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Physical description of statistical hypothesis testing for a weak-value-amplification
experiment using a birefringent crystal
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We investigate the weak measurement experiment demonstrated by Ritchie er al. [N. W. M. Ritchie, J. G.
Story, and R. G. Hulet, Phys. Rev. Lett. 66, 1107 (1991)] from the viewpoint of the statistical hypothesis testing
for the weak-value amplification proposed by Susa and Tanaka [Y. Susa and S. Tanaka, Phys. Rev. A 92, 012112
(2015)]. We conclude that the weak-value amplification is a better method to determine whether the crystal used
in the experiment is birefringent than the measurement without postselection, when the angles of two polarizers
are almost orthogonal. This result gives a physical description and intuition of the hypothesis testing and supports
the experimental usefulness of the weak-value amplification.
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I. INTRODUCTION

In 1988, the weak measurement was proposed by Aharonov
et al. as an indirect quantum measurement with the posts-
election of the measured system [1]. Many theoretical and
experimental studies have been done for the weak measure-
ment in recent years [2]. Some researchers focused on the
usefulness of the weak measurement as a technique for a
high-precision measurement [3]. From the weak measurement,
we can extract a weak value, which can be outside the range
of the eigenvalues [4] or even complex. The weak value is
defined by

(A, = Y120 M

(fl12)

where A is an observable and |i) and | f) are the initial and
the final states of the measured system, respectively. The weak
measurement magnifies the output more than the one given by
an ordinary projective measurement. The weak value appears
as a shift of the probe wave function induced by an interaction
between the measured system and the measuring probe after
postselecting the final state of the measured system [5].

Actually, several experiments confirmed the weak-value
amplification (WVA) effect [6-8]. Some theoretical papers
have shown that WVA is robust against systematic or technical
error [9,10]. On the other hand, there is a statistical argument
that WVA has a disadvantage in the parameter estimation for
the interaction strength, because the postselection makes the
number of detectable data small [11-15]. The countercriticism
also arose that the data loss by postselection is not critical in
practical cases [16].

Reference [17] shows that WVA can be more significant
for interaction detection than the measurement without posts-
election when the weak value is outside the eigenvalue range
of the measured system observable. The WVA is more likely
than the ordinary measurement to correctly indicate when the
interaction indeed exists. This fact is derived by hypothesis
testing [18], which is one of the methods of statistical
inference. There it is supposed that the interaction is present
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if the measured value sufficiently deviates from the initial
probe fluctuation. The decision method gives a uniformly
most powerful unbiased (UMPU) test, i.e., a statistically good
testing.

In this work we demonstrate the testing for WVA [17]
by comparing the power defined in the statistical hypothesis
testing in two measurements, the weak measurement and the
ordinary one without postselection, for a particular experimen-
tal setup. We pick up the classic experiment using a birefringent
crystal and two polarizers demonstrated by Ritchie et al. [6]
for example. This experiment was originally designed for the
measurement of the weak value. Here we look at the same
experiment from a different angle. We regard it as a testing
problem to distinguish whether the crystal is birefringent
or not. Thus the statistical power in this experimental setup
is given as the probability to determine exactly when the
crystal is indeed birefringent. This experiment gives intensity
distributions as the results of the weak measurement including
the case that the weak-coupling approximation [1] does not
hold and the ordinary one with the birefringent crystal. These
experimental results clearly show the physical intuition of the
testing and the advantage of WVA by comparing the powers
as presented in Ref. [17]. We conclude that the angle of
the polarizers that give the weak value is the only factor in
determining the case that the weak measurement is superior.
For other more recent WVA experiments, see the discussion
in Sec. IV.

This paper is structured as follows. In Sec. II we introduce
the weak measurement of the experiment presented by Ritchie
et al. In Sec. III we implement the hypothesis testing to decide
whether the crystal used in the experiment is birefringent or
not. In Sec. IV we summarize this paper and discuss the issue
of the number of detectable data in the actual case. Some
equations are provided in the Appendix for convenience.

II. REVIEW OF BIREFRINGENCE EXPERIMENT
FOR WEAK MEASUREMENT

Here we briefly review the optical setup of the experiment
by Ritchie et al. [6]. In this experiment the position y of
the laser beam is the measuring probe and the polarization is
regarded as the measured system. We use the Gaussian shape
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for the laser beam profile given by

| 1/4 o
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v(y) = (yly) = (

The waist of the beam used in the experiment [6] is
wo = 55 pm. The tunings of the two polarizers play the roles
of the pre- and postselection of the initial and final states in
the measured system, which are

li) = cosa|H) + sina|V), 3)

|f) = cos B|H) +sin | V), “4)

where |H) and | V) denote the horizontal and vertical polar-
ization states, respectively, and o and B represent the angles
of the first and second polarizers, respectively.

The experimental setup is displayed in Fig. 1. Column (i) in
Fig. 1 shows the initial state of the polarization and the probe
distribution. Passing through the first polarizer, the photons are
injected into the birefringent crystal, which gives two different
refraction factors depending on the polarization of the injected
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FIG. 1. (a) Sketch of the optical setup. The tilted birefringent
crystal plates is set between the two polarizers, the angles of which are
tuned almost orthogonal. On the screen, we observe the beam position
y and we decide whether or not the crystal is birefringent. Also shown
are (b) the beam polarization and (c) the probe distribution, in each
stage. For the illustration, the angles of the polarizers are o« = /4
and B = 37 /4.
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photons. The injected beam is spatially separated into two
beams with different polarizations, one of which is called an
ordinary ray and the other is an extraordinary ray. Then it
gives the correlation between the position of the beam and the
polarization. The refraction of the photons is described by the
von Neumann—type Hamiltonian as

H=g8(HA ® p,, 5

where g is the interaction strength, A is the observable given
below, and p, is the momentum operator conjugate to the
position y of the measuring probe. Because the refraction
factor depends on the polarization, A is given by

A= rulHXH|+ Ay [VYVI, (6)

where Ay v > 0 are the eigenvalues of A. We note that the
crystal used in the experiment is a quartz plate, the refraction
factors of which are n, = 1.551 65 for the extraordinary ray
and n, = 1.542 61 for the ordinary ray when the wavelength
of the injected laser is 633 nm as quoted by Ref. [6]. We also
note that if the crystal is not birefringent, Ay = Ay.

The distribution function of the measuring probe after
refraction is calculated as

fnps(yl)"H v)\V)
= [(yle A% |y |i))?

! ) 2 /2w3 . 2 1502
- (cos? a e TEM /2y gin? o T TEAVI/200),

2w}
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This output is obtained by the ordinary measurement without
postselection. As we can see, it is composed of the two
Gaussian distributions.

According to Ref. [6], the crystal thickness is d = 331 um
and the angle of incidence is 8 &~ 30°. Using Snell’s law, we
can associate gAy and gty with the position shifts by the
refractions as

in(@ — 6,
giy = a0 %) _ 6702 ym, ®)
cos 0,
in(6 — 6,
ghy = a>O =) 6708 um, )
cos b,

where sin6f, = sinf/n, and sin6, = sin6/n,. Here we have
regarded the horizontal and vertical polarized beams as
extraordinary and ordinary rays, respectively. We see that
the difference of 0.64 um between giy and giy in the
birefringence is much smaller than the beam waist wy =
55 pum. Because the two beams almost overlap, we would
observe a single-peak distribution, the median of which is
y = g(Ag + Ay)/2, as the final probe distribution obtained by
the photodetector. Then it is difficult to distinguish whether or
not the crystal is birefringent [Fig. 1(c)(ii)]. We note that the
polarization of the overlapped region is the same as the initial
polarization, while the polarization of the nonoverlapped
region is as shown in Fig. 1(b)(ii).

The probability distribution will be changed from f;ps(y)
due to postselection by the second polarizer. The distribution
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function obtained by the weak measurement becomes
Jos(Am,Av)

[y 1(f e AP i) ) 2
|(fle8A0Px i)y |2
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cos? o cos? Be =8k /2wy gin? o sin? Be~ (=84 /2w 4 (1/2) sin 2« sin 2 Be~ (/20D —8lGhu-+Av)/20 ~(g? /2wp)[Gus —hv)/ 21

2 w2[cos? a cos? B + sin? a sin? B + (1/2) sin 20 sin 28 ¢~/ 2w0)kn—1v)/2F]

The third term of the numerator represents the interference.
We remark that the coefficient sin 2« sin28 can be negative
when the angles of the two polarizers are nearly orthogonal.
Its negativity tends to depress the final probe distribution in the
central region and separate it into the two-peak distribution,
because the polarization of the central part just after the crystal
is orthogonal to the one of the second polarizer, which is used
as the postselection [Fig. 1(b)(ii)]. The weak value becomes

(A), = <AH —kv>cos(a+,3) Ag+ Ay (11
v 2 cos(a — B) 2

When Ay # Ay, we can see that the weak value will be large
for the almost orthogonal pair of o and B. Then we could
observe the amplified peak-to-peak distance by using WVA
[Fig. 1(c)(iii)] to conclude that the crystal is birefringent.
However, the disadvantage of the postselection is the decrease
of the entire intensity.

III. HYPOTHESIS TESTING FOR BIREFRINGENCE

As an application we consider the statistical hypothesis
testing proposed in Ref. [17] in the experiment that uses the
birefringent crystal as explained in the previous section. For the
testing problem to determine whether the crystal is birefringent
or not, we take the following hypotheses: the null hypothesis
Hy, in which the crystal is not birefringent (i.e., Ay = Ay),
and the alternative hypothesis Hj, in which the crystal is
birefringent (i.e., Ay # Ay). We note that by the interaction,
the refraction occurs for both hypotheses, which somewhat
differs from the previous work [17].

We compare the testing power given by the weak mea-
surement and the one given by the measurement without
postselection. The testing power is defined as

b0t hy) = / () F O hy)dy, (12)

where d(y) is a decision function, which is a mathematical
expression for a decision criterion. The function d(y) takes
a binary value of O or 1. The O indicates that the null
hypothesis is accepted and the 1 represents that the alternative
one is accepted. The power (12) with Ay # Ay indicates the
probability to correctly judge that the alternative hypothesis is
actually true.

In the previous research [17] that treats the testing problem
to determine whether the interaction is present (g # 0) or ab-
sent (g = 0) between the measured system and the measuring

(10)
[
probe, the proposed decision function
_J0 for|yl/wy < ¢
)= {1 for [yl /wo > ¢ (13

works well. Here c is a critical point indicating the threshold
beyond which the null hypothesis is rejected. The physical in-
terpretation of the decision function (13) is that the interaction
would be present if the observed position y is outside the initial
laser beam waist wy.

However, this decision function does not suit the present
birefringence testing problem as it is because the refraction
could make the beam position y shifted outside the initial
beam waist wy, although the null hypothesis is actually true.
Then, for the proper testing, we have to adjust the final probe
wave function by shifting A, := (Ay + Ay)/2. When the null
hypothesis is true, for example, gA is the medium of a single
Gaussian distribution for the final probe state. On the other
hand, when the alternative hypothesis is true, gA coincides
with the mean of the two peaks of the final probe distribution.
We can grasp the value of gA by the preparatory experiment
without postselection to just monitor the refraction by the
crystal. Thus, the final probe distribution can be adjusted by a
translation suchas y — y 4+ gA,.

We remark that this adjustment can be described as the
unitary operator expligh ] ® pyl, where I is the identity
operator of the measured system. Then the total unitary
operator combining the two unitary operators given by the
Hamiltonian (5) and by the adjustment becomes

U, = expligh 1 ® pylexp[—igA ® p,]
= exp[—ig(A — A 1) ® py] = exp[—igA, ® p,]. (14)

Here we have introduced the total observable A, =
A_(|HYH| —|V)XV]) and its eigenvalue A_ := (Ayg — Ay)/2
for convenience. Now we can rewrite our two hypotheses as
Hy : A_ =0and H; : A_ # 0 and the total weak value as

(A}, = <f|A{|t> _,; cosla+p) (15)
(fli) cos(a — B)

To calculate the testing powers of each measurement,
we introduce (in the Appendix) the adjusted distributions:
Eq. (A1) for the ordinary measurement without postselection
and Eq. (A2) for the weak measurement. In the previous study
(see Sec. III B in Ref. [17]) we showed that the decision
function (13) becomes the UMPU test for the previous testing
problem of Hy: g =0 and H; : g # 0, while the present
testing problem is Hy : A = 0 and H; : A_ # 0. Noting that
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TABLE I. Condition C(«,B) and the weak value are displayed
with the assigned values of & and 8 used in the actual experiment [6].
In each case, o = /4.

Case B C(a, B) [(Aw/A_|?
(a) /4 1 0

(b) 3w/4+2.2 x 1072 —0.999 2065

(©) 3n/4 -1 indeterminate

the distribution functions (A1) and (A2) are functions of the
product gA_, we conclude that the testing function (13) is also
the UMPU test for the current problem.

The testing power of the measurement without postselec-
tion byps(A_) is given by Eq. (A3) and the one of the weak
measurement b, (A_) is Eq. (A4). From these powers we obtain
the relation (AS), which gives the inequality

bps(A—) = byps(2-), (16)

which holds under the condition that the pair of « and 8
satisfies

C(a,B) :=sin2asin28 < 0. (17

Here we have used the inequality (A6). As stated in Sec. II, the
amplification effect is induced if this condition (17) is satisfied.
We also remark that condition (17) is related to the requirement
for a weak value derived in Ref. [17] as [{(A,)y |2 = |A_|> &
C(a,p) < 0.

The experimental results are summarized in Fig. 2 in
Ref. [6]. Table I shows the value of C(«,B) and the weak
value |(A,),/A_|? with the values of « and B that were tuned
in the actual experiment in the three cases. We focus on two
cases: (a) the measurement de facto without postselection' and
(c) the weak measurement with the postselected state orthog-
onal to the preselected state. Case (a) exhibits the single
Gaussian distribution, so we cannot distinguish whether the
crystal is birefringent or not. However, in case (c), which
shows the two-peak distribution, we can clearly recognize that
the crystal is birefringent. We note that because the weak
measurement case (b) meets the approximation g| (Ay,l < 1,
the final probe distribution is virtually a single Gaussian
distribution shifted from the initial state as considered in Ref.
[1]. Case (c) gives significant amplification, which does not
satisfy the approximation [4]. In both cases, the inequality
(16) holds for the condition (17). Actually, case (c) gives a
remarkable amplification effect as shown in Fig. 2, whereas
the plots of by, and by are almost overlapped in case (b). Thus
we have shown that the angles of the two polarizers are the only
factor that determines the case when the weak measurement is
superior to the ordinary measurement without postselection in
terms of the testing power.

IV. SUMMARY AND DISCUSSION

We have shown that the weak measurement, i.e., the
measurement with the postselection, can be more powerful

I'The second polarizer slightly changes only the polarizations of the
unoverlapped region, but not the one of the overlapped region.
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1 2 3

FIG. 2. Powers by (solid line) and b, (dashed line) plotted with
the critical points ¢ as the horizontal axis in the two cases: (b) § =
37 /4 4+ 2.2 x 1072 and (c) B = 37 /4. The other parameters are fixed
asa = /4, wy =55 um, and gh_ = 0.32 um.

than the measurement without postselection in the hypothesis
testing to determine whether or not the crystal is birefringent.
When the (total) weak value given by the angles of the
two polarizers is larger than the eigenvalues of the (total)
observable, WVA has the advantage for the present problem. In
particular, the pair of angles & and 8, which does not satisfy the
approximation g|(A), | < 1, gives the really powerful testing.
According to the authors of Ref. [4], the amplification effect
is rather striking when the approximation breaks down. Our
conclusion obtained through statistical analysis supports their
view on WVA. Here we have essentially treated the testing
problem for the eigenvalue (Hyp : A— =0 and H; : A_ # 0),
not the interaction strength (Hy : g = 0 and H; : g # 0) that
was treated in the previous work [17]. In either case, the
decision function (13) gives the UMPU test and works
well.

It is often argued that postselection reduces the number of
detectable data, which is a statistical disadvantage of WVA
[11-15]. On the other hand, the hypothesis testing generally
works even if the number of detected data is small [17]. We
emphasize that the experiment by Ritchie et al. [6] has actually
shown the birefringence of the crystal by the postselection,
although the detected intensity is much smaller (~1073) than
that of the ordinary measurement case (Fig. 2 in Ref. [6]). We
note that we observe no data with a completely orthogonal
pair of ¢ and B when the null hypothesis is really true.
Then, practically, it is important to keep « and B almost
orthogonal but not quite, while the approximation is not still
satisfied.

In the current task we have studied the classic experiment
[6], regarding it as testing the birefringence of the crystal. The
experiment is a helpful example to consider the hypothesis
testing with WVA [17] because it is investigated outside the
validity of approximation, especially the case of postselection
completely orthogonal to preselection. The hypothesis testing
method can be applied to other WVA experiments, for
instance, the detection of the spin Hall effect of light [7]
and sensing the tilted mirror in the interferometer [8]. To
clearly show the effectiveness of WVA in the experiments
quoted above, we need the data for the region where the
approximation (g|(A)w| « 1) breaks down and the data of
the ordinary measurements to compare. With those data, it
would be interesting to see the effectiveness of WVA by
applying our hypothesis testing method. We remark that to
apply the proposed hypothesis testing method as it is, several
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assumptions (considered in Ref. [17]) are needed: that the
probe state is given by the Gaussian profile, the measured

PHYSICAL REVIEW A 92, 022118 (2015)

we should establish the appropriate testing function for the
experiment.

system is described as the two-quantum-state system, and the
experiment is based on the measurement of the position or the
real part of the weak value. If we want to test by measuring
the momentum or the imaginary part of the weak value,
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APPENDIX

Here we provide some equations to derive the inequality (16). From the distributions (7) and (10) we can obtain the adjusted
distributions as

SS9 = faps(y + ghilhAy) = cos? are™OTERI/G . gin? e (F R G, (A1)

—
1/27'rw§
Jos(y + grylAm,Ay)

cos® a cos? 8 e~ 0841205 4 gin? ¢ sin? B e~ Oreh )/ 2w (1/2) sin 2« sin 2/3e’(y2+32’\3)/2w<2> (A2)

J2rwd(cos? a cos? B+ sin? o sin? B + (1/2) sin 2a sin 28 e84 /215)

On the basis of the decision function (13) and the adjusted distributions (A1) and (A2), we can calculate the testing power (12)
of the measurement without postselection as

bups(h) = 1 — l(erf[w} + erf[MD (A3)
2

2 2 2
wy 2wy

Fyas)

and the one of the weak measurement as

(cos? a cos? B + sin® « sin? ﬂ)(erf[w] + erf[m]>+ sin 2a sin 28 e’gzﬁ/zw%rf[

ez Nz 7l

st()\—) =1- 2 > . . . . o202 2w? (A4)
2(cos? a cos? B + sin? a sin? B) + sin 20 sin 28 e~ 8 A=/2wp
From these we obtain the relation
sin 20 sin 28 ¢~¢2 /28 ( Zerfle/ 2] - 1)
1— bps()\f) 1= o ﬁ ¢ erf[(cwofg)\,)/a/2w5]+erf[(cwo+gk,)/«/2wtz)] (AS)
1 — bnps(A-) 2(cos? o cos? B + sin? a sin? B) + sin 2« sin 28 e~§72/2w%
We can derive the inequality (16) for Eq. (17) by using the inequality
2erf 2
erfle/ 2] —1>0, (A6)

erf[(cwo — gA-)/\/2wd] + erf[(cwo + gA-)/,/2wi]
which holds for gA_ # 0 and is shown in Appendix A of Ref. [17].
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