (1) for x � 0 (x > 0). Equation (8) gives the trace for the
stochastic density matrix of the bath in Eq. (3) and it is still
of the Gaussian form, which serves as a multiplicative factor
in the stochastic average for calculating ρ̃s . In performing the
stochastic average over the Wiener process μ1,2 to obtain the
RDM, the first term in Eq. (8) cancels with the measure of
μ1,2; i.e.,

ρ̃s =
∫

D[μ1]D[μ2]e
− 1

2

2∑
a=1

∫ t

0 dμa,τ

∫ t

0 δ(τ−s)dμa,s

ρ̂s(t)tr(ρ̂b)

=
∫

D[μ1]D[μ2]e
− 1

4

2∑
a,b=1

∫ t

0 dμa,τ

∫ t

0 Gab(τ−s)dμb,s

ρ̂s(t).

Here the exponential factor is still Gaussian and can be treated
as the measure of Gaussian noises. Adopting the change of
variables according to μa,t = √

2
∫ t

0 νa,τ dτ (a = 1,2), the Itô
SDE for the random RDM with respect to the stochastic
processes νa,t is given by

i� ˙̂ρs = [Ĥs,ρ̂s] +
√

�[f (ŝ),ρ̂s]ν2 + i
√

�{f (ŝ),ρ̂s}ν1. (10)

Equation (9) becomes the correlation function for νa with
M〈νa,t 〉 = 0 and M〈νa,t νb,τ 〉 = �ab(t − τ ).

In the stochastic simulation of the quantum dissipative
dynamics, only the RDM, i.e., the expectation of the SRDM
in Eq. (10), is of concern and the information for the higher
momenta of the SRDM is not needed at all. Thus the constant
c in Eq. (9) can be arbitrarily chosen as long as the correlation
function is semipositive definite. To prove this point, one
introduces the Itô SDE,

i� ˙̂ρs = [Ĥs,ρ̂s] +
√

�[f (ŝ),ρ̂s](ν2 + ν4)

+ i
√

�{f (ŝ),ρ̂s}(ν1 + ν3), (11)

where ν1 and ν2 are Gaussian noises given in Eq. (9), ν3

and ν4 are uncorrelated Gaussian white noises assuming the
correlation function M〈νb,t 〉 = 0, and M〈νb,t νb,τ 〉 = c′δ(t −
τ ), with b = 3,4 and c′ being a positive real number. All
other quantities related to the correlation for ν3,4 are 0. One
clearly sees that when the partial stochastic average is carried
out over the stochastic processes ν3 and ν4, Eq. (11) goes
back to Eq. (10). So Eq. (11) is equivalent to Eq. (10)
for reproducing the RDM in the description of dissipative
dynamics. The second step is the introduction of changes of
variables ν ′

1 = ν1 + ν3, ν ′
2 = ν2 + ν4, ν ′

3 = ν3, and ν ′
4 = ν4.

One finds that ν ′
1 and ν ′

2 satisfy the correlation function
in Eq. (9). Further, the SRDM now is independent of the

stochastic processes ν ′
3 and ν ′

4. In this case the stochastic
average over ν ′

3 and ν ′
4 can be steadily carried out, leading to the

same SDE as Eq. (10) and the same form correlation function
as Eq. (9), but with the c constant changed to c + c′. So
different values of c in Eq. (9) yield the same RDM as long as
the correlation function is semipositive definite. Since different
values of c make a big difference in the performance of
the numerical simulation, one always prefers to choose the
minimum c value that preserves the semipositivity of the
correlation function.

Please note that Eq. (10) does not preserve the norm of
the stochastic density matrix, which changes according to the
differential equation,

dtr(ρ̂s) = 2/
√

�f̄ tr(ρ̂s)dν1, (12)

where f̄ = tr(f (ŝ)ρ̄s), with ρ̄s being the normalized density
matrix ρ̄s = ρ̂s/tr(ρ̂s). The solution of Eq. (12) reads

tr(ρ̂s) = exp

{
2/

√
�

∫ t

0
f̄τ ν1,τ dτ − 2c/�

∫ t

0
f̄ 2

τ dτ

}
. (13)

The second term in the above equation appears due to the
existence of the Dirac δ function in the correlation function.
Then the norm-conserving SDE, Eq. (10), thus turns to be

i� ˙̄ρs = [Ĥs,ρ̄s] +
√

�[f (ŝ),ρ̄s]ν2

+ i
√

�{f (ŝ) − f̄ ,ρ̄s}(ν1 − 2cf̄ /
√

�). (14)

When using the above equation, the norm of the SRDM has
to be taken into account in the stochastic average. This is
conveniently done with a Girsanov transformation without
changing the correlation function for ν1,2:

ν1,t → ν1,t + 2c/
√

�f̄t ,

ν2,t → ν2,t + 2/
√

�

∫ t

0
dταI (t − τ )f̄τ . (15)

With the above transformation, the final SDE for the SRDM
becomes

i� ˙̄ρs = [Ĥs,ρ̄s] + i
√

�{f (ŝ) − f̄ ,ρ̄s}ν1

+
√

�[f (ŝ),ρ̄s]

(
ν2 + 2/

√
�

∫ t

0
dταI (t − τ )f̄τ

)
.

(16)

The SMEs, (10) and (16), together with the correlation,
Eq. (9), are the central result of this work. There is no
unknown kernel in the equations and the memory of the
bath is explicitly represented with two correlated Gaussian
noises. Both equations are Hermitian and advantageous in
numerical applications since hermicity greatly improves the
performance for the stochastic simulations. Compared to the
formulas obtained by Stockburger et al. [22] and Shao [20],
the SDEs take the same structure. This is a surprise because
one might reasonably expect that a Hermitian SDE will be
reached after taking the ensemble average partially over the
stochastic process, which induces nonhermicity in Shao’s
approach, which in turn will dramatically change the structure
of the SDE. But the current results seem to imply that this
average procedure merely introduces a Dirac δ function into
the correlation without changing the structure of the equation
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at all. Moreover, the coefficient of the δ function is arbitrary as
long as the correlation function is semipositive. Based on the
above connection the current results seem hard to understand.
However, one should bear in mind that there exists an infinite
number of stochastic methods which are all equivalent to each
other as long as they reproduce the exact evolution of the
RDM. Actually, the current approach parallels Stockburger’s
and Shao’s method, not the one derived from it. So the above
intuitive expectation is based on the wrong connection between
the current and the previous and does not hold here.

Equation (10) is a linear SDE, which is simple to implement
and stable in numerics, but not norm conserving. Equation (16)
is a nonlinear norm-conserving Itô equation which preserves
more properties of the RDM. Together with its hermicity,
it allows a possible physical interpretation of the SRDM.
Also, Eq. (10) is not a positive map, which could lead to
the diagonal matrix elements of the SRDM taking negative
values. As a direct consequence, trρ̂s in Eq. (10) may approach
0, and in this case ρ̄s = ρ̂s/tr(ρ̂s) is not well defined. Thus
one has to make sure that trρ̂s = 0 will not occur for
any stochastic trajectory before using the norm-conserving
version. Simulations not shown here illustrate that at short
times the convergence of the nonlinear version is much better
than that of the linear one. Unfortunately, there are always
trajectories with trρ̂s = 0 for intermediate to strong dissipation
at long times and the application of Eq. (16) becomes
problematic.

We would also like to point out that the model in
Eq. (1) is special since a factorized system-bath interaction
is assumed. The most general form of the Hamiltonian within
the framework of linear dissipation is

Ĥtot = Ĥs + Ĥb +
∑

j

fj (ŝ)gj (b̂), (17)

where gj (b̂) is a linear combination of the bath position
and momentum operators. In this case, one may introduce
more standard classical Wiener processes μj,k to decouple the
dissipative interaction [20]:

i�dρ̂s = [Ĥs,ρ̂s]dt +
√

�/2
∑

j

[fj (ŝ),ρ̂s]dμj,2

+ i
√

�/2
∑

j

{fj (ŝ),ρ̂s}dμj,1, (18)

i�dρ̂b = [Ĥb,ρ̂b]dt +
√

�/2
∑

j

[gj (b̂),ρ̂b](dμj,1 + idμj,4)

+ i
√

�/2
∑

j

{gj (b̂),ρ̂b}(dμj,2 + idμj,3). (19)

A Hermitian SDE can also be obtained by following the
above derivation since the trace of the bath from Eq. (19)
is a Gaussian-type functional and the average over the noises
μj,3/μj,4 is a Gaussian functional integration. The procedure
is completely parallel to the current formalism and is not
discussed any further here.

III. NUMERICAL SIMULATIONS

A. Symmetric two-level system

The TLS provides a fruitful test bed for new methods due to
its simplicity and importance in physics as well as in chemistry.
In this study we investigate the dynamics of a symmetric TLS
with the developed method. The Hamiltonian for the whole
system is Eq. (1) with Ĥs = �
σx and f (ŝ) = σz. Here 
 is
the tunneling matrix element between the left and the right
states and σx/σz are the Pauli matrices. The spectral density is
assumed to take an Ohmic form with Debye regulation,

J (ω) = ηωω2
c

/(
ω2

c + ω2
)
,

where η is the coupling strength and ωc the cutoff frequency.
Please note that here this form is chosen for a convenient
application using the HEOM, which provides benchmarks
to verify the stochastic method developed in this work. In
principle, the stochastic scheme is capable of handling arbi-
trary spectral densities, including subohmic and superohmic
dissipation [36].

This model cannot be analytically solved without approx-
imation. In the following we use the method of Eq. (10) to
solve the population dynamics of the TLS numerically due
to its simplicity and numerical stability for an intermediate
dissipation strength. The SDE, Eq. (10), is integrated with
the order 2 weak Runge-Kutta approximation [37], and
two-dimensional correlated noises are generated with the
circulant embedding approach [38]. These algorithms are
implemented in the Hyshe (Hybrid Stochastic-Hierarchical
Equations) package [39], which is the first implementa-
tion of the hierarchical method and has been successfully
employed to study the first numerical exact hierarchical
application [24], hybrid stochastic-hierarchical approach [40],
exciton dynamics [25,41], and exciton Seebeck effect [42].
In principle, one may use the Bloch vectors to represent the
reduced, auxiliary, and stochastic density matrices and gain an
advantage in simulations for TLSs. However, the most recent
Hyshe package aims at general-purpose applications and uses
the complex-valued density matrix.

In this study, 
 and � are set to 1. So the energy, frequency,
and temperature are in units of 
, and time in the inverse
of 
. We use a nonadiabatic cutoff, ωc = 4, with a moderate
coupling strength, η = 0.2, for the numerical simulations. The
number of time steps of the stochastic integration is 8192,
with a step size of 0.001 and the number of trajectories is 40
million for all simulations at different temperatures. Initially,
the system is prepared in the left state ρL(0) = |L〉〈L|. To
verify symmetry breaking due to the average with a finite
number of trajectories, simulations starting from the right state
ρR(0) = |R〉〈R| are also carried out. With these settings, it will
take about 20 CPU h, with 16 Intel(R) Xeon(R) E5620 CPUs
having a clock speed of 2.40 GHz.

B. Reliability of the Hermitian SDE

The first step for the numerics is verification of the stochas-
tic method, Eq. (10). The stochastic results at temperatures
of 1.0, 2.0, 3.0, 4.0, and 5.0 are compared to the numerical
exact values from the HEOM. At the same time, we perform
stochastic simulations for temperatures of 10−4, 10−3, and
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FIG. 1. (Color online) Reliability of the stochastic simulations.
(a) Deviations of stochastic simulations from numerical exact hierar-
chical results; (b) maximum failure of the symmetry preservation
measured by the trace distance between a quantum state and its
symmetry image at different temperatures. Filled circles represent
simulated results and the line is a guide for the eye. The temperature
is in units of the tunneling frequency 
.

10−2 and from 0.1 to 2.0 in steps of 0.1 for further analysis.
Hierarchical simulations are also carried out at temperatures in
the range 2.2–5.0 in steps of 0.2 and the range 6.0–10.0 in steps
of 1.0 to save computational effort, thanks to the accuracy and
efficiency at high temperatures.

The population difference P (t) between the left and the
right states, i.e., the expectation of σz, is a key quantity
for checking the dynamics. The quantity (Pappr − Preal)/(1 +
|Preal|) is a good reference to display the deviation of the
approximated value Pappr from the real value Preal. Figure 1(a)
presents the errors for population differences, with the con-
verged results from the HEOM being the reference. One finds
that the maximum errors are less than 0.004 up to time t = 8.
If the results from stochastic simulation are plotted on top
of the hierarchical ones, the differences cannot be seen with
the naked eye. Thus the non-Markovian nonperturbative SME,
Eq. (10), produces reliable results. The other main feature is
that larger errors occur at lower temperatures, as already noted
for the Monte Carlo simulations.

In this model the symmetry between the left and the right
states with the symmetry operation σx are preserved even
though the Hamiltonian for the whole system is not invariant
under the symmetry operation. The reason is the left-right
symmetry of the bath and the symmetry property of the system

Hamiltonian as well as the coupling operator,

σxĤsσx = Ĥs, σxf (ŝ)σx = −f (ŝ).

So the symmetry operation operator commutes with the
propagator of the RDM; i.e., if the condition ρ2(t) = σxρ1(t)σx

is satisfied at the initial time, it is satisfied at any later time.
It is straightforward to show that the SDE, Eq. (10),

preserves the symmetry for the current spin-boson model only
after stochastic averaging, but not at the stochastic trajectory
level. Thus it is natural to check the reliability of the stochastic
simulation with the symmetry-breaking effect due to the
stochastic average with a finite number of trajectories in real
applications,

s(ρ1(0); t) = D(ρ1(t),σxρ2(t)σx), (20)

for any initial state ρ1(0) and its symmetry image ρ2(0) =
σxρ1(0)σx . In the above equation, D is the trace distance of
two quantum states ρ1,2,

D(ρ1,ρ2) = 1
2 tr

√
(ρ†

1 − ρ
†
2)(ρ1 − ρ2), (21)

which is a natural metric in the state space satisfying
0 � D � 1. It is invariant under unitary transformation and
nonincreasing for completely positive and trace-preserving
quantum maps. Thus the trace distance is often interpreted
as a measure for the distinguishability of states. By definition,
s(ρ1(0),t) is semipositive definite and is 0 for t = 0. If the
symmetry is strictly preserved, s(ρ1(0)) is always 0. In this
work we use the maximum value,

B(ρ1(0)) = max s(ρ1(0),t), (22)

to check the quality of the stochastic simulation.
Figure 1(b) depicts the failure of the preservation of the

left-right symmetry of the system measured as Eq. (22) caused
by the finite stochastic average. Since this quantity use the
maximum values of the left-right asymmetry as the measure, it
normally occurs close to the end time in a stochastic simulation
due to the diffusion nature of the SDE, Eq. (10). The overall
magnitude of the failure is small. Again, one sees that the
lower the temperature is, the larger the error that is induced.
Symmetry preservation is a good self-check for the reliability
of the method if the benchmark is absent.

C. Temperature dependence of the dynamics

The temperature dependence of the dynamics is depicted in
Fig. 2. Shown is the time evolution of the population difference
between the left and the right states. One first observes the
decrease in decoherence at higher temperatures. Calculated
(but not shown) results for temperatures of 6.0, 7.0, 8.0, 9.0,
and 10.0 reveal that for the current setting the population
difference will decrease monotonically when the temperature
is higher than 6. The second interesting point is that the contour
for 〈σz〉 = 0 is not a straight line. This fact is a reflection of
the phenomenon of the change in Rabi frequency at different
temperatures. One may define a Rabi oscillation frequency for
each temperature based on the population difference in the
case of a nonmonotonic decrease. The results are plotted in
Fig. 3 together with a quadratic fitting:

f (T ) = 1.91 + 0.127 T − 0.330 T 2. (23)
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FIG. 2. (Color online) Temperature dependence of the time evo-
lution for the population difference between the left and the right
states. Contours are the equi-interval plots with a 0.1 increment of
the population difference. The temperature is in units of the tunneling
frequency 
.

It is clear that the change is not monotonic but convex instead.
This trend agrees with various experiments related to TLSs,
such as silicon resonators [43], superconducting coplanar
waveguide resonators [44], and magnetic dipole radiation
in antiferromagnetic GdFeO3 ceramics [45], and theoretical
investigation of glasses as well [46,47].

D. Non-Markovianity based on symmetry

Introduce the rate of change of the trace distance for two
states:

σ (ρ1(0),ρ2(0); t) ≡ d

dt
D(ρ1(t),ρ2(t)). (24)

σ is always seminegative definite for completely positive
and trace-preserving maps and becomes positive only for
non-Markovian processes. Breuer, Laine, and Piilo suggested
the maximum integrated value for all positive σ for all pairs
of initial states as the measure for non-Markovianity [9]. It
is noteworthy that there exist alternatives for the measure of
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FIG. 3. (Color online) Temperature dependence of the Rabi fre-
quency, which is defined as π divided by the position of the first local
minimum for the population difference for each temperature. Filled
circles represent simulated results; the line, the quadratic fitting of
Eq. (23). The temperature is in units of the tunneling frequency 
.
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FIG. 4. (Color online) Trace distance between the left and the
right states for different temperatures. The temperature for each curve
can be read from the color map at the right.

non-Markovianity, such as the indivisibility property [8,48],
quantum Fisher information [49], fidelity [50], singularity of
the dynamical map [51], quantum mutual information [5],
and local quantum uncertainty [52]. However, it has been
observed that there are controversial issues in the measure-
ments [49,53,54]. Interested readers may refer to Ref. [55] for
a recent review of the characterization and quantification of
non-Markovianity.

Generally an accurate measure of non-Markovianity re-
quires complete knowledge of the reduced dynamics, which
is only feasible for small systems both in theory and in
experiment. Regarding experiments, knowing any effect of
the violation of divisibility is already enough to confirm the
existence of non-Markovian behavior. It is desired in some
applications to know whether or not a particular quantum
trajectory is Markovian. This is possible in the presence
of symmetry. Then one may introduce a measure of the
non-Markovianity for a given quantum trajectory ρ(t) using
the trace distance to its symmetry image σxρ(0)σx . In this work
we use the maximum positive value

N = max σ (ρL,σxρLσx ; t) (25)

to check the maximum deviation of the TLS model from
Markovianity. Due to the left-right symmetry of the current
model, knowing the propagation of either of the two density
matrices ρL/R is sufficient to determine the existence of a non-
Markovian effect if a positive N value is observed. Actually
Eq. (25) provides a lower bound for the non-Markovianity
measured with the method of Breuer, Laine, and Piilo [49].

The time evolution of the trace distance between ρL(t) and
σxρL(t)σx is present in Fig. 4 for different temperatures. We
have also carried out the propagation of ρR(t) to check the
reliability of the symmetry based method. The differences
between the two sets of results are always less than 5% at
any time for all temperatures. And the larger errors generally
occur close to the end of the propagation time. From this
plot one again finds that T = 6 is a special point. When the
temperature is below 6.0, the curve crossing is avoided and the
distance becomes larger for lower temperatures at any given
time. In addition, an oscillating feature appears and there exist
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FIG. 5. (Color online) Temperature dependence of the non-
Markovianity of the trajectory, starting from the left state. Filled
circles are calculated results and the line is a guide for the eye. The
temperature is in units of the tunneling frequency 
.

time intervals of increasing distinguishability. But these trends
are reversed for temperatures above 6.0.

The calculated results for the maximum deviation from
Markovianity N is shown in Fig. 5. Compared to those that
do not invoke symmetry, the differences are always less than
0.2%, which again confirms the reliability of the symmetry
preservation of the current method. Please bear in mind that we
are using the stochastic method for T < 2 and the HEOM for
T � 2, and the σ quantity is the derivative of the population.
So the stochastic method will lead to a larger error and causes
the discontinuity around T = 2. It is a surprise that N is not
monotonically decreasing. Because the curve is decreasing for
temperatures below T = 1 and is convex in the temperature
range 2–5, there must be a turning point between T = 1 and
T = 2. This conclusion holds regardless of the errors of the
stochastic simulation.

IV. SUMMARY

We have developed an exact Hermitian SME to solve the
quantum dissipative dynamics for the Caldeira-Leggett model.
Within this framework the effect of a bath is represented
by two correlated real-valued Gaussian noises. The current
SDE is NMQSD in nature and valid at arbitrary temperatures.
Compared to the approach suggested by Strunz et al., the
current SDE does not have a kernel to be determined. Though
the structure of the SDE is exactly the same as that proposed by
Stockburger et al. [22] and Shao [20], substantial differences

exist. The original equation is non-Hermitian and requires
three real noises, while the current one is Hermitian and
involves only two real noises. The hermicity and lower number
of noises greatly improve the numerical performance.

Because the only quantity required for the SME to simulate
dissipative dynamics is the expectation of its solution, the
coefficient of the δ function can be arbitrarily chosen as long
as the correlation function is semipositive definite. This feature
helps to improve the numerical efficiency. Tests with the
HEOM at high temperatures and with symmetry preservation
for a symmetric TLS show that the Hermitian SDE gives
accurate results. Then stochastic simulations over a broad
temperature range are performed and show that the Rabi
frequency shifts with temperature.

Based on the symmetry property of the symmetric TLS we
have proposed the matrix distance between one state and its
symmetric counterpart as a measure of the non-Markovianity
of a quantum state, which essentially provides a lower bound
for the measure using the method of Breuer, Laine, and Piilo.
This method measures the non-Markovianity with propagation
starting from only one quantum state, without the need
for complete knowledge of the quantum map. It will be
appreciated in cases where the accurate non-Markovianity for
the whole reduced system is not required and the existence
of non-Markovianity of a particular process is of concern in
the presence of symmetry. Combined with the Hermitian non-
Markovian SME, the application of this idea is exemplified
numerically for the dissipative symmetric TLS. It is interesting
to learn that the maximum deviation from Markovianity does
not decrease monotonically with increasing temperature for
this system.
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[8] Á. Rivas, S. F. Huelga, and M. B. Plenio, Phys. Rev. Lett. 105,
050403 (2010).

[9] H.-P. Breuer, E.-M. Laine, and J. Piilo, Phys. Rev. Lett. 103,
210401 (2009).

[10] C. Benedetti, M. G. A. Paris, and S. Maniscalco, Phys. Rev. A
89, 012114 (2014).

[11] A. Caldeira and A. Leggett, Ann. Phys. 149, 374 (1983).
[12] D. Alonso and I. de Vega, Phys. Rev. A 75, 052108 (2007).
[13] B. Vacchini and H.-P. Breuer, Phys. Rev. A 81, 042103

(2010).
[14] A. Smirne and B. Vacchini, Phys. Rev. A 82, 022110 (2010).
[15] V. G. Morozov, S. Mathey, and G. Röpke, Phys. Rev. A 85,
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[35] T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 60, 91

(1999).
[36] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,

A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[37] P. E. Kloeden and E. Platen, Numerical Solution of Stochas-

tic Differential Equations, 2nd ed. (Springer-Verlag, Berlin,
1995).

[38] G. Chan and A. T. A. Wood, Stat. Comp. 9, 265 (1999).
[39] Y.-A. Yan and Y. Zhou, Hyshe (hybrid stochastic-hierarchical

equations); http://nano.gznc.edu.cn/∼yunan/hyshe.html (2012).
[40] Y. Zhou, Y. Yan, and J. Shao, Europhys. Lett. 72, 334

(2005).
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