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Runge-Lenz vector in the Calogero-Coulomb problem
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We construct the Runge-Lenz vector and the symmetry algebra of the rational Calogero-Coulomb problem
using the Dunkl operators. We reveal that they are proper deformations of their Coulomb counterpart. Together
with similar correspondence between the Calogero oscillator and oscillator models, this observation permits the
claim that most of the properties of the Coulomb and oscillator systems can be lifted to their Calogero-extended
analogs by the proper replacement of the momenta by the Dunkl momenta operators.
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I. INTRODUCTION

The N -dimensional oscillator and Coulomb problems
are the best-known bound systems with maximal number
(2N − 1) of functionally independent constants of motion.
Such systems are called maximally superintegrable. The free
particle is the most widely known superintegrable unbound
system. It seems that all other superintegrable systems can be
obtained somehow from those listed above.

The rational Calogero model [1,2]

H0 =
N∑

i=1

p2
i

2
+

∑
i<j

g(g − 1)

(xi − xj )2
(1)

is highlighted among the nontrivial unbound superintegrable
systems. Its superintegrability was established in the classical
[3] and quantum [4,5] cases.

The generalization of H0, associated with an arbitrary finite
Coxeter group [6], is also superintegrable. Let us mention that
the Coxeter group is described as a finite group generated by a
set of orthogonal reflections across the hyperplanes α · x = 0
in the N -dimensional Euclidean space:

sαx = x − 2(α · x)

α · α
α, α ∈ R+. (2)

Here the vectors α from the set R+ (called the system of
positive roots) uniquely characterize the reflections. In this
case the potential in (1) is replaced by

V (x1, . . . ,xN ) =
∑

α∈R+

gα(gα − 1)(α · α)

2(α · x)2
. (3)

The coupling constants gα form a reflection-invariant discrete
function. The original Calogero potential in (1) corresponds
to the AN−1 Coxeter system with the positive roots, defined in
terms of the standard basis by αij = ei − ej for i < j . The
reflections (2) become the coordinate permutations in this
particular case [see (6) below].
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The rational Calogero model with additional oscillator
potential is given by the Hamiltonian

Hω = −1

2
∂2 + ω2

2
x2 +

∑
i<j

g(g − 1)

(xi − xj )2
. (4)

We refer to it as the Calogero-oscillator model,1 which is also
superintegrable [7].

The similarity between the Calogero model and a free
particle, as well as between the Calogero-oscillator model
and an oscillator, is clearly elucidated from the perspective
of the matrix model reduction and the exchange operator
formalism (see [6,8] for the review). Let us briefly outline the
second approach, elaborated independently by Polychronakos
[9] and by Brink, Hansson, and Vasiliev [10], which then has
been found to be related with seminal work by Dunkl [11].
Following these authors, we can take into account the Calogero
interaction, replacing the momenta pi = −ı∂i by the Dunkl
momenta −ı∇i , defined in terms of the Dunkl operators [11]:

∇i = ∂i −
∑
j �=i

g

xi − xj

sij . (5)

Here sij is the exchange operator between the ith and j th
coordinates:

sijψ(. . . ,xi, . . . ,xj , . . . ) = ψ(. . . ,xj , . . . ,xi, . . . ). (6)

Amazingly, such operators commute like usual partial deriva-
tives:

[∇i ,∇j ] = 0. (7)

Meanwhile, their commutations with the coordinates are more
involved and are expressed through the permutations:

[∇i ,xj ] = Sij =
{−gsij for i �= j,

1 + g
∑

k �=i sik for i = j .
(8)

In the absence of the inverse-square potential (g = 0), the
above relations define the usual Heisenberg algebra.

1Actually, in the literature this system is referred to as the
Calogero model, while the unbound system (1) is referred as
the Calogero-Moser system due to Moser who established the Li-
ouville integrability [2]. Our notations are more proper for reflecting
the structure of underlying models.
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The Calogero-oscillator Hamiltonian (4) can be obtained
by the restriction of the generalized Hamiltonian

Hgen
ω = −1

2
∇2 + ω2

2
x2 (9)

to the symmetric wave functions [10]

sijψs(x) = ψs(x). (10)

In these terms there is a remarkable similarity between the
integrals of motion of the Calogero oscillator and ordinary
oscillator systems. First, take the overcompleted set of the
symmetry generators of Hgen

ω , which are given by the Dunkl
angular momentum operator [4,12]2

Mij = xi∇j − xj∇i , (11)

satisfying the deformed commutation relations [4,13]

[Mij ,Mkl] = SkjMil + SliMjk − SkiMjl − SljMik, (12)

and the hidden symmetry generators

Iij = −∇i∇j + ω2xixj . (13)

Note that in the g = 0 limit, the generators Mij and Iij

are reduced to the unitary algebra u(N ), which describes
the symmetry of the N -dimensional isotropic oscillator. The
constants of motion of the Calogero-oscillator model Hω can
be associated with the symmetric polynomials

M2k =
∑
i<j

M2k
ij , (14)

Ik =
N∑
i

I k
ii , I ′

k =
N∑

i<j

I k
ij . (15)

The symmetrization ensures their valid action on the wave
functions (10).

The symmetries of the Calogero model without oscillator
H0 are related to the symmetries of the free-particle system
in the same way. Being restricted to the symmetric wave
functions, the Hamiltonian (1) coincides with the analog of
the free-particle Hamiltonian with the Dunkl derivatives used
instead of the standard ones [9]:

Hgen
0 = − 1

2∇2. (16)

It commutes both with the Dunk operators (5) and the Dunkl
momenta generators (11). The symmetric polynomials

Ik|ω=0 =
∑

i

∇k
i (17)

mutually commute, in contrast to the Dunkl angular momen-
tum polynomials (14). For k � N they form the set of the
Liouville integrals of motion of the Calogero Hamiltonian (1).
The operators (14) complete them to the full set of integrals of
motion [9].

Hence, the symmetries of the rational Calogero model
without and with the oscillator potential, formulated in terms
of the Dunkl operators, are in one-to-one correspondence with

2For simplicity, we omit the imaginary unit ı in the definition (11)
so that Mij becomes anti-Hermitian in our notations.

those of the free particle and the oscillator, respectively. This
holds also for a more general rational potential (3), associated
with an arbitrary Coxeter group [13].

On the other hand, it has been known for years that the
rational Calogero model, extended by any other central poten-
tial, remains an integrable system [14,15]. The integrability is
more or less obvious. It proceeds from the integrability of the
angular part of the generalized rational Calogero model [16].
Meanwhile, only few of them preserve the superintegrability
property. In a recent paper with Lechtenfeld, we have shown
that the oscillator and Coulomb potentials are unique in this
context [17].

Moreover, we have observed that the Calogero-oscillator
and Calogero-Coulomb models are, in fact, the only isospectral
deformations of the original oscillator and Coulomb systems.

Let us remember that the hidden symmetries of the
Coulomb problem are given by the Runge-Lenz vector, form-
ing a quadratic algebra together with the angular momentum
operators [18]. It is reduced to the orthogonal so(N + 1) or
pseudo-orthogonal so(N,1) algebra, respectively, on the bound
(negative-energy) or unbound (positive-energy) states.

Having in mind the similarity between the symmetries of
the isotropic oscillator and Calogero-oscillator models, and
the fact that the Calogero-oscillator and Calogero-Coulomb
systems are highlighted from an integrability viewpoint [17],
we can ask whether the symmetries of the conventional
Coulomb problem can be deformed to the symmetries of the
Calogero-Coulomb model.

In this article we will show the following:
(1) The symmetry generators of the Calogero-Coulomb

system, formulated in terms of the Dunkl operators, are given
by the deformed angular momentum tensor (11) and by the
deformed Runge-Lenz vector.

(2) The symmetry algebra of the Calogero-Coulomb model
is a deformation of the symmetry algebra of the initial
Coulomb problem.

(3) The functional relation between the Coulomb Hamil-
tonian, Runge-Lenz vector, and the angular momentum has an
analog in the Calogero-Coulomb problem.

In fact, this means that the Calogero-Coulomb problem is as
fundamental as the Calogero-oscillator problem. Due to such
profound similarity with the conventional Coulomb problem,
we expect that most of the applications of the Coulomb system
can be extended somehow to the Calogero-Coulomb system.

II. SYMMETRIES

In this section we demonstrate that all symmetries of the
N -dimensional quantum Coulomb model can be deformed to
those of the Calogero-Coulomb problem [14,15],3

Hγ = −1

2
∂2 − γ

r
+

∑
i<j

g(g − 1)

(xi − xj )2
, (18)

using the Dunkl operator formalism.

3In our notations, the subscript inHω andHγ is not just an argument,
but it also defines the type of confining potential.
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The generalized Calogero-Coulomb model is described by
the following Hamiltonian:

Hgen
γ = −∇2

2
− γ

r
with r =

√
x2. (19)

As in the previously discussed Calogero-oscillator case, it
preserves the Dunkl angular momentum operators:[

Hgen
γ ,Mij

] = 0. (20)

We define the following deformation of the ordinary Runge-
Lenz vector:

Ai = −1

2

∑
j

{Mij ,∇j } + 1

2
[∇i ,S] − γ

xi

r
, (21)

where

S =
∑
i<j

Sij . (22)

Here and in the following, the curly brackets mean an
anticommutator of two operators:

{a,b} = ab + ba. (23)

The operator S is invariant with respect to the permutations
and is a constant on the symmetric wave functions (10):

[S,sij ] = 0, Sψs(x) = g
N (1 − N )

2
ψs(x). (24)

In the absence of inverse-square interaction, g = 0, the
operators Sij are reduced to δij , and the second term in
(21) vanishes. Respectively, the conserving quantities Ai are
reduced to the usual Runge-Lenz vector of the N -dimensional
Coulomb system.

In the Appendix we prove that the generalized Runge-Lenz
vector provides the system with the hidden symmetry:[

Hgen
γ ,Ai

] = 0. (25)

Therefore the operators Mij and Ai generate an entire symme-
try algebra of the generalized Calogero-Coulomb system (19).
It appears that they obey the following commutation relations:

[Ai,Mkl] = AlSki − AkSli,

[Ai,Aj ] = −2Hgen
γ Mij .

(26)

At the pure Coulomb point (i.e., in the g = 0 limit) these
relations together with (12) are reduced to the symmetry
algebra of the N -dimensional Coulomb problem.

The second commutation relation in Eq. (26) is proven in
the Appendix.

Consider the first commutator in (26). It can be viewed as a
deformation of the infinitesimal rotation of the vector Ai . Note
that the coordinates (ui = xi) and Dunkl operators (ui = ∇i)
obey the same relation, as it follows from Eqs. (5), (7), (8),
and (11):

[ui,Mkl] = Sikul − Siluk = ulSki − ukSli . (27)

Now we express Ai in terms of the coordinates and Dunkl
operators. The following formula is proven in the Appendix:

Ai =
(
r∂r + N − 1

2

)
∇i − xi

(
∇2 + γ

r

)
. (28)

Evidently, the operator-valued coefficients of xi and ∇i in
the above expressions commute with Mkl and Skl . Hence, the
first commutation relation in (26) follows directly from the
identities (27).

Like in the oscillator case, we are forced to combine
the conserving quantities Ai and Mij into the symmetric
polynomials

Ak =
N∑

i=1

Ak
i (29)

and (14) in order to get the well-defined constants of motion
for the original model (18).

The first member of the family set (29) is independent of
the S term and is given by the expression [17]

A1 =
∑

i

xi

(
2Hgen

γ + γ

r

)
+

(
r∂r + N − 1

2

) ∑
i

∂i . (30)

The constant of motion M2 does not commute with Mij but
is related with the Casimir element M′

2 of the algebra (11) in
a rather simple way [13]:

M′
2 = M2 − S(S − N + 2)

= r2∇2 − r2∂2
r − (N − 1)r∂r . (31)

It describes the angular part of the Calogero model, studied
from various perspectives in [19,20].

The constant of motion A2 does not commute with Mij as
well. However, the corrected integral

A′
2 = A2 + 2Hgen

γ S (32)

becomes commutative with the Dunkl angular momentum, as
was proven in the Appendix:

[A′
2,Mij ] = 0. (33)

This suggests that a certain combination of these invariants
may commute with Ai too.

In the Appendix we prove the following relation between
the symmetry generators, which generalizes a similar relation
in the conventional Coulomb problem:

A′
2 = γ 2 − 2Hgen

γ

(
M′

2 − (N − 1)2

4

)
. (34)

Presumably, it can be used for the pure algebraic derivation of
the spectrum of the Calogero-Coulomb problem.

III. CONCLUDING REMARKS

In this article we have proven that all relations between the
symmetry generators of the Coulomb problem can be extended
to the Calogero-Coulomb model. To obtain them we should
replace the momenta operators −ı∂i by the Dunkl momenta
−ı∇i and make proper corrections depending on the permuta-
tion operators. It is straightforward to extend our consideration
to the Calogero-Coulomb model associated with arbitrary
Coxeter group. Note that the two-dimensional Calogero-
Coulomb problem associated with the dihedral group D2 was
investigated recently using the Dunkl operators [21]. The same
correspondence holds for the Calogero-oscillator model [13].
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Both the Calogero-oscillator and Calogero-Coulomb mod-
els have superintegrable counterparts on (pseudo)spheres
[17], and we have no doubt that the symmetry algebras of
(pseudo)spherical oscillator and Coulomb systems can be
lifted, in the same way, to those with Calogero term. However,
due to technical difficulties we are unable to complete these
calculations.

This remarkable similarity between the Calogero-oscillator
(Calogero-Coulomb) model and oscillator (Coulomb) permits
us to claim that most of the properties of the oscillator
and Coulomb systems can be extended to their counterparts
supplemented by the Calogero interaction term. We are
sure that in this way one can construct the superintegrable
extensions of three- or five-dimensional Calogero-Coulomb
problems, specified by the presence, respectively, of the Dirac
and Yang monopoles. Moreover, it seems that acting in the
suggested way, we can relate the two-, four-, and eight-
dimensional Calogero-oscillator models with the two-, three-,
and five-dimensional Calogero-Coulomb models, including
those specified by the presence of anyon and Dirac, Yang
monopoles in the spirit of Ref. [22]. (For previous treatments
see Ref. [15].)

Recently, the superintegrability of the (relativistic) Dirac
oscillator [23] and Coulomb [24] systems has been established.
It would be interesting to study them in the presence of
Calogero interaction from the superintegrability point of view.
Moreover, we expect that in this way one can solve the
problem of N = 4,8 supersymmetrization of the Calogero
model, which was treated by many authors (see [25] and
references therein).
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APPENDIX: DERIVATIONS

1. Conservation of Runge-Lenz vector (21)

Here we prove that the Calogero-Coulomb Hamiltonian
preserves the deformed Runge-Lenz vector (21). First we
compute the commutator between the Hamiltonian and Ai .
The commutator with the first term in the right-hand side of the
equation (21) can be simplified using the following identity:[ ∑

j

{Mij ,∇j } ,
1

r

]
= − 1

r3

∑
j

{Mij ,xj }

=
{

1

r
,∇i

}
−

∑
j

{xixj

r3
,∇j

}
. (A1)

In the derivation we have used the vanishing of the two
commutators [13]:

[∇2,Mij ] = [r,Mij ] = 0. (A2)

Next, we can calculate the commutator of the Hamiltonian with
the last term in the deformed Rune-Lenz vector expression (30)

using the following identity:[xi

r
,∇2

]
=

∑
j

{xixj

r3
− Sij

r
,∇j

}
. (A3)

Combining together the relations (A1) and (A3), we obtain[
− 1

2

∑
j

{Mij ,∇j } − γ xi

r
,Hgen

γ

]

=
∑

j

{
γ Sij

2r
,∇i − ∇j

}
= 1

2

[
[S,∇i],Hgen

γ

]
, (A4)

where S is defined in (22). In the last equation we have used
the identity ∑

j

(∇j − ∇i)Sij = [S,∇i].

The relation (A4) completes the proof of conservation of the
deformed Runge-Lenz operator (25).

2. Second commutation relation in Eq. (26)

Let us derive the commutation relation between the compo-
nents of the Runge-Lenz vector in (26). For convenience, we
present the deformed Runge-Lenz vector (28) in the following
form:

Ai = a∇i − xib, a ≡ r∂r + N − 1

2
, b ≡ ∇2 + γ

r
.

(A5)
Then

[Ai,Aj ] = [a∇i ,a∇j ] + [xib,xjb] + [a∇j ,xib] − [a∇i ,xj b].

(A6)

Note that the commutator [a,f ] counts the total degree in
coordinates of the quantity f :

[a,∇i] = −∇i , [a,xi] = xi, [a,b] = −2∇2 − γ

r
. (A7)

The commutators in (A6), containing the observable b, are
simplified to

[b,xi] = 2∇i , [b,∇i] = γ xi

r3
. (A8)

Using the above equations, we obtain

[a∇i ,a∇j ] = 0, [xib,xjb] = 2Mijb, (A9)

[a∇j ,xib] = xj∇i∇2 + γ xixj

r3
(a + 1) + aSij b. (A10)

The last two terms on the right-hand side of (A10) are
symmetric on the indexes i and j and hence disappear in
the commutator (A6). Substituting Eqs. (A9) and (A10) into
(A6), we arrive at the relation sought:

[Ai,Aj ] = −2Hgen
γ Mij . (A11)

3. Relation (28)

Here we derive the relation (28), which expresses the Runge-
Lenz invariant in terms of the coordinates and Dunkl momenta.
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First we calculate the first term of (21):

∑
j

{Mij ,∇j } = {∇2,xi} − (x · ∇)∇i − ∇i(∇ · x)

= {∇2,xi} − (2r∂r + (N + 1))∇i + [∇i ,S].

(A12)

We have used the following identities in the derivation:

x · ∇ = r∂r + S, ∇ · x = r∂r − S + N. (A13)

Finally, substituting them into (21), we arrive at the equation
(28).

4. Relation (32)

Let us calculate the commutator of Mij with A2:

[Mij ,A2] =
∑

k

{AiSjk − AjSik,Ak}. (A14)

Each term from the right-hand side of this equation can be
presented as

∑
k

{AiSjk,Ak} = 2AiAj − 2Hgen
γ

∑
k

MkiSkj . (A15)

Here we take into account the identity

∑
k

{Sik,uk} = 2ui +
∑
k �=i

{Sik,uk − ui} = 2ui, (A16)

which is fulfilled for any local operator uk . Applying the above
relation, one can further simplify the commutator (A14):

[Mij ,A2] = −2Hgen
γ

(∑
k

(MkiSjk − MkjSik) + 2Mij

)

= −2Hgen
γ

⎡
⎣Mij ,

∑
k �=i,j

(Skj + Ski)

⎤
⎦

= −2Hgen
γ [Mij ,S]. (A17)

This completes the proof of the equation (32).

5. Relation (34)

We use the representation (A5) for A2:

A2 =
∑

i

(a∇i − xib)2 = (a + 1)a∇2

+ r2b2 + 2(x · ∇)b −
∑

i

{a∇i ,xib}

= r2b2 + 2a2Hgen
γ − 2(x · ∇)Hgen

γ − 2a
γ

r
. (A18)

The commutation relations (A7), (A8), and (A13) are used in
the derivation.

In the first term in the last expression one can select the
Hamiltonian as follows:

r2b2 = −2r2∇2Hgen
γ + γ (N − 3)

r
+ 2γ ∂r + γ 2. (A19)

Inserting this into Eq. (A18) and simplifying it, we arrive at
the desired relation (34).
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