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We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional
arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure
searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying
out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix
renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales
as a power law with the bond dimension. The method brings considerable advantage when compared to the
integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged
couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow
tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain,
under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to
those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically
stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a

nondegenerate steady state.
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I. INTRODUCTION

The study of the nonequilibrium dynamics of open many-
body quantum systems has gained significant momentum in
recent years, thanks to the experimental progress achieved
in several areas, including ultracold atoms in optical lattices
[1-7], trapped ions [8—10], arrays of optical microresonators
[11-13], and superconducting circuits [14—16].

A feature common to all these systems is the coupling to
an external environment in the form of coherent or incoherent
input and output channels. The time evolution of the system is
then governed by an interplay of the Hamiltonian and the
driven-dissipative dynamics. For stationary external condi-
tions, this dynamics typically leads to a nonequilibrium steady
state (NESS), for which a multitude of novel phenomena are
expected, including nonequilibrium quantum phase transitions
[17-21] and the possibility of engineering quantum states
through tailored dissipation [22], in view of advanced quantum
information strategies [23].

The theoretical description and modeling of open quantum
systems out of equilibrium represents a major challenge.
Indeed, similar to the ground state of isolated many-body
quantum systems, the NESS can be characterized by quantum
correlations which, particularly when approaching criticality,
require for their exact determination a computational effort
that scales exponentially with the system size [24,25]. As
added difficulties, however, the NESS is generally not a pure
quantum state, nor can it be directly determined from the Gibbs
principle, as in the case of thermal equilibrium.

Generally, an open quantum system is described by a
density matrix p, whose dynamics obeys the von Neumann
equation p = Lp dictated by the Liouvillian superoperator £
(we set i = 1 here and in what follows) [26,27]. Two strategies
are then available for the determination of the NESS. First,
one can directly integrate the time evolution until stationarity
is reached. Second, a solution of the equation £p = 0 can
be directly computed under the additional condition that
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Tr(p) = 1. Apart from special cases in which analytical
solutions can be found [28,29], both strategies can be handled
numerically only for very small systems [30-34] if an exact
solution is sought. Larger systems typically require some level
of approximation, and still in recent times, many studies have
been restricted to mean-field approximations [34-38], thus
neglecting quantum correlations. Only very recently has a
variational principle for the NESS of open quantum systems
been demonstrated [39] and applied to one-dimensional
systems [40], while a spatial decimation method specific to
the stationary von Neumann problem has been proposed [41].

In this scenario, one-dimensional systems represent a
special case in which a very accurate description of the
many-body quantum state is made possible thanks to the
advent of the density-matrix renormalization group (DMRG)
[42—44] and of the equivalent variational approach based on
the matrix product state (MPS) ansatz [45,46]. In typical
situations, the MPS-DMRG approach allows a surprisingly
good account of quantum correlations in a finite spatial range,
with a computational overhead that scales polynomially with
the dimension of the Hilbert space. The MPS approach has
been successfully extended to the modeling of the unitary
time evolution of a closed quantum system [45,46]. For
open quantum systems, an analogous matrix product operator
(MPO) ansatz for the density matrix has been proposed and
applied to model both thermal equilibrium [47] and temporal
dynamics [47,48]. In particular, the long-time dynamics has
been employed to obtain the NESS, in the presence of driving
fields and dissipation, in different settings [49-54]. There
are, however, several settings in which the MPO dynamical
approach to the NESS suffers from limitations. This is the
case in the presence of slow dissipation rates (compared to
the energy scale set by the Hamiltonian) or when dissipation
acts on only a small part of the system, as in transport
configurations [52,53,55]. Some systems may even display
an algebraic, rather than exponential, dynamics to the NESS
[49,56-59]. Finally, the Trotter decomposition, typically used
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in these dynamical schemes, suffers from a severe limitation:
it is restricted to nearest-neighbor couplings. Very recently,
numerical approaches have been suggested [60-63] that
overcome this limitation but only for modeling the unitary
dynamics of isolated systems.

Here, we develop an efficient implementation of the varia-
tional principle to directly determine the NESS of Markovian
open quantum systems. The method does not rely on the
integration of the long-time dynamics, thus lifting all the
limitations described above. The variational principle for
determining the NESS has recently been proposed [39,40]
and implemented within an MPS-DMRG scheme [40]. The
approach that we propose relies directly on the search for the
zero eigenvalue of the superoperator £ for the determination
of the NESS. This approach has shown full numerical stability
when applied to gapped Liouvillians with a nondegenerate
NESS. As atest of the method, we simulate a driven-dissipative
Ising chain and compare the results to those obtained by
simulating the MPO dynamics [50,64] and with Monte Carlo
wave function (MCWF) [65-68]. We then simulate the same
system in the presence of longer-range couplings or slow
dissipation rates, thus showing the wide range of applicability
of the present approach in the description of driven-dissipative
systems. We finally discuss the computational complexity of
the approach and compare it to other existing methods [40].

II. THE METHOD

We consider a one-dimensional chain of N coupled quan-
tum systems, each characterized by d possible states, in the
presence of external driving fields and Markovian coupling to
the external environment. The dynamics is governed by the
Lindblad—von Neumann master equation [26,27]
dp ~ 1 TN I
L—rp=—ilFp) -3 Z[{K}Ki,ﬁ} —2RpRN, ()
where K; are the operators corresponding to the transitions
induced by the environment. The NESS solution obeys the
equation £pngss = 0.

For the purpose of numerical implementation, it is con-
venient to map the MPO representation onto an equivalent
MPS form. We do this by the vectorization procedure, where
the density matrix 0 is reshaped into a column vector, here
denoted by |p)), by concatenating all its columns. To express
the Liouvillian superoperator in this representation, we rely
on the property |XpY)) = YT ® X|p)), where X and Y are
matrices. Then, £ takes the form of the matrix defined by [69]

L=—-iI®H—-H QI

1 24 ] 2 % % % 22 ]
+§Zi:(2k,. QK ~1® KK, —RIR: @1). (2

The determination of the NESS can then be reformulated as
the variational minimization of the Euclidean norm functional,

LA = 0. A3)

The MPO representation of the density matrix reads p =

N / . .
Y oo ([Tiz; Ao ) (0’|, in which |o) =|oy-- 07 0ON)
are the states of the system, |o;) is the state of the jth site
of the chain, and the sets of matrices {A} parametrize the
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MPO state [45,46]. Through vectorization, we may express
the density matrix as an MPS,

N
15)) =Z(]‘[A2f>|z>>, )
) i=1

where | X)) = ||o')(6”])) and the indices in the matrix elements
of p have been encoded as X; = (¢6/ — 1)d + o;. Once ex-
pressed using a MPS representation, the problem determined
by (3) can be solved using the MPS-DMRG strategy, for
which we will refer to the treatment and the related notation
extensively presented in Ref. [46]. In particular, in order to
derive the equation for the on-site problem, it is useful to
express the density matrix in a mixed canonical form [46]:

-1 N
o) =) (]"[ A2i>Q2’< I1 Bz,.) Iz, 5
i=1

) i=Il+1

where the matrices QEZ , associated with the /th site in the MPS
ansatz, have been singled out from the MPS expression and the
sets of matrices { A} and { B}, with maximal bond dimension D,
are left and right normalized, respectively [45,46]. The MPS is
depicted in Fig. 1(a) in the usual diagrammatic representation
[45,60]. The symbol o then denotes a rank-three tensor and is
associated with a local representation of the density matrix at
site 1.

The Liouvillian operator can be represented in an MPO
form as

N
L= TTw===nu=, (©6)

XY i=I

as depicted in Fig. 1(b). Here, Dy is the bond dimension of the
MPO representation of L, i.e., the dimension of the matrices
W in (6). Dy 1is defined by the complexity of the system
Hamiltonian and dissipative processes and is fixed for a given
model [46].

A most natural choice for the variational determination
of the NESS, as adopted in Ref. [40], would be to express
(3) as ((A|LTL|p)). In this way, the problem bears a full
analogy to the MPS-DMRG approach to isolated systems, with
the Hermitian, positive-semidefinite operator £ £ playing the
role of the Hamiltonian. However, this choice requires han-
dling the product £ £ at some level within the algorithm. Let us
assume a given MPO representation of £, with bond dimension
Dy . As depicted in Fig. 1(d), when one computes the quantity
({P|L]|p)), the numerical complexity associated with the index
contractions on each site scales with O(D%V). The correspond-
ing complexity, in the case of the quantity ((5|L7L|p)), is
sketched in Fig. 1(e) and would naively scale as O(D‘V‘V).
More specifically, the computational complexity according
to Ref. [46] [see Eq. (197)] is OQd*>D*Dy + d*D*D3,)
for the £ algorithm and would be 0(2d2D3D%,V + d4D2D“1,V)
for the £'L case if one opted for directly using a MPO
representation of the squared Liouvillian of bond dimension
D%V. However, rather than constructing the L1£ MPO, one
may improve the second approach by storing only £ and
carrying out the matrix multiplication by £' on the fly at
each optimization step. This would reduce the complexity
of the £L1£ approach to 0(2d>D3D?, + d*D*D3,), which is
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FIG. 1. (Color online) Diagrammatic representations of matrix
products. (a) Diagram of the vectorized density matrix as an MPS in
the mixed canonical form (5). (b) Diagram of the Liouvillian operator
in the MPO representation (6). (c) Diagram representing the on-site
Liouvillian operator £;. In all diagrams, triangles pointing right
represent the left-normalized matrices A, while triangles pointing
left denote the right-normalized matrices B, both entering the mixed
canonical form of the MPS, Eq. (5). The local representation of the
density matrix o is depicted as a circle at site /. Thin lines represent
physical indices, while thick lines denote bond indices. The MPO
matrices W in Eq. (6) are represented as squares. (d) Diagrammatic
scheme illustrating the computational complexity associated with
index contractions at one site in the case where the simple Liouvillian
L is used in the variational approach. (e) Same as (d) in the case where
the squared Liouvillian LTL is instead used. In this second case,
contraction of the MPO bond indices bears an additional O(Dy)
computational cost.

P/P/
-
o

still, however, one Dy factor slower than the £ approach.
For models such as bilinear-biquadratic Hamiltonians, or even
XY Z models with slightly involved dissipative processes,
the MPO representation of £ can reach a bond dimension
easily exceeding Dyw =~ 10. The present strategy may thus
easily lead to a computational gain of more than one order of
magnitude. Furthermore, in most systems of interest, £ is a
very sparse matrix, and this computational advantage is partly
spoiled if, instead, the generally less sparse squared Liouvillian
is adopted. Finally, the bond dimension of the Liouvillian
MPO also has a relevant computational impact on the iterative
solution of the on-site eigenvalue problem at each site of the
chain in cases where the matrix is not fully stored and the linear
operator is, instead, applied to vectors in a functional fashion.
In these cases, for an MPO with bond dimension Dy, the
complexity associated with the matrix-to-vector multiplication
is O(D*Dwd? + D2D€Vd4 + D3D%Vd4) [see Eq. (201) of
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[46]], again highlighting the importance of using an MPO
with a minimal bond dimension. These considerations led
us to explore the possibility of finding the NESS by directly
searching for the null eigenvalue of L.

In the MPS-DMRG algorithm, all matrices A and B in (5)
are kept constant, and the inequality (3) can then be cast into
an on-site linear problem for the optimization of o. For this
purpose, we introduce the on-site Liouvillian operator £; for
site [, which is a rank-six tensor obtained from the quantities
L and |p)) by contracting all indices associated with the other
lattice sites, as depicted in Fig. 1(c). The minimization of the
norm functional (3) is then achieved by solving the local prob-
lem £;0 = 0 successively on each site of the chain, sweeping
along the chain in both directions until convergence to the null
eigenvalue is reached. For this purpose, we solve the local
problem by computing the complex eigenvalue of £; closest
to a small target scalar value. This scalar must be chosen to be
much smaller than all energy scales characterizing the problem
in order to achieve convergence to the null eigenvalue of L.
Convergence is achieved after a sufficient number of sweeps
and by choosing bond dimensions large enough to accurately
model the quantum correlations arising in the NESS. For
the eigenvalue problem, we adopted here the shift-and-invert
Arnoldi method, which is most efficient for small-magnitude
eigenvalues. The method has yielded in our tests the most
stable and efficient realization of the algorithm. Due to the
matrix inversion however, the shift-and-invert method requires
the full storage of the local Liouvillian, i.e., a memory cost
O(D?*d? x D*d?). In cases where this memory cost cannot be
afforded, it is still possible to adopt direct iterative schemes.
The ARPACK library in particular [70] makes noninverting
versions of the Arnoldi method available. Our experience is
that, although they solve the storage problem, these methods
are generally considerably slower and less stable, although
only marginally, than the shift-and-invert method.

In general, a matrix diagonalization targeting small com-
plex eigenvalues is usually characterized by slow convergence.
To overcome this limitation in the present case and increase
efficiency, we start the computation using a small bond
dimension and allow it to increase gradually along the sweeps
by each time padding the larger density matrix with zeros.
Last, we have found that the algorithm could become unstable
when directly targeting very small dissipation rates (compared
to the Hamiltonian energy scale). To ensure the stability of our
implementation in such cases, we start the computation using
larger dissipation rates and let them decrease exponentially
towards the desired values along the sweeps. In practice, in
our tests we started the computation with values of D between
5 and 10 and ran several tens of sweeps while gradually
decreasing the dissipation rates if needed. We observed that
this first phase can be sped up significantly by restricting
the number of iterations of the shift-and-invert algorithm
to less than ten. After this first phase has converged, we
refine the result by allowing the bond dimension to increase
gradually while at the same time increasing the number of
shift-and-invert iterations in each step to a few hundred. This
second phase typically requires less than ten sweeps to achieve
full convergence.

Since the introduction of MPS modeling of mixed states, the
issue of preserving the positivity of the density matrix has been
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discussed [47] and has been shown to be NP-hard in the system
size [71]. It should be noted that only very recently has a local
purification scheme for the Trotter evolution been proposed
in [72] which guarantees positivity of the density matrix.
However, we stress that for the cases we have considered
we never encountered convergence to an MPS that presented
unphysical results, and we never had to reinforce the density
matrix properties which, instead, systematically result from
the convergence of the algorithm.

Note also that in the MPS approach the state is normalized
according to the Euclidean norm, i.e., ({p|p)) = 1. Thus,
in general, the condition on the trace Tr(p) = ((I|p)) =1
is not automatically fulfilled, and the expectation value of
an arbitrary observable O must be evaluated as (0) =

Te(p0)/Tr(p) = (L ® O1p))/((114)).

III. RESULTS

As a test of the method, we simulate a driven-dissipative
quantum Ising chain [50,64], described by the Hamiltonian

H=>[hZi+ IR Xy + VXiXipl, (7)

with h being a local effective magnetic field and J and V
being, respectively, the coupling between nearest neighbors
and next nearest neighbors. The dissipative part is provided
by transition operators K = ﬁ(f( — if/)/ 2 at each site, with
X, ¥, and Z being Pauli matrices and y being the dissipation
strength.

Our study focuses on three paradigmatic cases, and we ini-
tially assume a small system size (15 sites) to allow for a direct
comparison with MCWF simulations. The MCWF unravels
the master equation for the density matrix into stochastic pure
state trajectories in the Hilbert space. Dissipation is accounted
for by non-Hermitian terms in the Hamiltonian, while the
corresponding fluctuations are enforced by random “quantum
jumps” generated with a probability proportional to the square
root of each dissipation rate. The method is described in detail
in [65,66], and we specifically adopted the QUTIP toolbox [73]
for all MCWF calculations. We also compare our approach to
the standard Trotter MPS evolution [50] for benchmarking the
method.

In the first case, nearest-neighbor couplings are considered,
as in Ref. [50]. In Fig. 2, the results for the correlations
(Xm)?m+]> for I =1,...,4, obtained using both Trotter dy-
namics and the variational method, are shown. They coincide
perfectly with each other and with the data obtained in
Ref. [50]. In particular, the system displays ferromagnetic
order for a negative external field and antiferromagnetic
order for a positive external field. The small discrepancy
observed between the data obtained with the two methods
is simply due to the Trotter error. For this case, y = J and the
driven-dissipative time evolution is handled well by the Trotter
dynamics, which is therefore the method of choice, as the time
scale to reach the NESS is short and the resulting simulation
turns out to be much faster than the variational method. This
consideration holds in general in cases with next-neighbor
couplings and sufficiently fast dissipation rates.

The second case we study is that of a system with
longer-range couplings. In this case the usual Trotter dynamics
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FIG. 2. (Color online) Comparison between the spatial correla-
tions (X,,X,4s) for I =1,...,4, computed by Trotter dynamics
and through the direct variational MPS determination of the NESS.
Parameters were set as V =0 and y = J, and the array length
was N = 15. For the Trotter dynamics, the time step was set as
dt = 0.1J, and time integration was carried out until 7 = 10/y . For
both the Trotter dynamics and the variational NESS methods the bond
dimension was at most D = 20. These results also displayed perfect
agreement with MCWF calculations (not shown).

cannot be employed, and thus, the variational NESS becomes
the natural method of choice. In Fig. 3 we compare results
obtained with the MCWF and variational methods. Once again,
we obtain very good agreement between the two methods,
even for a small bond dimension. The next-nearest-neighbor
coupling amplifies the ferromagnetic correlations while having
a sizable effect on the antiferromagnetic side. By comparing
Figs. 3 and 2 we see that the next-nearest-neighbor correlation
()A(m )A(,,H_z) changes sign, and we observe only anticorrelation

0.5
A_
T
1S
><E OF e I=1 Var NESS !
< e |=2
\% =3 P
e |=4
—I=1 MCWF
—1=2
=3
05 —I=4 s s ) )
-3 -2 -1 1 2 3

FIG. 3. (Color online) Comparison between the spatial correla-
tions ()A(m )A(m+,) for/ =1,...,4, computed by MCWF and through
the direct variational MPS determination of the NESS. Parameters
were set as V = 0.5J and y = J, and the array length was N = 15.
The MCWF simulation was performed with 1000 trajectories, and
time integration was carried out until 7 = 10/y. For the variational
NESS calculations, the bond dimension was at most D = 30.
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FIG. 4. (Color online) Comparison between the spatial correla-
tions ()A(m X mar) for I =1,...,4, computed by MCWF and through
the direct variational MPS determination of the NESS, in the case
of weak dissipation. Parameters were set as y = 0.1J, and the array
length was N = 15. The MCWF simulation was performed with
16 trajectories, and time averages were taken from # = 10/y to
t = 100/y . For the variational NESS the bond dimension was at most
D = 50. The inset shows the correlations (X, X,,.;) as a function of /
with h = J forasystemof N = 50 sites and bond dimension D = 60.
This system size lies beyond the computational reach of the MCWF
method.

at longer distance ((Xm X m+3)). We argue that, in the presence
of genuinely long-range couplings, the antiferromagnetic order
in the positive external field sector might be completely
suppressed.

For the third case, we simulate the same model in the
presence of a small dissipation rate. In this case, dynamical
methods will become less effective and converge slowly.
We have observed that the variational method in this case
could become unstable. This issue was, however, completely
removed by adopting a gradual decrease of the dissipation rate
along the sweeps, as discussed previously. In this case, the
small dissipation rate results in increased correlations, in both
the ferromagnetic and antiferromagnetic cases, as shown in
Fig. 4. Tt is also interesting that nontrivial correlations emerge
for a very small external field, showing that there are still novel
regimes to be explored for these driven-dissipative systems.
The inset in Fig. 4 shows the correlations ()A(,,,)A(mﬂ) as a
function of /, computed for a longer system with N = 50
sites. The combination of a quasilocal Hamiltonian with an
on-site dissipation mechanism seems to generally lead to an
exponential decay of the correlations. This setting typically
holds for driven-dissipative optical systems such as coupled
optical cavities. This result suggests that the present method
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may efficiently model the NESS of long one-dimensional
systems already at moderate bond dimension.

IV. CONCLUSION

In conclusion, we have presented an efficient imple-
mentation of the variational principle for the NESS of
one-dimensional driven-dissipative quantum systems using
an MPO ansatz for the density matrix. The computational
overhead of the method scales as a power law both in the
dimension of the Hilbert space and in the bond dimension of
the MPO. Vectorization allows us to map the problem onto
an effective linear eigenvalue problem that can be then solved
using a MPS-DMRG approach. We have applied the method
to a model spin chain as a test under various assumptions
for the parameters. Compared with direct integration of the
system dynamics, the present approach has a considerable
advantage in cases where the dissipation rates are slow
compared to the Hamiltonian energy scale. In particular,
through a slow tuning of both the MPS bond dimension and the
dissipation rates towards the target values, numerical stability
and convergence to the physical NESS are achieved in all
cases that we have studied. Also, the method gives access to
systems with long-range couplings, for which the standard
Trotter dynamics cannot be employed. In such cases, new
algorithmic approaches to direct time integration have very
recently emerged [60,61]. The direct comparison between the
present approach and these new developments is left as a venue
for future investigations.

Modeling nonlinear driven-dissipative quantum systems
generally represents a major challenge, as these systems
combine the inherent difficulty in correctly describing quan-
tum correlations with the nonequilibrium character of their
approach to stationarity. This difficulty emerges in particular
when dynamical critical phenomena and quantum phase
transitions occur. Then, quantum correlations typically acquire
a long spatial range and may even decay algebraically [17].
Methods relying on the MPS ansatz are in these cases an
ideal tool, as they provide control over the spatial range
of quantum correlations through the bond dimension while
preserving a power-law computational complexity. In this
framework, the method presented in this work holds promise as
a powerful tool for the study of emergent quantum phenomena
in nonequilibrium open quantum systems.
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