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Within the unified framework of exploiting the relative entropy as a distance measure of quantum correlations,
we make explicit the hierarchical structure of quantum coherence, quantum discord, and quantum entanglement
in multipartite systems. On this basis, we define a basis-independent measure of quantum coherence and prove
that it is exactly equivalent to quantum discord. Furthermore, since the original relative entropy of coherence is a
basis-dependent quantity, we investigate the local and nonlocal unitary creation of quantum coherence, focusing
on the two-qubit unitary gates. Intriguingly, our results demonstrate that nonlocal unitary gates do not necessarily
outperform the local unitary gates. Finally, the additivity relationship of quantum coherence in tripartite systems
is discussed in detail, where the strong subadditivity of von Neumann entropy plays an essential role.
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I. INTRODUCTION

In the context of quantum information theory, a distinct
form of quantum resources corresponds to a specific restriction
on the allowed quantum operations [1,2]. Perhaps the best
known example along this line of thought is the quantum
entanglement theory [3–5], where the restricted set of oper-
ations is called local operations and classical communication
(LOCC) [6,7]. To date, the theory of quantum entanglement
has proven to be fruitful in various quantum information
tasks [8] and directly inspired other resource theories of
purity [9], the degree of superpositions [10], thermodynamics
[11,12], quantum reference frames [13,14], and the asymmetry
of quantum states [15]. The complete characterization of a
particular resource theory mainly consists of three aspects:
(i) the unambiguous definition, (ii) the reasonable metrics,
and (iii) the interconversions of quantum states under the
predetermined restrictions.

A recent successful application of quantum resource theory
is the information-theoretic quantification of quantum coher-
ence [16]. Baumgratz et al. proposed the basic notions of inco-
herent states, incoherent operations and a series of (axiomatic)
necessary conditions any measure of coherence should satisfy.
Among all the potential metrics, the measures based on the
l1 norm and quantum relative entropy are highlighted. This
seminal work has triggered the community’s interest in the
definitions of other proper measures [17–19], the freezing phe-
nomenon [20], the coherence transformations under incoherent
operations [21], and some further developments [22–27].

However, it is worth noting that most of the related
literature has focused on the single-qudit system and little
attention has been paid to the bipartite or multipartite systems
[18,20]. In fact, the quantifications and classifications of
quantum correlations in multipartite systems are far from
being settled up to now [8,28]. In this work, we first establish
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the hierarchical relationship of different manifestations of
quantum correlations on the basis of quantum relative entropy
(see Fig. 1). Furthermore, we pursue the answers to the
following important issues:

(1) What is the exact relationship between quantum co-
herence with other measures of quantum correlations, such
as quantum entanglement or quantum discord? Here we
introduce the notion of basis-free quantum coherence and
prove that this quantity is equivalent to quantum discord.
This correspondence relation opens up a new way to interpret
the interconversions between different measures of quantum
correlations.

(2) By definition, quantum entanglement E and discord D
remain invariant under product (local) unitary transformations,
that is [8,28]

E(ρAB) = E(UA ⊗ UBρABU
†
A ⊗ U

†
B), (1)

D(ρAB) = D(UA ⊗ UBρABU
†
A ⊗ U

†
B). (2)

However, since quantum coherence is a basis-dependent
quantity, even local unitary transformations (let alone nonlocal
operations) can increase quantum coherence in bipartite
systems. Therefore, it is worth investigating the local and
nonlocal unitary creation of quantum coherence.

(3) In multipartite systems, a natural question arises of
how the correlations in the total system are distributed among
the distinct subsystems. For instance, we wonder whether the
following relation holds for any tripartite state ρABC :

C(ρABC) � C(ρAB) + C(ρAC), (3)

where C(ρ) is a proper measure of quantum coherence.

II. RESOURCE THEORY OF QUANTUM COHERENCE

To characterize quantum coherence as a physical resource,
we first need to identify the definitions of incoherent states
and incoherent operations [16]. In an N -partite system, the
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FIG. 1. (Color online) Venn diagram of different manifestations
of quantum correlations present in composite quantum states.

incoherent states can be represented as [18,20]

δ =
∑

�k
δ�k|�k〉〈�k|, (4)

where |�k〉 = |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kN 〉 and |ki〉 is a pre-fixed
local basis of the ith subsystem. According to the assumption
on whether the measurement outcomes are recorded, the
incoherent completely positive and trace preserving (ICPTP)
quantum operations are categorized into the following two
classes [16]:

(1) The nonselective ICPTP maps:

�ICPTP(ρ) =
∑

n

KnρK†
n, (5)

where the incoherent Kraus operators fulfill the constraints∑
n K

†
nKn = 1 and KnIK

†
n ⊂ I for all n, where I denotes the

whole set of incoherent states.
(2) The selective ICPTP maps: These operations distin-

guish themselves from the above class by recording the
measurement results, i.e., the postmeasurement state corre-
sponding to the outcome n and its probability of occurrence
are given by

ρn = KnρK†
n/pn, pn = tr[KnρK†

n]. (6)

Equipped with the above-mentioned theoretical definitions,
Baumgratz et al. presented a series of necessary conditions
that any reasonable measure of coherence should satisfy, in
line with the resource theory of entanglement [3,4]:

(C1) C(ρ) = 0 iff ρ ⊂ I;
(C2a) Monotonicity under nonselective ICPTP maps, i.e.,

C(ρ) � C(�ICPTP(ρ));
(C2b) Monotonicity under selective ICPTP maps, i.e.,

C(ρ) �
∑

n pnC(ρn);
(C3) Convexity, i.e.,

∑
n pnC(�n) � C(

∑
n pn�n) for any

set of states {�n} and any probability distribution {pn}.
To satisfy the axiomatic conditions (C1), (C2b), and (C3),

Baumgratz et al. introduced the measures of coherence based
on l1 norm and quantum relative entropy [16] while Girolami
proposed another one by resorting to the skew information
[17]. However, recently Du et al. argued that the measure of
coherence based on the skew information is probably more

applicable as a measure of asymmetry of quantum states
[29]. In this work, we mainly focus on the relative entropy
of coherence

C(ρ) = min
δ⊂I

S(ρ||δ) = S(ρI ) − S(ρ), (7)

where ρI is the diagonal version of ρ, which only retains the
diagonal elements of ρ.

Before moving forward, it is interesting to take a closer look
at the incoherent Kraus operators, which play an essential
role in the definition of incoherent operations. Indeed, the
requirement KIK† ⊂ I (here we omit the subscript n for
simplicity) is a rather strong constraint on the operator K . The
following theorem tells us that the structure or configuration
of K is highly restricted.

Theorem 1. There exists at most one nonzero entry in every
column of the incoherent Kraus operator K .

Proof. The constraint KIK† ⊂ I indicates that the inco-
herent Kraus operator K maps an arbitrary incoherent state
δa to an incoherent state δb. Let us denote the elements of the
matrix K as [K]ij = kij . Similarly we can also represent the
incoherent state δa as [δa]ij = aiδij , where {ai} are the diagonal
entries of δa and δij is the Kronecker delta. Therefore, adopting
the Einstein convention, we have

[K]ij [δa]j l[K
†]lm = kij aj δjlk

∗
ml = ajkij k

∗
mj . (8)

By use of [δb]ij = biδij , further we obtain∑
j

aj kij k
∗
mj = biδim. (9)

Note that when i �= m, the left-hand side of Eq. (9) equals zero
and the arbitrariness of δa (thus {aj }) participates at this stage.
If we choose the vector �a = {aj } = {1,0, . . . ,0}, we have

ki1k
∗
m1 = 0, ∀ i �= m, (10)

which exactly implies that there exists at most one nonzero
entry in the first column of K . The same reasoning can be
easily generalized to other columns by a proper choice of
{aj }. �

From Theorem II, we can directly obtain the following
useful corollary:

Corollary 1. If the incoherent Kraus operator K ⊂ Ms,t ,
where Ms,t denote the s by t matrices, then the number of
possible structure of K is st . Here a legal structure stands for
a possible arrangement of nonzero entries in the matrix.

For example, as for 3 × 2 or 3 × 3 incoherent Kraus
operators, the number of possible structure is 32 = 9 and
33 = 27, which easily recovers the result in Ref. [19].

III. HIERARCHIES OF MULTIPARTITE
QUANTUM CORRELATIONS

From geometric point of view, any distance measure
between quantum states may serve as a candidate for quan-
tifying different forms of quantum correlations. A signifi-
cant example is the usage of quantum relative entropy in
quantum information theory [30]. In particular, Vedral et al.
first proposed the relative entropy of entanglement [3,4]
while the relative entropy of discord was first introduced
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by Modi et al. [31]. Compared with the relative entropy of
coherence, one can list the following definitions:

E(ρ) = min
δ⊂S

S(ρ||δ), (11)

D(ρ) = min
δ⊂@CC@

S(ρ||δ), (12)

C(ρ) = min
δ⊂I

S(ρ||δ), (13)

where S and @CC@ stand for the sets of separable states
and classically correlated states [31], respectively. Since the
incoherent states are diagonal states defined in a predetermined
orthogonal basis, the inclusion of sets clearly appears:

I ⊂ @CC@ ⊂ S (14)

Therefore, we are led to the following hierarchical relations
(see Fig. 1):

C(ρ) � D(ρ) � E(ρ), (15)

which signifies that, despite that almost all quantum states
exhibit nonzero discord [32], quantum coherence is a more
ubiquitous manifestation of quantum correlations.

On the other hand, it is worth emphasizing again that
quantum coherence is a basis-dependent quantity. This prede-
termined orthogonal basis |�k〉 = |k1〉|k2〉 · · · |kN 〉 is a crucial
premise when we refer to its computation or manipulation.
However, under some circumstances we are more inclined
to deal with a basis-independent quantity. Then a natural
question arises whether such a measure of quantum coherence
can be defined. From the definition (7), the relative entropy
of coherence is equal to the entropic gain S(�(ρ)) − S(ρ),
where � is the measurement in the preferred basis with
unknown results. This observation motivates us to propose
a basis-free measure of coherence by the minimization over
all local unitary transformations:

Cfree(ρ) = min
�U

C( �Uρ �U †), (16)

where �U = U1 ⊗ U2 ⊗ · · · ⊗ UN possesses a local product
structure. The next theorem tells us that this quantity is exactly
equivalent to the relative entropy of discord, which is defined
with respect to the set of classical-classical states [31].

Theorem 2. The basis-free quantum coherence Cfree(ρ) is
equal to D(ρ).

Proof. With respect to a given basis |�k〉, the diagonal state
ρI can be represented as the completely decohered state of ρ:

ρI =
∑

�k
〈�k|ρ|�k〉|�k〉〈�k|. (17)

Using this expression, we have

Cfree(ρ) = min
�U

C( �Uρ �U †)

= min
�U

⎡
⎣S

⎛
⎝∑

�k
〈�k| �Uρ �U †|�k〉|�k〉〈�k|

⎞
⎠ − S( �Uρ �U †)

⎤
⎦

= min
B(�k)= �U †|�k〉

S

⎛
⎝∑

�k
〈B(�k)|ρ|B(�k)〉|�k〉〈�k|

⎞
⎠ − S(ρ)

Basis-free
coherence

Discord

FIG. 2. (Color online) The equivalence between basis-
independent quantum coherence and quantum discord.

= min
B(�k)

H ({|B(�k)〉}) − S(ρ)

= D(ρ), (18)

where {|B(�k)〉 = �U †|�k〉} is a local orthogonal basis and
H ({|B(�k)〉}) = −∑

�k〈B(�k)|ρ|B(�k)〉 log〈B(�k)|ρ|B(�k)〉. In the
derivation we have used the unitary invariance of von Neumann
entropy and the results in Ref. [31]. �

This one-to-one correspondence builds a new bridge be-
tween quantum coherence and other forms of correlations and
opens up a new way to interpret the physical phenomena of
quantum coherence (see Fig. 2). For example,

(1) It has been pointed out that nonclassical multipartite
correlations (relative entropy of discord) can be activated
into distillable bipartite entanglement [33,34]. From the
corresponding relationship between Cfree(ρ) and D(ρ), it is
reasonable to conjecture that quantum coherence can also
be considered as a resource for entanglement creation and
recently Streltsov et al. have proved that this is the case [18].

(2) For quantum discord, a freezing phenomenon occurs
under certain initial conditions, especially when the underlying
system is subject to the environmental nondissipative noise
[35–37]. From the equivalence relation between Cfree(ρ) and
D(ρ), the same phenomenon may appear for quantum coher-
ence [20]. In fact, Cianciaruso et al. have demonstrated that
the freezing phenomenon of geometric quantum correlations
is independent of the adopted distance measure and is thus
universal [38].

IV. LOCAL AND NONLOCAL UNITARY CREATION OF
QUANTUM COHERENCE

From the definition of Cfree(ρ) and its equivalence to the
relative entropy of discord, we can easily find that quantum
coherence can be created by local (and nonlocal) unitary
transformations. In this section, we concentrate on the creation
of quantum coherence in the context of two-qubit unitary gates.
More precisely, we aim to evaluate the optimal creation of
coherence under specified types of unitary operators for a given
incoherent state; that is,

Copt = max
UAB

C(UABδIU
†
AB), (19)

where δI = diag{δ1,δ2,δ3,δ4} in the computational basis
{|00〉,|01〉,|10〉,|11〉} and UAB may be faced with some
restrictions on its structure. Without loss of generality, we
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can arrange δi in ascending order (that is, 0 � δ1 � δ2 � δ3 �
δ4 � 1). In the following, we mainly focus on three different
types of two-qubit gates:

(1) One-side unitary operator UAB = UA ⊗ 1B . Using
again the unitary invariance of von Neumann entropy, Copt

can be rewritten as

Copt = max
UAB

S(ρI ) − S(δI ), (20)

where ρ = UABδIU
†
AB . From Eq. (20), we only need to

evaluate the four diagonal entries of ρ. In the meantime, we
can parametrize the general one-qubit unitary operator as

UA = eiϕ

(
a b

−b∗ a∗

)
, (21)

where |a|2 + |b|2 = 1. Note that in fact the overall phase ϕ is
irrelevant in our discussion, so we set ϕ = 0. For the sake of
simplicity, we only present the four diagonal elements ρjj of
ρ = UA ⊗ 1BδIU

†
A ⊗ 1B :

ρ11 = |a|2δ1 + |b|2δ3, ρ22 = |a|2δ2 + |b|2δ4,
(22)

ρ33 = |a|2δ3 + |b|2δ1, ρ44 = |a|2δ4 + |b|2δ2.

Remarkably, the effective role of UAB = UA ⊗ 1B is a mix-
ture of the diagonal elements of δI . To find the optimal
value Copt, we define the entropy function F (|a|2) = S(ρI ) =∑

j −ρjj log2 ρjj . After simplification, the first derivative of
F (|a|2) is

∂F (|a|2)

∂(|a|2)
= (δ3 − δ1) log2

δ3 + |a|2(δ1 − δ3)

δ1 + |a|2(δ3 − δ1)

+ (δ4 − δ2) log2
δ4 + |a|2(δ2 − δ4)

δ2 + |a|2(δ4 − δ2)
. (23)

With this expression and the ordering δ1 � δ2 � δ3 � δ4, it is
evident that the function F (|a|2) is monotonically increasing
for |a|2 ∈ [0,1/2], while it is monotonically decreasing for
|a|2 ∈ [1/2,1]. Therefore, when |a|2 = 1/2 we arrive at the
optimal value

Copt
1 = −(δ1 + δ3) log2 (δ1 + δ3) − (δ2 + δ4) log2 (δ2 + δ4)

+ 1 −
4∑

i=1

δi log2 δi . (24)

In order to distinguish it from the Hadamard gate H [39], we
denote the optimal one-qubit unitary operator as (up to a global
phase)

UA = H̃A = 1√
2

(
1 1

−1 1

)
= |−〉〈0| + |+〉〈1|, (25)

where |±〉 = (|0〉 ± |1〉)/√2.
(2) Two-side unitary operator UAB = UA ⊗ UB . Follow-

ing a similar procedure, we first parametrize the one-qubit
unitary operators

UA =
(

a b

−b∗ a∗

)
, UB =

(
c d

−d∗ c∗

)
, (26)

where |a|2 + |b|2 = |c|2 + |d|2 = 1. Here we also provide the
four diagonal entries of ρ = UA ⊗ UBδIU

†
A ⊗ U

†
B :

ρ11 = |a|2|c|2δ1 + |a|2|d|2δ2 + |b|2|c|2δ3 + |b|2|d|2δ4,

ρ22 = |a|2|d|2δ1 + |a|2|c|2δ2 + |b|2|d|2δ3 + |b|2|c|2δ4,
(27)

ρ33 = |b|2|c|2δ1 + |b|2|d|2δ2 + |a|2|c|2δ3 + |a|2|d|2δ4,

ρ44 = |b|2|d|2δ1 + |b|2|c|2δ2 + |a|2|d|2δ3 + |a|2|c|2δ4.

Intriguingly, now the effective role of UAB = UA ⊗ UB is a
more thorough mixing of the diagonal elements of δI . Instead
of carrying out a similar analysis as in the first case, we can
obtain the optimal value intuitively by noting that S(ρI ) � 2
for all ρ. Therefore, if |a|2 = |b|2 = |c|2 = |d|2 = 1/2, we get
the optimal value

Copt
2 = 2 −

4∑
i=1

δi log2 δi, (28)

where the constraint
∑

i δi = 1 is applied. By the concavity of
the function −x log2 x, it is easy to verify that Copt

2 � Copt
1 � 0,

which means the two-side local unitary operator performs
better in the creation of coherence. Moveover, the optimal
unitary operator is UAB = H̃A ⊗ H̃B .

(3) The kernel of nonlocal unitary operator Ud . In fact,
any two-qubit unitary gate can be decomposed in Cartan form
[40–42]:

UAB = (XA ⊗ XB)Ud (YA ⊗ YB), (29)

where XA, XB , YA and YB are single-qubit unitary operators
and the bipartite nonlocal unitary kernel Ud has the form

Ud (�c) = exp

⎛
⎝−i

∑
j=1,2,3

cjσj ⊗ σj

⎞
⎠. (30)

Here σj are standard Pauli operators and �c = (c1,c2,c3) is a
real vector satisfying [40–42]

0 � |c3| � c2 � c1 � π/4. (31)

Indeed, we should point out that coherence creation under
arbitrary two-qubit gate cannot be reduced to the problem
where only Ud is taken into consideration, since we have
already demonstrated that quantum coherence can be increased
by local product unitary operators. However, compared with
the two previous cases, it is of significance to investigate the
effect of the nonlocal kernel separately. For clarity, we present
the detailed discussion and some further expansion in the
Appendix and the optimal Ud is the kernel of the controlled-not
(CNOT) gate [42,43]:

Ud (π/4,0,0) = 1√
2

(1 − σ1 ⊗ σ1). (32)

The corresponding optimal value is

Copt
3 = − (δ1 + δ4) log2 (δ1 + δ4) − (δ2 + δ3) log2 (δ2 + δ3)

+ 1 −
4∑

i=1

δi log2 δi . (33)
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From the concavity of von Neumann entropy and the majoriza-
tion theory [39], we have the ordering

Copt
1 � Copt

3 � Copt
2 , (34)

which implies that the nonlocal kernel alone does not necessar-
ily outperform the local-product unitary operators concerning
the creation of coherence.

To intuitively understand the physics behind these results,
we notice the effect of the gate H̃ :

H̃ |0〉 = |−〉, H̃ |1〉 = |+〉, (35)

that is, H̃ transforms the computational basis states into the
maximally coherent states [16]. More generally, if we apply
H̃⊗n on |1〉⊗n, we have

H̃ |1〉 ⊗ H̃ |1〉 ⊗ · · · ⊗ H̃ |1〉 = 1√
2n

2n−1∑
j=1

|j 〉, (36)

which is a 2n-dimensional maximally coherent states. In this
particular sense, H̃ (or the Hadamard gate H ) can be regarded
as a maximally coherent operator. In contrast, the CNOT gate
is more inclined to create entanglement by noting that

Ud (π/4,0,0)|00〉 = |00〉−i|11〉√
2

,

Ud (π/4,0,0)|01〉 = |01〉−i|10〉√
2

,

(37)
Ud (π/4,0,0)|10〉 = |10〉−i|01〉√

2
,

Ud (π/4,0,0)|11〉 = |11〉−i|00〉√
2

,

which indicates that the nonlocal kernel of the CNOT gate
transforms a fully separable basis into a maximally entangled
basis [43]. In fact, an arbitrary (two-qubit) incoherent states
δI can be converted to a Bell-diagonal-like state by the CNOT

gate.

V. ADDITIVITY RELATION OF QUANTUM COHERENCE
IN TRIPARTITE SYSTEMS

In this section, we discuss the additivity relation of quantum
coherence in the tripartite scenario. Here the additivity relation
describes how quantum coherence is distributed among the
subsystems [44]. In particular, we wonder whether the tripartite
coherence is equal to or greater than the sum of the bipartite
coherences; that is, whether the following inequality holds:

C(ρABC) � C(ρAB) + C(ρAC), (38)

where ρAB = TrC(ρABC) and ρAC = TrB(ρABC). First, we
present two important classes of states which are in favor of
the inequality (38):

(1) The generalized GHZ states |ψ〉 = α|000〉 + β|111〉.
In the computational basis, it is easy to verify that C(ρABC) =
−|α|2 log2 |α|2 − |β|2 log2 |β|2 and C(ρAB) = C(ρAC) = 0.
Thus the inequality (38) holds in this case.

(2) The generalized W states |φ〉 = α|001〉 + β|010〉 +
γ |100〉. In the computational basis, we have

C(ρAB) = S
(
ρAB
I

) − S(ρAB) = S
(
ρAB
I

) − S(ρC)
(39)

= −|β|2 log2
|β|2

|β|2 + |γ |2 − |γ |2 log2
|γ |2

|β|2 + |γ |2 ,

where ρX
I is the diagonal version of ρX. Similarly, we also

obtain

C(ρAC) = −|α|2 log2
|α|2

|α|2 + |γ |2 − |γ |2 log2
|γ |2

|α|2 + |γ |2 ,

C(ρABC) = −|α|2 log2 |α|2 − |β|2 log2 |β|2 − |γ |2 log2 |γ |2.
(40)

Therefore, we have the inequality

C(ρAC) + C(ρAB) − C(ρABC)

= (1 − |α|2) log2(1 − |α|2) + (1 − |β|2) log2(1 − |β|2)

− |γ |2 log2 |γ |2 � 0. (41)

To see this point, for a given |γ |, we define the function

G(x) = x log2 x + (a − x) log2 (a − x), (42)

where x = 1 − |α|2 � 1 and a = 1 + |γ |2 � 1. It is easy to
check that G(x) is a convex function when x � a. Thus, the
maximum value of G(x) is reached at the boundary, that is,
α = 0 or β = 0.

The above evidence immediately tempts one to conjecture
that the inequality (38) holds for any tripartite systems.
Before attempting to construct or search a counterexample
by numerical simulation, the next theorem confirms that this
conjecture is invalid by providing a rather interesting class of
states.

Theorem 3. There exists a class of states violating the
additivity relation (38), which satisfies strong subadditivity
of von Neumann entropy with equality.

Proof. For an arbitrary tripartite state ρABC , we have

C(ρAC) + C(ρAB) − C(ρABC)

= S
(
ρAB
I

) − S(ρAB) + S
(
ρAC
I

) − S(ρAC)

− S
(
ρABC
I

) + S(ρABC)

= [
S(ρA) + S(ρABC) − S(ρAB) − S(ρAC)

]
+ [

S
(
ρAB
I

) + S
(
ρAC
I

) − S
(
ρABC
I

) − S
(
ρA
I
)]

+ [
S
(
ρA
I
) − S(ρA)

]
(43)

= �1 + �2 + �3,

where �1, �2, and �3 represent the last three lines inside the
square brackets, respectively. From the strong subadditivity
of von Neumann entropy and the positivity of quantum
coherence, we can determine the sign of these three terms

�1 � 0, �2 � 0, �3 � 0. (44)

Therefore, when �1 = 0 we have the opposite inequality

C(ρAB) + C(ρAC) � C(ρABC). (45)

This completes the proof. �
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In fact, Hayden et al. already presented an explicit charac-
terization of the states which saturate the strong subadditivity
inequality for von Neumann entropy [45]. These states have
the structure

ρABC =
⊕

j

qjρAL
j B ⊗ ρAR

j C, (46)

where {qj } is a probability distribution and the Hilbert space
of subsystem A can be decomposed into a direct (orthogonal)
sum of tensor products

HA =
⊕

j

HAL
j

⊗ HAR
j
. (47)

In addition, we notice that the positivity of quantum discord
was shown to be equivalent to the strong subadditivity of von
Neumann entropy [46]. Theorem V tells us that the additivity
relation in multipartite systems is also closely related to the
strong subadditivity of quantum entropy.

VI. CONCLUSIONS

In this work, we systematically studied the quantum
coherence in multipartite systems, employing the quantum
relative entropy as a distance measure. First, we characterized
the structure of the incoherent Kraus operators, which is
a key ingredient in formulating the incoherent operations.
Toward a unified view, we present the hierarchical structure
of quantum coherence, quantum discord, and quantum en-
tanglement in multipartite systems. Remarkably, we propose
the concept of basis-free quantum coherence and prove that
this quantity is exactly equivalent to the quantum discord.
This one-to-one correspondence offers us a new way to look
at the interconversions between different types of quantum
correlations. Moreover, we analytically evaluate the optimal
creations of quantum coherence for specific two-qubit unitary
gates and the roles of the Hadamard-like gate H̃ and CNOT

gate are highlighted. Finally, we explicitly figure out the
intrinsic connection between the additivity relation and the
strong subadditivity of quantum entropy.

Within the framework of this work, there are several open
questions to be addressed. (i) A detailed analysis of the
coherent power (capacity) of unitary operations is still missing
(see the definition and discussion in the appendix). This
aspect is of both theoretical and applied significance, since the
creation and maintenance of quantum coherence are a central
problem in quantum communication and computation [39].
(ii) Similar to the additivity relation discussed in this work, it
is well known that the monogamy or polygamy relations exist
for quantum entanglement and discord [8,28]. For instance,
we may check whether the following inequality holds for any
tripartite states, in the spirit of the seminal work by Coffman
et al. [47]:

CAB + CAC � CA(BC). (48)

Here the crux of this problem is how to appropriately define
the quantum coherence for a bipartite partition.
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APPENDIX: ANALYSIS OF NONLOCAL UNITARY
CREATION OF QUANTUM COHERENCE

In fact, the nonlocal kernel Ud is diagonal in the magic basis
[40]

Ud =
4∑

k=1

e−iλk |�k〉〈�k|, (A1)

where the phases λk are

λ1 = c1 − c2 + c3, λ2 = −c1 + c2 + c3,
(A2)

λ3 = −c1 − c2 − c3, λ4 = c1 + c2 − c3.

Here the magic basis is

|�1〉 = |�+〉, |�2〉 = −i|�−〉,
(A3)

|�3〉 = |�+〉, |�4〉 = −i|�+〉,
with |�±〉 = (|00〉 + |11〉)/√2 and |�±〉 = (|01〉 +
|10〉)/√2. Note that we always work in the standard
computational basis, and then Ud can be recast into the matrix
form [43]

Ud =

⎛
⎜⎜⎝

e−ic3c− 0 0 −ie−ic3s−

0 eic3c+ −ieic3s+ 0
0 −ieic3s+ eic3c+ 0

−ie−ic3s− 0 0 e−ic3c−

⎞
⎟⎟⎠,

(A4)

where c± = cos(c1 ± c2) and s± = sin(c1 ± c2).
Similar to the one-sided case, we only need the four

diagonal entries of ρ = UdδIU
†
d ; that is,

ρ11 = (c−)2δ1 + (s−)2δ4, ρ22 = (c+)2δ2 + (s+)2δ3,
(A5)

ρ33 = (c+)2δ3 + (s+)2δ2, ρ44 = (c−)2δ4 + (s−)2δ1.

Since (c±)2 + (s±)2 = 1, it is interesting to see that now the
same reasoning in the one-sided case can also apply here.
Therefore, the optimal condition is

cos2(c1 ± c2) = sin2(c1 ± c2) = 1/2, (A6)

which is equivalent to c1 = π/4 and c2 = c3 = 0, under
the constraint 0 � |c3| � c2 � c1 � π/4. The vector �c =
(π/4,0,0) exactly corresponds to the nonlocal kernel of the
CNOT gate.

It is worth stressing that the definition of coherence
creation here is not consistent with the so-called entangling
power (capacity) or discording power of a two-qubit unitary
gate, where the average or minimization is taken over the
corresponding types of states [48–52]. Along this line of
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thought, we can also define the coherent power (capacity)
of a gate UAB as

CP(UAB) = max
δ⊂I

C(UABδU
†
AB), (A7)

or more generally

CP(UAB) = max
ρ

[C(UABρU
†
AB) − C(ρ)], (A8)

where ρ may be restricted to a certain set. A systematic
investigation of coherent power is underway.
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