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Trade-off between information gain and fidelity under weak measurements
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It is of general interest how a quantum measurement may disturb a quantum system while it gives information
on the state of the system. We study a trade-off relation between the information gain and the output fidelity
for a quantum nondemolition measurement scheme for photon numbers. Toward this aim, we obtain general
expressions for the information gain and the output fidelity for an arbitrary initial state. We particularly investigate
how these two quantities vary with measurement strength for some specific classes of states, through a single
measurement or successive measurements.
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I. INTRODUCTION

When one makes a measurement on a quantum system, the
system is generally disturbed while one obtains information
on its state. This relation between information gain and
state disturbance is of fundamental and practical interest,
particularly in quantum information processing, as it may
provide, e.g., a basis for secure communication. Among all
possible measurements, the best known is the von Neumann
measurement [1], which enables one to gain information
on a certain observable Ô in a strong form. Under this
measurement, the state of the system is projected to one of
the eigenstates of Ô. There is no way to recover the original
state even in a probabilistic way, except when the system is
initially in an eigenstate. On the other hand, one may minimize
the disturbance of the system by reducing the measurement
strength—the so-called weak measurement—however, this
leads to the gain of less information.

Recently, numerous efforts have been devoted to a rigor-
ous characterization of the information-disturbance relation
[2–11]. In Refs. [3,5,7,11], the information gain is measured
by the fidelity of the state estimated from the measurement
outcome with respect to an initial state. From an information-
theoretic point of view, the information gain can also be
quantified by the mutual information between the prepared
and the measured distributions of an observable [6] or by
the decrease in the entropy of the system after measurement
[2,9,10]. The reversibility—the probability of reversing the
state after measurement back to its initial state—has also been
studied [12–20]. In addition, the fidelity of the output state
with respect to an initial state can be used as a measure of
disturbance. In these works [2,3,5–11], a quantitative balance,
or an upper bound, by which the maximization of information
gain together with the minimization of state disturbance is
limited, has been studied for a given measurement. On the other
hand, how the trade-off relation can vary upon changing the
strength of the measurement or repeating weak measurements
sequentially is of some interest but has not yet been addressed.

In this paper, we study the trade-off between the information
gain and the output fidelity in a quantum nondemolition (QND)
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measurement of photon numbers [21]. In a QND measurement
based on a cavity-QED setup, the measurement outcomes are
binary, i.e., distinction between two atomic states, and an
initial cavity state may collapse to a Fock state only after
many successive measurements [22]. In this respect, a single
QND measurement in our study is a weak measurement and
the measurement strength can be adjusted by changing the
experimental parameters.

We consider that the cavity is initially prepared in an
unknown pure state |ψ〉 with a given probability density
p(ψ). The information gain may be quantified as the decrease
in the Shannon entropy of the cavity state under the QND
measurement, i.e., mutual information. We also introduce
another measure of information gain, which is closely related
to the concept of classical fidelity. We then investigate
the trade-off relation between the information gain for the
unknown state and the disturbance of the state by varying the
coupling strength or the number of successive measurements.
Our results show that more information gain does not always
lead to worse fidelity.

This paper is organized as follows. In Sec. II, we present our
scheme for a QND measurement of photon numbers and give
general expressions for information gain and output fidelity
after N sequential measurements. We illustrate the trade-off
relations with two specific classes of cavity states in Sec. III.
The main results of this work are summarized in Sec. IV.

II. THE SCHEME AND THEORY ANALYSIS

A. QND measurements of photon numbers

We first introduce the scheme used for a QND measurement
of photon numbers based on a cavity-QED setup [21].
This scheme makes it possible to gain information on the
distribution of photon numbers of a cavity field without
absorption of the photons (Fig. 1). Suppose that the state of the
system prepared in a high-Q cavity [C in Fig. 1(a)] is a pure
state |ψ〉 with its probability distribution p(ψ). A three-level
atom (measuring device), with the level diagram in Fig. 1(b), is
initially prepared in the |e〉 state. The initial state of the system
and the device is given by

ρsd = ρs ⊗ ρd =
∑
ψ

p(ψ)|ψ〉〈ψ | ⊗ |e〉〈e|, (1)
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FIG. 1. (a) QND measurement scheme. The field is initially
prepared in a high-Q cavity C interacting with traveling atoms.
The atoms are prepared and velocity-selected in the box O, then
pass through the three cavities. In each of cavities R1 and R2, the
atom undergoes a π/2 transformation. Finally, the ionized counter D

detects whether each atom is in state |e〉 or state |f 〉. (b) Atomic level
diagram used for a QND measurement of cavity photon numbers. ω

is the cavity resonant frequency, which is largely detuned by � from
the atomic transition frequency |e〉 to |i〉. This results in a dispersive
coupling which adds a phase to level |e〉, while atomic state |f 〉 is not
involved in the interaction.

where p(ψ) is the probability of each state |ψ〉 being prepared
inside the cavity. In the remainder of this article, we use
the term “information” to mean how much we know about
which state |ψ〉 is prepared in the cavity out of the ensemble∑

ψ p(ψ)|ψ〉〈ψ |. That is, we measure a single system to guess
which |ψ〉 is the most likely input state given a measurement
output.

Inside the cavity, the atom interacts with the field, which is
described by

H = 1
2 �ωieσz + �ωa†a + �g(aσ+ + a†σ−), (2)

where a (a†) is the cavity photon annihilation (creation)
operator, σ− = |e〉〈i|, σ+ = |i〉〈e|, σz = σ+σ− − σ−σ+, and g

the atom-cavity coupling strength. The atomic level |f 〉 is not
involved in the interaction. When the cavity-field frequency
ω is detuned by an amount � from the atomic transition
frequency ωie, the effective interaction becomes a dispersive
coupling described by [23]

V = �g2

�
a†a|e〉〈e|. (3)

After an interaction time τ , the evolution operator is given by

UI = exp(−iV τ/�) = exp(−iϕa†a|e〉〈e|), (4)

where ϕ ≡ g2τ/� is the phase shift caused by one photon,
which characterizes the coupling strength between the atom

and the field. This interaction leads to a phase shift of the |e〉
state, which is proportional to the photon numbers.

The phase shift can be detected by the Ramsey inter-
ferometric method [24], in which the atom undergoes Uπ/2

transformations before and after the cavity C, where

Uπ/2 = 1√
2

(|e〉〈e| + |f 〉〈f | + i|e〉〈f | + i|f 〉〈e|). (5)

Finally, we use an ionized detector to make a projective
measurement of the atom represented by the operators:

Pm = |m〉〈m|, m = e,f. (6)

Given the outcome m, the operation made is described by

Um = PmUπ/2UIUπ/2. (7)

After such an operation, the density operator evolves to

ρsd,m = UmρsdU
†
m. (8)

We are interested in the state of the system only. Tracing over
the device and normalizing, we obtain the density operator of
the system,

ρs,m = Trd (UmρsdU
†
m)

Tr(UmρsdU
†
m)

= MmρsM
†
m

Trs(MmρsM
†
m)

, (9)

where Trs (Trd ) denotes tracing over the system (device) and
Tr represents tracing over both the system and the device. The
measurement operators Mm are derived according to Kraus
representation theory as

Me =〈e|Ue|e〉 = [exp(−iϕa†a) − 1]/2,

Mf =〈f |Uf |e〉 = [exp(−iϕa†a) + 1]/2.
(10)

In the Fock-state basis, they can be expressed as

Me =
nmax∑
n=0

exp(−inϕ) − 1

2
|n〉〈n|,

Mf =
nmax∑
n=0

exp(−inϕ) + 1

2
|n〉〈n|.

(11)

It can be readily checked that the relation
∑

m=e,f M
†
mMm = I

is satisfied, implying that our QND measurement is a general
quantum measurement with two outcomes.

The probability of obtaining outcome m is given by

p(m) = Trs(MmρsM
†
m) =

∑
ψ

p(ψ)p(m|ψ), (12)

where the conditional probability of output m given input
|ψ〉 is

p(m|ψ) ≡ Trs(Mm|ψ〉〈ψ |M†
m). (13)

B. Measurements with N successive atoms

Suppose now that we make N successive QND mea-
surements. Given that Ne atoms are found in state |e〉 and
Nf = N − Ne atoms in state |f 〉, the state of the cavity field
becomes (we omit the index s on the density operator of the
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system henceforth)

ρNe
= MNe

ρM
†
Ne

Trs
(
MNe

ρM
†
Ne

) , (14)

where the measurement operator reads

MNe
= MNe

e M
N−Ne

f . (15)

We here assume that the coupling strength ϕ is the same for
each measurement, for simplicity. We note that Me and Mf

commute with each other, so the order of the operators does not
affect the results. From an information-theoretic perspective,
this means that no extra information can be obtained by
keeping a record of the sequence of measurement outputs;
therefore one only needs to count Ne, the number of atoms in
|e〉. There are C

Ne

N ≡ N!
Ne!(N−Ne)! cases to obtain Ne counts and

it follows that
N∑

Ne=0

C
Ne

N M
†
Ne

MNe
= I, (16)

meaning that counting the number Ne also represents a general
quantum measurement with N + 1 different outcomes.

The probability of getting output Ne is

p(Ne) ≡ C
Ne

N Trs
(
MNe

ρM
†
Ne

) =
∑
ψ

p(ψ)p(Ne|ψ), (17)

where the conditional probability of Ne given ψ is

p(Ne|ψ) ≡ C
Ne

N Trs
(
MNe

|ψ〉〈ψ |M†
Ne

)
. (18)

In the Fock-state basis, a random state can be expressed as
|ψk〉 = ∑nmax

n=0 bk
n|n〉. The above probability is then expressed

as

P (Ne|ψk) = C
Ne

N

∑
n

∣∣bk
n

∣∣2
c2Ne

n d2(N−Ne)
n , (19)

where cn = sin ( nϕ

2 ) and dn = cos ( nϕ

2 ).

C. Information gain via mutual information

Next we introduce a measure of information gain: mutual
information. Suppose that we have a black box (an operation)
with an input port and an output port. The input random
variable x is chosen from the set {x ∈ X} with prior probability
p(x). The output is chosen from the set {y ∈ Y }. The black box
is modeled by the transfer probability p(y|x). The Shannon
entropy [25] for the set {x ∈ X} is defined as

H (X) = −
∑

x

p(x) log2 p(x), (20)

which quantifies the lack of information on events X. Given
an output y, we obtain a conditional probability p(x|y) =
p(y|x)p(x)/p(y), which leads to the conditional entropy

H (X|Y ) = −
∑

y

p(y)
∑

x

p(x|y) log2 p(x|y). (21)

The conditional probability measures how much information
on X is still missing after we have known Y . Thus the differ-
ence between the original entropy H (X) and the conditional

entropy H (X|Y ) may be regarded as the information gain. This
so-called mutual information [25–27] is defined as

I (X; Y ) = H (X) − H (X|Y )

=
∑

x

∑
y

p(x,y) log2
p(x,y)

p(x)p(y)
. (22)

In our case, the input random variable is chosen from all
possible cavity states {|ψk〉} with prior probability p(ψk). The
output random variable is the count Ne under N measurements.
Equation (22) is then written by replacing x → ψk and y →
Ne, which gives the mutual information as

IM =
N∑

Ne=0

∑
k

p(Ne|ψk)p(ψk) log2
p(Ne|ψk)

p(Ne)
. (23)

Plugging Eqs. (17) and (19) into Eq. (23), we can calculate the
information gain.

D. Information gain via the probability overlap

Instead of the mutual information IM in Eq. (23) adopting
the entropies of relevant probability distributions, we may
characterize the information gain in another form, which
can have a conceptual connection to fidelity. Given two
probability distributions, p1(x) and p2(x), their distinction
can be measured by 1 − F 2

c , where Fc is the classical fidelity
quantifying their overlap as

Fc(p1,p2) =
∑

x

√
p1(x)p2(x). (24)

If the probability distribution p1 = p(ψk|Ne) conditioned on
the measurement outcome Ne becomes more distinguishable
from a completely random distribution p2(x) = 1/N than the
initial distribution p1 = p(ψk), it may represent information
gain through our QND measurement. Thus, using

IF [p(x)] ≡ 1 −
(∑

x

√
p(x)/N

)2

, (25)

we may define another measure of information gain as

IF =
∑

k

p(ψk)
∑
Ne

p(Ne)IF [p(ψk|Ne)] − IF [p(ψk)], (26)

where the subscript F refers to the conceptual connection to
fidelity. In this paper, we use two quantifiers, IM in Eq. (23)
and IF in Eq. (26), to measure information gain under QND
measurements.

E. Fidelity

On the other hand, we use the output fidelity as a measure
of disturbance due to quantum measurement. The fidelity [3]
of the output state is defined to be the average overlap between
the input state |ψk〉 and the output state MNe

|ψk〉, given by

F =
∑

k

p(ψk)
N∑

Ne=0

C
Ne

N

∣∣〈ψk|MNe
|ψk〉∣∣2

. (27)
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By substituting Eq. (15), we obtain the expression of fidelity
in the Fock-state basis as

F =
∑

k

p(ψk)
N∑

Ne=0

C
Ne

N

∣∣∣∣
nmax∑
n

∣∣bk
n

∣∣2
e− iNnϕ

2 cNe

n dN−Ne

n

∣∣∣∣
2

. (28)

III. TRADE-OFF RELATIONS

Having obtained the general expressions for the information
gain and the output fidelity, we now consider some classes
of states to investigate the trade-off relation under varying
experimental conditions.

A. Photonic qubit states

We here consider an initial state of the cavity field as an
unknown superposition of the vacuum and the single-photon
states chosen from the following mixture with probability
density p(θ,φ),

ρ =
∑
θ,φ

p(θ,φ)|ψθ,φ〉〈ψθ,φ |, (29)

where the photonic qubit state

|ψθ,φ〉 = cos(θ/2)|0〉 + sin(θ/2)eiφ|1〉. (30)

We assume that this unknown state is uniformly distributed in
the Bloch sphere so that the probability density is

p(θ,φ) = 1/4π. (31)

Since it is a continuous distribution, we convert the summation
to an integral as

∑
θ,φ

p(θ,φ) → 1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dφ (32)

and study the trade-off under different coupling strengthes and
the number of measurements. It is straightforward to obtain

F (N,ϕ) = 2

3
+ 1

3
cos(Nϕ/2) cosN (ϕ/2),

IM (N,ϕ) = 1 − 1

2 ln 2
− 1

2
cos4N (ϕ/2) log2 cos2N (ϕ/2)

× [1 − cos2N (ϕ/2)]−1 − 1

2
[1 + cos2N (ϕ/2)]

× log2[1 + cos2N (ϕ/2)],

IF (N,ϕ) = 1 − π2

128
− 4

9

[
1 + cos2N (ϕ/2)

1 + cosN (ϕ/2)

]2

+ π2

128
cos2N (ϕ/2), (33)

where the information gain and the output fidelity are given
as functions of the measurement strength ϕ ≡ g2τ/� after N

successive measurements.
First, we consider a single measurement N = 1 with

one atom passing through the cavity. Both quantifiers of
information gain, IM and IF , increase monotonically with
the measurement strength ϕ ∈ [0,π ], while the output fidelity
F decreases monotonically as shown in Fig. 2(a). When
ϕ = π , the QND scheme becomes a photon-number-parity

F

I M
,I

F

N

ϕ = π/32

F
IM

IF

π/4 π/2 3π/4 π

F

I M
,

I F

ϕ

N = 1

F
IM

IF

(a)

(b)

FIG. 2. (Color online) Trade-off relation under measurements on
a qubit. (a) F , IM , and IF with respect to measurement strength ϕ

under a single measurement on a qubit. As ϕ increases, the fidelity
monotonically decreases while the information gain increases. When
ϕ = π , the measurement discriminates states |0〉 and |1〉 perfectly,
so the greatest information gain is obtained. (b) F , IM , and IF with
respect to measurement times N under a successive measurement on a
qubit with measurement strength ϕ = π/32. A larger N value results
in a greater information gain and less fidelity, while the fidelity also
shows oscillating behavior.

measurement, as seen from Eq. (11) with e−inϕ±1
2 = (−1)n±1

2 .
Detecting the atom to be in |e〉 or |f 〉 designates the cavity
photon number to be odd or even, respectively. In the case of
a qubit state, this parity measurement effectively distinguishes
|0〉 and |1〉. We obtain the highest information gain and the
lowest fidelity when applying this parity measurement.

Second, we consider the case of successively performing
the QND measurements many times for a given measurement
strength ϕ = g2τ/�. We see from Eq. (33) that IM (N,ϕ)
and IF (N,ϕ) monotonically increase with the number N of
measurements, whereas F (N,ϕ) exhibits oscillating behavior,
as illustrated in Fig. 2(b). As the number N of successive
measurements increases, we also see that a greater information
gain does not always entail a greater disturbance of the state,
as evidenced by the oscillating behavior with respect to N .

From Eq. (33), for ϕ 	= π , the limiting values of the
information gain (IM = 1 − 1

2 ln 2 ≈ 0.28 and IF = 1 − 4
9 −

π2

128 ≈ 0.48) and the output fidelity (F = 2
3 ) are achieved as the

number of measurements becomes increasingly large as shown
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in Fig. 2(b). For ϕ = π (parity measurement), these values are
achieved with only a single measurement N = 1. It indicates
that the parity measurement extracts the most information from
an unknown qubit state and leaves the state the most deeply
disturbed.

B. Coherent states

Next we consider that the cavity field is prepared in
an unknown coherent state |α〉 ≡ ||α|eiβ〉 with a probability
density p(|α|,β), i.e.,

ρ =
∑
|α|,β

p(|α|,β)||α|eiβ〉〈|α|eiβ |, (34)

where a coherent state is given by

|α〉 = e− |α|2
2

∑
n=0

αn

√
n!

|n〉. (35)

We assume that the coherent state of complex amplitude
α = |α|eiβ is prepared with a Gaussian distribution,

p(|α|,β) = 1

2π

1√
2πσ |α| exp

[
− (|α| − |α0|)2

2σ 2

]
; (36)

i.e., its magnitude |α| has a distribution centered at |α0| with
a width σ , whereas its phase β is randomly distributed over
[0,2π ]. Since it is a continuous distribution, we convert the
summation to an integral as

∑
|α|,β

p(|α|,β) → A

∫ ∞

0
|α|d|α|

∫ 2π

0
dβp(|α|,β), (37)

where A is a normalized factor.
In this case, the analytical expressions of the information

gain and the fidelity are tedious to obtain, thus we study the
numerical results of those quantities. As an illustration, we
consider the case where the initial coherent state distribution
is centered at |α0| = 0 with σ 2 = 2.

First, for a single measurement N = 1, we plot the
information gain and the fidelity versus the measurement
strength ϕ in Fig. 3(a). We observe that the fidelity decreases
when the measurement strength increases, which is similar
to the qubit case. At ϕ = π , the fidelity is the minimum since
most elements of Me and Mf shown in Eq. (11) are 0. However,
the information gain at ϕ = π is not maximum, because such a
measurement can only discriminate odd or even number states;
e.g., it cannot discriminate n = 1 or n = 3. From the plot we
see that the maximum points are around π/8 for both kinds
of information gain. [See the paragraphs below discussing
Eq. (38).]

Second, we consider successive weak measurements with
ϕ = π/32 for the same Gaussian distribution with |α0| = 0
and σ 2 = 2. As shown in Fig. 3(b), the information gain
and the output fidelity behave similarly to those in the qubit
case. IM and IF increase monotonically with the number of
measurements, while the fidelity curve exhibits a decreasing
trend but with oscillating behavior. The information gain in
both forms, IM and IF , increases monotonically with respect
to N for all values of ϕ as illustrated in Fig. 4.

The optimal ϕopt to obtain the greatest information gain
depends on the range of possible photon numbers. It may

π/4 π/2 3π/4 π

F

I M
,

I F

ϕ

σ2 = 2, N = 1

F

I M
,

I F

N

σ2 = 2 ϕ = π/32

F
IM

IF × 4

F
IM

IF × 4

(a)

(b)

FIG. 3. (Color online) Trade-off relation under measurements
on coherent states (|α0| = 0, σ 2 = 2). IF is multiplied by 4 for
convenience of comparison. (a) F , IM , and IF with respect to
measurement strength ϕ under a single measurement. The fidelity
decreases when ϕ increases. The peaks of IM and IF slightly depart
from each other, however, both of them are around π/8. (b) F ,
IM , and IF with respect to measurement times N under successive
measurements when ϕ = π/32. The results are similar to those for
qubit states shown in Fig. 2(b).

be ascribed to the mechanism of the QND measurements
on photon numbers. It discriminates photon numbers n by
a mapping from Ne to n. To accomplish this task best, it
is required that n and Ne be bijective; i.e., a one-to-one
correspondence between n and Ne must be established. The
analytical relation is given by the conditional probability in
Eq. (19). If the factors c2

n = sin2(nϕ/2) and d2
n = cos2(nϕ/2)

are monotonous in each range of π for nϕ, then n and Ne are
bijective. If ϕ > π/(nmax − nmin), we could not discriminate
n perfectly, because two different n’s could be mapped to the
same Ne. In the opposite limit, a ϕ value that is too small
means a weaker measurement, resulting in less information
gain. Therefore, the optimal ϕ is estimated to be

ϕopt ≈ π

nmax − nmin
. (38)

This again explains why the optimal ϕ is π for qubit states
(nmax − nmin = 1). For the prior Gaussian distribution of
coherent states with zero mean and σ 2 variance, the range
of |α| can be cut off at about

√
2σ . The photon number of
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π/4 π/2 3π/4 π

I F

ϕ

σ2 = 2 N = 16
N = 8
N = 4
N = 2
N = 1

π/4 π/2 3π/4 π

I M

ϕ

σ2 = 2 N = 16
N = 8
N = 4
N = 2
N = 1

(b)

(a)

FIG. 4. (Color online) Information gain IM and IF with respect to
measurement strength ϕ under successive measurements for different
times (N = 1, 2, 4, 8, 16) on coherent states (|α0| = 0, σ 2 = 2). The
optimal values agree with results in Eq. (39), although they deviate
slightly when N increases.

the coherent state is then effectively distributed between 0 and
2σ 2 + 2σ . Therefore the optimal measurement strength for
obtaining the highest information gain can be estimated as

ϕopt ≈ π

2σ 2 + 2σ
. (39)

For successive measurements, ϕopt shifts a little leftward with
the increase in measurement times but is still around π/(2σ 2 +
2σ ) as shown in Fig. 4. To see the dependence on σ , we plot the
information gains IM and IF after a single measurement versus
ϕ for different σ values in Fig. 5. We observe that with a larger
σ the optimal ϕ becomes smaller. The analytical ansatz values
are ϕopt ≈ 1.30, 0.79, 0.46, 0.26, and 0.15. The peak values
for IM are ϕM

opt ≈ 1.37, 0.80, 0.47, 0.28, and 0.16, while those
for IF are ϕF

opt ≈ 0.91, 0.52, 0.30, 0.17, and 0.10. Therefore
ϕopt in Eq. (39) is a very good estimate of ϕM

opt. A cutoff larger

than
√

2σ can be chosen to better fit ϕF
opt, and the discrepancy

between the peak of IM and that of IF may be due to their
different contexts as information measures.

Through our QND measurements, we gain information on
which states are more likely to be the initial state. In other
words, given different measurement outputs, the conditional

π/4 π/2 3π/4 π

I F

ϕ

N = 1

σ2 = 8
σ2 = 4
σ2 = 2
σ2 = 1
σ2 = 1/2

π/4 π/2 3π/4 π

I M

ϕ

N = 1

σ2 = 8
σ2 = 4
σ2 = 2
σ2 = 1
σ2 = 1/2

(a)

(b)

FIG. 5. (Color online) Information gain IM and IF with respect
to measurement strength ϕ under a single measurement on coherent
states (|α0| = 0, different σ ). As the variance σ 2 increases, the
positions of peaks shift leftward. The peaks of both IM and IF for the
same σ are around π/(2σ 2 + 2σ ), although they slightly depart from
each other.

P
(|α

||N
e
)

|α|

σ2 = 2
ϕ = 0.3523

N = 8

FIG. 6. (Color online) Probability density distributions when
|α0| = 0, σ 2 = 2, ϕ = 0.3523, and N = 8. The bold solid (red) curve
represents the prior distribution. The other nine curves are conditional
ones given the outcomes Ne = 0,1, . . . ,8, from left to right. Each
peak indicates a most probable |α|.
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probability density distributions become different from, and
sharper than (with less Shannon entropy), the prior probability
distribution. To see this, we plot in Fig. 6 the conditional
probability density distributions after eight successive weak
measurements with the numerically obtained optimal ϕM

opt =
0.3523. As a comparison, we also plot the prior probability
distribution in the same figure by the bold solid (red) line. We
observe that these conditional curves are well separated and
sharper than the prior distribution. Each peak indicates a most
probable |α|.

IV. CONCLUSION

We have studied the trade-off relation between information
gain and output fidelity for the case of a QND measurement of
photon numbers based on a cavity-QED setup. The information
gain has been quantified either by IM , based on the mutual
information, or by IF , based on the concept of classical
fidelity. In particular, we have investigated from an information
theoretic viewpoint how the information gain and the output
fidelity behave as we vary the measurement strength or the
number N of successive measurements. We have shown that
both the information quantifiers, IM and IF , exhibit very
similar behaviors for all cases considered here (qubit states

and coherent states), thus the trade-off relation between the
information gain and the output fidelity remains almost the
same regardless of the measure of information gain.

To illustrate our analysis, we have considered two specific
classes of initial states: qubit states and coherent states. In
either case, the cavity is initially prepared in an unknown pure
state with a certain probability. For a single weak measurement,
the optimal measurement strength depends on the range of all
possible photon numbers and a stronger measurement does
not necessarily lead to more information gain. For the case of
successive weak measurements, the information gain increases
monotonically with respect to the number N of measurements,
while the fidelity shows oscillatory decreasing behavior. This
results from the interference terms with different photon
numbers. Thus, a greater information gain does not always
lead to a worse fidelity. This may deserve further study to
gain more insight into the trade-off relation occurring in
quantum measurements, which may also have some practical
implications.
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