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Coherent states provide a natural connection of quantum systems to their classical limit and are employed in
various fields of physics. Here we derive general systematic expansions, with respect to quantum parameters, of
expectation values of products of arbitrary operators within both oscillator coherent states and SU(2) coherent
states. In particular, we generally prove that the energy fluctuations of an arbitrary Hamiltonian are in leading
order entirely due to the time dependence of the classical variables. These results add to the list of well-known
properties of coherent states and are applied here to the Lipkin-Meshkov-Glick model, the Dicke model, and to
coherent intertwiners in spin networks as considered in loop quantum gravity.
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I. INTRODUCTION

Coherent states are at the heart of semiclassical descrip-
tions of generic quantum systems and have proven to be
a versatile tool in a multitude of physical problems. In
the general literature [1–5], mainly two types of coherent
states are typically distinguished: The first type, the coherent
states of the harmonic oscillator, was already investigated by
Schrödinger [6] shortly after the birth of quantum mechanics,
while SU(2) coherent states in the Hilbert space of a spin of
general length S were added in the early 1970s [7,8].

Both types of coherent states share a list of well-known
properties which constitute the basis for their prominent role
in semiclassics: (i) The coherent states can be generated by a
unitary transformation from an appropriate reference state.
In the oscillatory case this state is the ground state of a
harmonic, while for spins one uses the highest-weight state
in some arbitrary basis. As a result, the coherent states are (ii)
(over)complete, (iii) eigenstates of simple operators generic to
the system, and (iv) they have minimum uncertainty products
with respect to an obvious choice of variables. Moreover,
(v) coherent states show a coherent time evolution perfectly
mimicking the classical limit under appropriate Hamiltonians.
For oscillator coherent states such a Hamiltonian is the one of
the harmonic oscillator itself, and for the spin case the Zeeman
Hamiltonian (coupling the spin to an external magnetic field)
plays an analogous role.

In the present work we argue that one can extend the above
list by general statements about correlations and fluctuations
within coherent states. Specifically we consider the coherent
expectation value of a product of two arbitrary operators.
For such expectation values we derive systematic expansions
in the quantum parameters � or 1/S which involve only
coherent expectation values of single operators and their
commutators with the system variables. These expansions are
a versatile tools for the study of the semiclassical regime of
generic quantum systems. As an important finding, the energy
fluctuations of an arbitrary Hamiltonian are generally proven
to be in leading order entirely due to the time dependence of
the classical variables. These results add to the above list of
properties of coherent states. Reflecting the widespread use
of the latter objects, we apply our findings to the Lipkin-
Meshkov-Glick model originating from nuclear physics [9],
to the Dicke model describing superradiance in quantum

optics [10], and to coherent intertwiners of spin networks
occurring in the loop approach to quantum gravity [11,12].

This paper is organized as follows: In Sec. II we review
and summarize important properties of oscillator coherent
states and SU(2) coherent states. The announced results on
the coherent expectation values of arbitrary operator products
are derived in Sec. III and discussed there on a general
footing. Some technical details of the calculations are deferred
to Appendix A. Section IV contains the application of our
general findings to the Lipkin-Meshkov-Glick model, and the
Dicke model is treated in Sec. V. In Sec. VI we turn to the
study of coherent intertwiners of spin networks investigated
in the covariant approach advocated by loop quantum gravity.
Here we derive semiclassical corrections to expectation values
in terms of universal expansion coefficients depending only
on the network geometry. We close with a summary and an
outlook in Sec. VII.

II. COHERENT STATES

We now briefly review, using standard notation, distinctive
properties of oscillator coherent states and SU(2) coherent
states.

A. Coherent oscillator states

The harmonic oscillator is described by

Hh = 1
2 (p2 + ω2q2) = �ω

(
a+a + 1

2

)
(1)

with

a = 1√
2

(√
ω

�
q + i√

�ω
p

)
, a+ = (a)+ (2)

fulfilling

[p,q] = �

i
⇔ [a,a+] = 1. (3)

The system has an equidistant spectrum labeled by n ∈
{0,1,2, . . . },

Hh|n〉 = �ω
(
n + 1

2

)|n〉. (4)

Coherent states of the harmonic oscillator are eigenstates of
the lowering operator a with complex eigenvalues α,

a|α〉 = α|α〉. (5)
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They are generated from the ground state via

|α〉 = exp(αa+ − α∗a)|0〉 (6)

= exp

(
−1

2
|α|2

) ∞∑
n=0

αn

√
n!

|n〉. (7)

The parameter α is naturally decomposed into its real and
imaginary parts as

α = 1√
2

(√
ω

�
ξ + i√

�ω
π

)
. (8)

Denoting an expectation value within a coherent state (6) by
〈·〉 it holds that

〈q〉 = ξ, 〈p〉 = π. (9)

Coherent states maintain their shape in the time evolution of
the harmonic oscillator,

e−(i/�)Hht |α〉 = e−(i/2)ωt |αe−iωt 〉, (10)

and the time dependence of the expectation values (9) follows
exactly the classical motion of the harmonic oscillator. This
fact justifies the term “coherent states” and relies on the
equidistance of the spectrum. The latter property is shared
by a quantum spin of arbitrary length in a magnetic field and
leads there to a coherent Larmor precession, as we will discuss
in Sec. II B.

Moreover, coherent states minimize uncertainty products,

�p�q = �/2, (11)

and fulfill an (over)completeness relation,

1

π

∫
d2α|α〉〈α| = 1. (12)

B. SU(2) coherent states

In the Hilbert space of a spin of length S an SU(2) (or spin)
coherent state |ϑ,ϕ〉 is defined by the equation

	s · 	S|ϑ,ϕ〉 = �S|ϑ,ϕ〉 (13)

for the direction 	s = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). For
generic systems expectation values within these states provide
a natural approach to the classical limit given by � → 0,
S → ∞ while �S is kept constant.

Introducing the usual basis of eigenstates of Sz (Sz|m〉 =
�m|m〉) coherent states can be generated from |S〉 by a unitary
rotation,

|ϑ,ϕ〉 = U (ϑ,ϕ) |S〉 (14)

= 1

(1 + |z|2)S
ezS− |S〉 (15)

with [2,4]

U (ϑ,ϕ) = exp

(
i

�
ϑ(sin ϕSx − cos ϕSy)

)
(16)

= ezS−/�eηSz/�e−z̄S+/� (17)

= e−z̄S+/�e−ηSz/�ezS−/� (18)

and

z(ϑ,ϕ) = tan
ϑ

2
eiϕ, η(ϑ) = 2 ln cos

ϑ

2
. (19)

Expanded in the above basis SU(2) coherent states read

|ϑ,ϕ〉 = 1

(1 + |z|2)S

S∑
m=−S

(
2S

S + m

)1/2

zm|m〉 (20)

=
S∑

m=−S

{(
2S

S + m

)1/2[
cos

(
ϑ

2

)]S+m

×
[

sin

(
ϑ

2

)]S−m

eıϕ(s+m) |m〉
}

. (21)

The analog of the harmonic oscillator for SU(2) coherent states
is the Zeeman Hamiltonian

Hz = −	S · 	h (22)

coupling the spin to a magnetic field 	h. The spectrum consists
of 2S + 1 equidistant energy levels, and the corresponding
time evolution of SU(2) coherent states is a coherent Larmor
precession, which is most easily seen when putting, without
loss of generality, the field direction along the z axis,

e−(i/�)Hzt |ϑ,ϕ〉 = e−iϕSht |ϑ,ϕ + ht〉. (23)

The latter finding is completely analogous to the harmonic
oscillator having a semi-infinite equidistant spectrum.

As further standard properties shared with coherent oscilla-
tor states, SU(2) coherent states have a minimum uncertainty
product

�(	e1 · 	S ) �(	e2 · 	S ) = �
2S

2
(24)

with 	e1,	e2,	s being an orthonormal system, and their
(over)completeness can be expressed as

1 = 2S + 1

4π

∫ 2π

0
dϕ

∫ π

0
dϑ sin ϑ |ϑ,ϕ〉〈ϑ,ϕ| (25)

= 2S + 1

π

∫
d2z

(1 + |z|2)2
|z〉〈z| (26)

= 2S + 1

π

∫
d2z

ezS−/�|S〉〈S|ez̄S+/�

(1 + |z|2)2(S+1)
, (27)

where |z〉 = |ϑ,ϕ〉. Further below it will be useful to change
reference state |S〉 in Eq. (27) to an arbitrary SU(2) coherent
state by applying the unitary transformation given in Eqs. (16)–
(18):

1 = 2S + 1

π
U

∫
d2w

ewS−/�|S〉〈S|ew̄S+/�

(1 + |w|2)2(S+1)
U+

= 2S + 1

π

∫
d2w

ewS̃−/�|z〉〈z|ew̄S̃+/�

(1 + |w|2)2(S+1)
(28)

with 	̃S = U 	SU+.

III. CORRELATIONS

We now derive general theorems for the expectation values
of operator products within coherent states.
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A. Oscillatory systems

1. General correlation functions

Let A, B be two operators being functions of the two
canonical operators p, q (or, equivalently, a, a+). Using the
completeness relation (12) the expectation value of AB within
a coherent oscillator state can be formulated as

〈α|AB|α〉 = 1

π

∫
d2βe−|β|2〈0|U+

α AUαU+
α eβa+ |0〉

×〈0|eβ̄aUαU+
α BUα|0〉, (29)

where Uα is the unitary operator on the right-hand side of
Eq. (6), and

U+
α eβa+|0〉 = e−(1/2)|α|2+ᾱβe(β−α)a+ |0〉 (30)

such that

〈α|AB|α〉 = 1

π

∫
d2βe−|β−α|2〈0|U+

α AUαe(β−α)a+ |0〉

×〈0|e(β̄−ᾱ)aU+
α BUα|0〉

= 1

π

∫
d2βe−|β|2〈0|e−βa+

U+
α AUαeβa+|0〉

×〈0|eβ̄aU+
α BUαe−β̄a|0〉, (31)

where we have shifted the integration variable and used
e−β̄a|0〉 = |0〉. The remaining operator products can be ex-
panded into series of iterated commutators according to

eXYe−X =
∞∑

n=0

1

n!
[X,Y ]n (32)

with [X,Y ]0 = Y and [X,Y ]n = [X,[X,Y ]n−1]. Upon per-
forming the integration the two infinite series shrink to a single
one yielding

〈α|AB|α〉 =
∞∑

n=0

1

n!
〈0|[−a+,U+

α AUα]n|0〉

×〈0|[a,U+
α BUα]n|0〉 (33)

=
∞∑

n=0

1

n!
〈α|[iUαa+U+

α ,A]n|α〉〈α|[iUαaU+
α ,B]n|α〉

=
∞∑

n=0

1

n!
〈α|[ia+,A]n|α〉〈α|[ia,B]n|α〉. (34)

In the last step we took into account that Uαa+U+
α and a+ differ

just by a constant which commutes with any operator. Thus,
we have arrived at an expression for the expectation value of
product of two operators within coherent states in terms of a
sum over products of such coherent-state expectation values
which involve only one of the operators. An alternative form
of the above expansions can be given via Eq. (33) as

〈α|AB|α〉 =
∞∑

n=0

〈0|U+
α AUα|n〉 〈n|U+

α BUα|0〉, (35)

which of course just expresses the completeness of the states
|n〉 and provides an alternative way to derive Eq. (34).

Moreover, using the definition (2) Eq. (34) can be rewritten
as

〈α|AB|α〉 =
∞∑

n=0

�
n

n!2n
〈α|

[
i

�

(√
ωq − i

p√
ω

)
,A

]
n

|α〉

×〈α|
[

i

�

(√
ωq + i

p√
ω

)
,B

]
n

|α〉. (36)

Since each commutation of p, q with A or B yields a factor
of � all expectation value on the above right-hand side are
of the same order in �. Thus, Eq. (36) is indeed a systematic
expansion in � of the coherent-state expectation value of an
arbitrary product of two operators. The zeroth order equals the
classical result, and for a general correlation function one has
the semiclassical expansion

CAB := 〈α|AB|α〉 − 〈α|A|α〉〈α|B|α〉

=
∞∑

n=1

�
n

n!2n
〈α|

[
i

�

(√
ωq − i

p√
ω

)
,A

]
n

|α〉

×〈α|
[

i

�

(√
ωq + i

p√
ω

)
,B

]
n

|α〉. (37)

Choosing A = B we obtain a general expression for the
variance of a Hermitian operator A,

(�A)2 =
∞∑

n=1

�
n

n!2n

∣∣∣∣〈α|
[

i

�

(√
ωq − i

p√
ω

)
,A

]
n

|α〉
∣∣∣∣
2

, (38)

where each term in the semiclassical expansion is non-
negative.

2. Energy fluctuations

Considering A = H as a Hamiltonian, the corresponding
energy fluctuation reads in leading order in �

(�H)2 = �

2

(〈
i

�
[
√

ωq,H]

〉2

+
〈
i

�

[
p√
ω

,H
]〉2

)
+ O(�2)

(39)

= �

2

(
ω〈∂tq〉2 + 〈∂tp〉2

ω

)
, (40)

where we have replaced, according to the Heisenberg equa-
tions of motion, the commutators with time derivatives. Indeed,
if the system is prepared at some initial time t = ti in a coherent
state we have [cf. Eq. (8)]

〈∂tq〉 = ∂tξ, 〈∂tp〉 = ∂tπ (41)

and

(�H)2 = �

2

(
ω(∂t ξ )2 + (∂tπ )2

ω

)
+ O(�2) (42)

at t = ti . In the subsequent time evolution governed by the
Hamiltonian H the state of the system will, for not too
large times, approximately be coherent with time-dependent
parameters ξ (t), π (t) playing the approximate role of classical
Hamiltonian variables. Thus, in this semiclassical regime the
fact that a coherent state has a finite energy variance, i.e., it
is not an eigenstate of the Hamiltonian, is in leading order
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in � just expressed by the fact that the classical Hamiltonian
variables have a nontrivial time dependence, i.e., the system
is moving. This result complements the historical Ehrenfest
theorem stating that expectation values of observables follow
the classical equations.

Relations of the type (40) and (42) were already found in
Ref. [13] on the example of specific Hamiltonians. The results
here are derived for arbitrary systems and are based on the very
general expansions (37) and (38) for correlation functions and
fluctuations.

The fact that the system will in its time evolution in general
not strictly remain in a coherent state, i.e., decoherence occurs,
is reflected by the higher contributions to the energy variance.
Indeed, for a harmonic oscillator (1) the time evolution is
strictly coherent and we have as an identity

(�Hh)2 ≡ �

2

(
ω(∂t ξ )2 + (∂tπ )2

ω

)
(43)

for all times t � ti and without any higher correction.
Finally, it is straightforward to extend the above results for

general operator products to the case of N > 1 degrees of
freedom; details are sketched in Appendix A. For the energy
variance one finds in leading order in �

(�H)2 = �

2

N∑
a=1

[〈
i

�
[
√

ωaqa,H]

〉2

+
〈
i

�

[
pa√
ωa

,H
]〉2

]

+O(�2) (44)

= �

2

N∑
a=1

[
ωa〈∂tqa〉2 + 〈∂tpa〉2

ωa

]
(45)

with operator pairs pa , qa and frequencies ωa , and the analog
of Eq. (42) reads

(�H)2 = �

2

N∑
a=1

[
ωa(∂tξa)2 + (∂tπa)2

ωa

]
+ O(�2). (46)

B. Spin systems

1. General correlation functions

We consider again two arbitrary operators A, B which are
now functions of a spin operator 	S. The expectation value of
the product AB within an SU(2) coherent state |z〉 for spin
length S can be formulated as

〈z|AB|z〉 = 2S + 1

π

∫
d2w

(1 + |w|2)2(S+1)

×〈z|e−wS̃−/�AewS̃−/�|z〉
×〈z|ew̄S̃+/�Be−w̄S̃+/�|z〉, (47)

where we have used the completeness relation in the form (28)
and the observation

e−w̄S̃+/�|z〉 = Ue−w̄S+/�|0〉 = |z〉 (48)

with U given in Eqs. (16)–(18). Employing now again the
expansion (32) and performing the integration leads to

〈z|AB|z〉 =
2S∑

n=0

(2S − n)!

n!(2S)!
〈z|

[
i

�
S̃−,A

]
n

|z〉〈z|
[

i

�
S̃+,B

]
n

|z〉.

(49)

The above equation is the spin analog of the result (36).
Again all iterated commutators are of the same order in �

and S whereas the prefactor of the nth term carries a product
2S(2S − 1) . . . (2S − n + 1) in its denominator. Thus, Eq. (49)
is essentially an expansion in the quantum parameter 1/S.
Note that the spin components S̃x , S̃y represent the direction
perpendicular to the spin polarization of the coherent state |z〉.
Alternatively, the result (49) can be written as

〈z|AB|z〉 =
2S∑

n=0

(2S − n)!

n!(2S)!
〈S|

[
i

�
S−,U+AU

]
n

|S〉

×〈S|
[

i

�
S+,U+BU

]
n

|S〉 (50)

=
2S∑

n=0

〈S|U+AU |S − n〉〈S − n|U+BU |S〉. (51)

Analogously to Eq. (35) for oscillatory systems, the last
formulation is just the completeness relation for the states
|m〉 and allows for an alternative derivation of the central
result (49). Using the latter, arbitrary correlation functions
within SU(2) coherent states can be expressed in full analogy
to Eq. (37).

2. Fluctuations

For the variance of a Hermitian operator A we have

(�A)2 =
2S∑

n=1

(2S − n)!

n!(2S)!

∣∣∣∣〈z|
[

i

�
S̃−,A

]
n

|z〉
∣∣∣∣
2

. (52)

The expectation values occurring in leading order can be
rewritten as

|〈z|[iS̃−,A]|z〉|2 =
3∑

i=1

|〈z|[iS̃i ,A]|z〉|2 (53)

=
3∑

i=1

|〈z|[iSi,A]|z〉|2, (54)

where we have observed that |z〉 is an eigenstate of S̃z, and

that 	̃S and 	S are related by an orthogonal matrix,

S̃i =
3∑

j=1

OjiS
j . (55)

Thus, we have

(�A)2 = 1

2S

3∑
i=1

∣∣∣∣〈z|
[

i

�
Si,A

]
|z〉

∣∣∣∣
2

+ O

(
1

S2

)
, (56)

and by a slight generalization of the above arguments one finds
for the expectation value of a product of commuting operators
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A, B,

〈z|AB|z〉 = 1

2
〈z|AB + BA|z〉

= 〈z|A|z〉〈z|B|z〉

+ 1

2S

3∑
i=1

〈z|
[

i

�
Si,A

]
|z〉〈z|

[
i

�
Si,B

]
|z〉

+O

(
1

S2

)
. (57)

The requirement here for a symmetrized operator product
stems from the fact that for an identity analogous to Eq. (53)
to hold products of expectation values involving both S̃x and
S̃y should drop out.

Choosing now in Eq. (56) A to be the Hamiltonian H of the
underlying system we can write by the same arguments as for
Eq. (40),

(�H)2 = 1

2S
〈∂t

	S〉2 + O

(
1

S2

)
, (58)

with 〈·〉 = 〈z| · |z〉. To this result the same comments apply as
to its oscillatory counterpart Eq. (40): If the system is initially
in an SU(2) coherent state it holds [cf. Eq. (13)] that

〈∂t
	S〉 = �S∂t	s (59)

and

(�H)2 = (�S)2

[
1

2S
(∂t	s)2 + O

(
1

S2

)]
(60)

at initial time t = ti , and for not too large times t > ti
the system will approximately remain coherent in its time
evolution under H with 	s(t) being a classical vector. Our
finding (60) is again a manifestation of our previous result (42):
In leading order in the quantum parameter (� or 1/S) the
variance of the energy is due to the classical motion of the
system. Findings of the type (60) were also obtained previously
in Ref. [14] on the example of specific Hamiltonians. Here we
provide a generalization to arbitrary systems based on the very
general expansions (49) and (52) for correlation functions and
fluctuations.

Decoherence effects, i.e., deviations from the coherent state
with time-dependent parameters 	s(t), are again indicated by
the higher-order terms in the energy variance, as we shall
investigate on a specific example in Sec. IV. Conversely, the
Zeeman Hamiltonian (22) generates a strictly coherent time
evolution with

(�Hz)
2 ≡ (�S)2

2S
(∂t	s)2 (61)

as an identity for arbitrary times t � ti .
Similarly as for oscillator systems, the above results for

general operator products are easily generalized to the situation
of N > 1 spins of various lengths; details can be found in
Appendix A. The leading order of the energy variance is given
by

(�H)2 =
N∑

a=1

[
1

2Sa

〈∂t
	Sa〉2 + O

(
1

S2
a

)]
, (62)

and Eq. (60) is generalized to

(�H)2 =
N∑

a=1

{
(�Sa)2

[
1

2Sa

(∂t	sa)2 + O

(
1

S2
a

)]}
. (63)

IV. LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model is an approxi-
mate description of N interacting spin-1/2 systems and was
originally inspired by nuclear physics [9,15,16]. More recently
this model has been argued to describe two-mode Bose-
Einstein condensates [17–20], phase transitions in optical
cavity QED [21–23], and molecular magnets [24]. Moreover it
has been employed to model a spin bath [25,26] and in studies
of quenched dynamics [27]. In the last decade a flurry of
publications investigating various aspects of the LMG model
has appeared; as an entry point to the recent literature we refer
to Refs. [28–38].

Concentrating on the sector of maximal spin S = N/2, the
LMG Hamiltonian reads

H = −hSz − 1

2�S
(γxS

xSx + γyS
ySy), (64)

where h can be interpreted as a magnetic field coupling to the z

component of the spin while γx , γy parametrize an anisotropic
interaction among the perpendicular components. The factor
�S in the denominator is a convention common to the literature
and leads to a linear scaling of energies as a function of S � 1.
The expectation value within an SU(2) coherent state is given
by (neglecting a constant contribution)

〈H〉 = �S

(
−h cos ϑ + γ̃x

2
sin2 ϑ cos2 ϕ + γ̃y

2
sin2 ϑ sin2 ϕ

)
(65)

and equals the classical energy expression up to the renor-
malized parameters γ̃i = γi[1 − 1/(2S)]. Taking coherent
expectation values of both sides of the Heisenberg equations
of motion one obtains the (semi)classical equations

dsx

dt
= h sin ϑ sin ϕ − γ̃y cos ϑ sin ϑ sin ϕ, (66)

dsy

dt
= −h sin ϑ cos ϕ + γ̃x cos ϑ sin ϑ cos ϕ, (67)

dsz

dt
= −(γ̃x − γ̃y) sin2 ϑ cos ϕ sin ϕ. (68)

For the energy variance one finds by a direct (and somewhat
tedious) calculation

(�H)2 = 1 + 2 (69)

with

1 = (�S)2 1

2S
[h2 sin2 ϑ − 2hγ̃x cos ϑ sin2 ϑ cos2 ϕ

− 2hγ̃y cos ϑ sin2 ϑ sin2 ϕ

+ γ̃ 2
x (sin4 ϑ cos2 ϕ sin2 ϕ + cos2 ϑ sin2 ϑ sin2 ϕ)

+ γ̃ 2
y (sin4 ϑ cos2 ϕ sin2 ϕ + cos2 ϑ sin2 ϑ cos2 ϕ)

− 2γ̃x γ̃y sin4 ϑ cos2 ϕ sin2 ϕ] (70)
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being of leading order 1/S while the contributions summarized
in

2 = (�S)2 1

8S2

(
1 − 1

2S

)
(−4γxγy cos2 ϑ

+ [γx(1 − sin2 ϑ cos2 ϕ) + γy(1 − sin2 ϑ sin2 ϕ)]2)

(71)

are of order 1/S2 and higher. Using now Eqs. (66)–(68) we
can identify the leading contribution to the energy uncertainty
as

1 = (�S)2 1

2S

(
d	s
dt

)2

, (72)

in accordance with the general result (60). The subleading
contributions 2 indicate decoherence effects, i.e., departures
from the submanifold of the coherent states in the Hamiltonian
time evolution, as we now discuss explicitly the example of
the isotropic LMG model.

Isotropic case

Putting γx = γy =: γ the Hamiltonian becomes diagonal
in the states |m〉 with eigenvalues

εm/� = −hm + γ

2S
m2 − γ

2
(S + 1). (73)

This eigensystem is simple enough to analytically compute
the exact time evolution of coherent expectation values 〈	S(t)〉:
Due to symmetry, the z component is constant,

〈Sz(t)〉 ≡ �S cos ϑ, (74)

while for the perpendicular components one finds

〈S+(t)〉 = �S sin ϑei(ϕ−{h−γ [1−1/(2S)] cos ϑ}t)

×
{
e−i(γ cos ϑ/2S)t

[
cos

(
γ

2S
t

)

+ i cos ϑ sin

(
γ

2S
t

)]}2S−1

. (75)

The above closed result relies on the fact that S+ couples only
eigenstates with neighboring indices such that all occurring
energy differences are, apart from a constant term, linear in
m. The first line in Eq. (75) describes a classical rotation of
the spin according to Eqs. (66)–(68) whereas the second line
contains quantum effects: The “spin length”

|〈S+(t)〉| = �S sin ϑ

[
1 − sin2 ϑ sin2

(
γ

2S
t

)]S−1/2

(76)

composed from the perpendicular components breathes sinu-
soidally in time. Quantum (quasi)revivals occur at times at
t = 2πkS/γ for any integer k where the state returns precisely
to the submanifold of the coherent states. These times are large
in the semiclassical regime as they are proportional to S.

Regarding small times, we define t =:
√

Sτ and consider
the regime γ τ  √

S, such that for large S � 1 it follows that

|〈S+(t)〉|
�S sin ϑ

≈
(

1 − (γ τ sin ϑ)2/4

S

)S−1/2

≈ e−(γ τ sin ϑ)2/4, (77)

i.e., the spin expectation value 〈	S(t)〉 shows a Gaussian
decay with time scale �t = √

2S/(γ sin ϑ). On this time
scale, sometimes known as Ehrenfest time [39], departures
between classical and quantum dynamics become sizable. The
above finding for �t is consistent with a heuristic uncertainty
argument in the following sense: Replacing in �H�t � � the
energy uncertainty with

√
2 one obtains a lower bound for

�t being proportional to �S which is a constant independent
of S in the semiclassical regime. Thus, this lower bound is
consistent with the above result which grows with the square
root of S.

V. DICKE MODEL

The Dicke model describes the superradiant interaction
of a single cavity mode of a radiation field with N two-
level systems (atoms) [10]. Although introduced already in
the 1950s, this model continues to be investigated under
various aspects; as a guide to the recent literature see, e.g.,
Refs. [40–43].

Focusing again on the sector of maximal spin S = N/2, the
Dicke Hamiltonian can be formulated as

H = �ωa+a + Sz + λ√
2S

Sx(a+ + a) (78)

= 1

2
(p2 + ω2q2) + Sz + λ

√
ω

�S
Sxq, (79)

where the parameters ω, , and λ have all dimension of
inverse time. In the classical limit, the superradiant phase,
characterized by a finite bosonic occupation in the ground state,
occurs for λ2 > ω. The expectation value of the Hamiltonian
within a tensor product of an oscillator and an SU(2) coherent
state reads

〈H〉 = �ω|α|2 + �S cos ϑ

+ λ√
2S

�S sin ϑ cos ϕ(ᾱ + α), (80)

which perfectly matches the classical expression. The
(semi)classical equations of motion can be obtained analo-
gously as Eqs. (66)–(68),

dᾱ

dt
= iωᾱ + i

�

λ√
2S

�S sin ϑ cos ϕ, (81)

dsx

dt
= − sin ϑ sin ϕ, (82)

dsy

dt
=  sin ϑ cos ϕ − λ√

2S
cos ϑ(ᾱ + α), (83)

dsz

dt
= λ√

2S
sin ϑ sin ϕ(ᾱ + α), (84)

and a direct (but again quite lengthy) calculation of the energy
variance yields

(�H)2 = 1 + 2 (85)
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with the leading-order term

1 = (�ω)2|α|2 + (�S)2

2S
2 sin2 ϑ

+(�S)2 λ2

2S

[
1

2S
(sin2 ϑ sin2 ϕ + cos2 ϑ)(ᾱ + α)2

+ sin2 ϑ cos2 ϕ

]
+ �ω

λ√
2S

�S sin ϑ sin ϕ(ᾱ + α)

−
λ√
2S

(�S)2

S
cos ϑ sin ϑ cos ϕ(ᾱ + α) (86)

and the subleading contributions

2 = (�S)2 λ2

(2S)2
(sin2 ϑ sin2 ϕ + cos2 ϑ) (87)

= λ2

(2S)2
(〈Sy〉2 + 〈Sz〉2). (88)

Finally, comparison with Eqs. (81)–(84) shows

1 = �

2

(
ω(∂t ξ )2 + (∂tπ )2

ω

)
+ (�S)2

2S
(∂t	s)2

, (89)

in accordance with the general results (46), (63), and (A7).
Note that the higher-order contributions (88) describing

decoherence effects depend only on the coupling parameter λ

but not on the frequencies ω, , in accordance with the fact
that spin and oscillator show perfectly coherent time evolutions
in the absence of coupling. Another distinctive feature of the
result (88) [compared to, e.g., Eq. (71)] is its simplicity which
calls for further applications. In fact, an extensive numerical
study of the dynamics of the Dicke model in the semiclassical
regime was performed recently in Ref. [43]. Here the initial
condition was, as in the present work, a tensor product of an
oscillator and a spin coherent state, and it is straightforward
to evaluate the above 2 in terms of such dynamical data. In
particular, it is an interesting speculation whether or not 2

behaves differently in the regular versus (quantum) chaotic
regime as studied in Ref. [43]. Another aspect is to compare
the Ehrenfest times �t found numerically with estimates
according to

√
2�t � �.

VI. COHERENT INTERTWINERS IN SPIN NETWORKS

We now apply our general findings on coherent expectation
values of operator products to spin network states as studied
in loop quantum gravity (LQG) [12,44,45]. In brief, a spin
network is a collection of points (called vertices or nodes)
in (typically) three-dimensional space connected by one-
dimensional curves (edges). Each edge is assigned a spin
of individual length, and a spin network state in the tensor
product of all those SU(2) representations is defined by the
additional requirement that all spins joining in a given node
are coupled to a total singlet. The latter property implements
the Gauss constraint on the holonomy and flux variables used
in LQG [46,47].

A convenient parametrization of spin network states are co-
herent intertwiners as introduced by Livine and Speziale [11].
Fixing an N -valent node (connecting N edges), one considers

a tensor product

|�〉 :=
N⊗

a=1

|ϑa,ϕa〉 (90)

of SU(2) coherent states describing the spin on each edge. A
coherent intertwiner is then defined by the projection of this
object onto the singlet subspace [11]

|�〉s = P |�〉√〈�|P |�〉 , (91)

where the denominator takes care of the normalization. The
projection operator can be formalized by a Haar integration
over all uniform rotations of the N spins (group averaging),

P =
∫

SU(2)
dμ exp

(
iψ 	n

∑
a

	Sa

)
(92)

= 1

4π2

∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕ

∫ 2π

0
dψ sin2 ψ

2

× exp

(
iψ 	n

∑
a

	Sa

)
(93)

with 	n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ). Here and in what
follows we take all spin operators to be dimensionless (as
a factor of � will occur below in the Planck length squared). In
particular, a coherent intertwiner is by construction invariant
under arbitrary rotations of all spins meaning(

N∑
a=1

	Sa

)
|�〉s = 0. (94)

Moreover, nodes in a spin network allow for a geometric
interpretation in terms of convex polyhedra [48]. From a
classical point of view, this relies on a theorem due to
Minkowski [49]. It states that given N unit vectors 	sa and N

positive numbers Aa fulfilling
∑

a Aa	sa = 0, there is a unique
convex polyhedron with N faces such that 	sa is the normal
to the ath face and Aa is its area. Thus choosing as areas the
quantum numbers Sa , the classical closure relation

N∑
a=1

Sa	sa = 0 (95)

ensures that the geometric information contained in the
state (90) encodes a convex polyhedron. The quantum coun-
terpart of the relation (95) is Eq. (94) giving rise to the notion
of a quantum polyhedron [48]. In the framework of LQG, the
spin operators representing the faces of the polyhedron are, up
to a prefactor, considered to be flux operators [46,47]

	Ea = 8πγ �2
P

	Sa (96)

with γ being the Immirzi parameter and the squared Planck
length �2

P = �G/c3.
Let us now explore expectation values within coherent

intertwiners. Here one can concentrate without loss of gen-
erality on operators unchanged by uniform rotations since
for any operator being the sum of a rotationally invariant
part and terms without this property, only the former will
contribute. Any rotationally invariant operator Q commutes
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with the projector onto the singlet space, [Q,P ] = 0, such that
PQP = QP = PQ. Therefore we can use the result (57) to
obtain a semiclassical approximation to the expectation value
within a coherent intertwiner,

s〈�|Q|�〉s = 〈�|PQ + QP |�〉
2〈�|P |�〉 (97)

= 〈�|Q|�〉 +
N∑

a=1

1

2Sa

×
3∑

i=1

〈�|[iSi
a,Q

]|�〉Ci
a(�) + · · · (98)

with

Ci
a(�) = 〈�|[iSi

a,P
]|�〉

〈�|P |�〉 . (99)

Thus, the expectation value of Q is in leading order just
given by the expectation value of the unprojected state (90),
and the normalization factor in the definition (91) drops
out. For the subleading corrections one needs to determine
the coefficients (99). Here both numerator and denominator
are conveniently formulated in terms of Haar integrations
as shown explicitly in Eq. (93). In the semiclassical regime
studied here where all spins are long, ∀aSa � 1, these integrals
become amenable to a saddle-point approximation as worked
out in Ref. [11]. For the denominator one finds for a general
N -valent node

〈�|P |�〉 = 1√
π det H

+ tr(H−1)

4
√

π det H
+ · · · , (100)

where

Hij =
N∑

a=1

Sa

(
δij − si

as
j
a

)
(101)

is twice the negative Hessian of the saddle-point expression,
and the details of the calculation can be found in Appendix B.
Since H is a linear combination of geometric projection oper-
ators (δij − si

as
j
a ) with positive coefficients, its eigenvalues

are non-negative, and zero eigenvalues only occur in the
degenerate case where all vectors 	sa are collinear, which we
shall not consider here. Thus, the eigenvalues of H can be
taken to be positive, and the determinant can be formulated
more explicitly as [11]

det H = T

2

∑
ab

SaSb(	sa × 	sb)2

−1

6

∑
abc

SaSbSc|(	sa × 	sb) · 	sc|2 (102)

with T = ∑
a Sa . The semiclassical limit of a quantum

polyhedron is obtained by rescaling all quantum numbers as
Sa �→ λSa with some integer λ � 1. Thus the leading term in
Eq. (100) (already obtained in Ref. [11]) is of order λ−3/2 while
the subleading correction scales like λ−5/2. The numerator in
Eq. (99) can be evaluated via saddle-point approximation in a
similar fashion (see Appendix B) giving, again for a general

N -valent node fulfilling the classical closure relation (95),

〈�|[i 	Sa,P ]|�〉 = Sa

	sa × (H−1	sa)√
π det H

(103)

such that for the coefficients themselves we have the amazingly
simple result

	Ca(�) = Sa	sa × (H−1	sa). (104)

The expression (103) is of order λ−3/2 while the coeffi-
cients (104) are independent of λ and vanish if the matrix H

is proportional to the unit matrix. Thus, polyhedra where all
eigenvalues of H are degenerate enjoy an enhanced classical
character in the sense that the leading order of semiclassical
corrections to general expectation values (98) vanishes. In the
general case, Eq. (98) tells us that the coherent-intertwiner
expectation value of any (rotationally invariant) operator is in
leading order given by the expectation value of the unprojected
tensor product of SU(2) coherent states, and the leading
correction scales with the inverse of the spin lengths.

The coefficients (104) are universal in the sense that they
are the same for any operator Q. Making use of the symmetry
of H they can also be formulated as

Ci
a(�) = Sa

∑
jkl

εijk(H−1)kl
(
sl
as

j
a − δlj

)
(105)

implying the sum rule

N∑
a=1

Ci
a(�) = −

∑
jkl

εijk(H−1)klH lj = 0, (106)

which also follows from the definition (99) and the quantum
closure relation (94). Thus, the sum rule (106) holds indepen-
dently of the fulfillment of the classical closure relation (95)
which underlies the explicit result (104).

Moreover, it is interesting to note that the matrix H can be
interpreted as the inertia tensor of a distribution of masses Sa

whose positions are given by the unit vectors 	sa . By the same
token, the classical closure relation (95) states that the center
of mass of this distribution lies in the origin of the chosen
coordinate system. In particular, H is proportional to the unit
matrix [such that the expansion coefficients (99) vanish] if the
node has the shape of an Archimedian body such as a regular
tetrahedron. We leave it to further studies to explore further
possible consequences of the above analogy.

Very typical examples of rotationally invariant operators
are volume operators of polyhedra [48,50,51]. The simplest
nontrivial case of a quantum polyhedron is given by a
tetrahedron, i.e., a four-valent node [52]. The volume operator
can be formulated as

V =
√

2

3

√
| 	E1 · ( 	E2 × 	E3)| (107)

using any three of the four flux operators. Squaring this
expression and strippng all prefactors one is led to consider
the expression

Q = 	S1 · (	S2 × 	S3), (108)

acting on the Hilbert space defined by the constraint (94). The
study of this operator in the semiclassical limit has attracted
quite a deal of interest recently [48,53–56]. For the expectation
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value within coherent intertwiners one finds from Eqs. (98)
and (104)

s〈�| 	S1(	S2 × 	S3)|�〉s
= S1S2S3

[	s1(	s2 × 	s3) + 1
2 (	s1 × (	s2 × 	s3)

·[	s1 × (H−1	s1)] + c.p.)
] + · · · (109)

As before, the form of the subleading corrections here holds if
the classical closure relation (95) is fulfilled.

VII. SUMMARY AND OUTLOOK

We have derived general systematic expansions with respect
to quantum parameters of expectation values of products of
arbitrary operators within both oscillator coherent states and
SU(2) coherent states. These results are versatile tools for
the study of the semiclassical regime of generic quantum
systems. In particular, we prove that the energy fluctuations
of an arbitrary Hamiltonian are in leading order entirely due
to the time dependence of the classical variables, a result very
general and very intuitive at the same time.

Our findings offer many possibilities for application in
various fields of physics. Here we have specifically studied the
Dicke model stemming from quantum optics, and the LMG
model originating from nuclear physics. For the latter system
we have investigated decoherence effects (i.e., deviations from
the submanifold of coherent states) via an exact solution of
the dynamics. Finally we have applied our general results
to coherent intertwiners in spin networks as investigated in
LQG. For expectation values of rotationally invariant operators
(and these are the only ones contributing) one finds here a
subleading correction to the classical limit given in terms of
universal (i.e., operator-independent) expansion coefficients
which contain only geometric information about the network
node.

APPENDIX A: N > 1 DEGREES OF FREEDOM

Let us now extend our results on the coherent-state
expectation values of operator products to systems with N > 1
degrees of freedom. We start by two oscillatory degrees of
freedom qa , pa with frequencies ωa , a ∈ {1,2}. Iterating the

arguments leading to Eq. (36) one finds

〈α|AB|α〉 =
∞∑

m,n=0

�
m+n

m!n!
〈α|[Q2,[Q1,A]n]m|α〉

×〈α|[Q+
2 ,[Q+

1 ,B]n]m|α〉. (A1)

with |α〉 = |α1〉 ⊗ |α2〉 and

Qa = i√
2�

(√
ωaqa − i

pa√
ωa

)
. (A2)

Since Q1, Q2 commute, the corresponding left arguments in
the above nested commutators can be freely interchanged such
that

(m + n)!

m!n!
〈α|[Q2,[Q1,A]n]m|α〉〈α|[Q+

2 ,[Q+
1 ,B]n]m|α〉

=
∑
Pmn

〈α|[QPmn(1),
[
QPmn(2), . . .

[
QPmn(m+n),A

]
. . .

]]|α〉

×〈α|[Q+
Pmn(1),

[
Q+

Pmn(2), . . .
[
Q+

Pmn(m+n),B
]
. . .

]]|α〉,
(A3)

where the sum goes over all functions Pmn : {1, . . . ,m + n} →
{1,2} taking m times the value 2 and n times the value 1. Thus
we arrive at

〈α|AB|α〉

=
∞∑

n=0

�
n

n!

∑
Pn

〈α|[QPn(1),
[
QPn(2), . . .

[
QPn(n),A

]
. . .

]]|α〉

×〈α|[Q+
Pn(1),

[
Q+

Pn(2), . . .
[
Q+

Pn(n),B
]
. . .

]]|α〉, (A4)

where the second sum extends now over all functions Pn :
{1, . . . ,n} → {1,2}. Moreover, it is straightforward to see that
the above expression also holds for an arbitrary number N of
oscillatory degrees of freedom with |α〉 = |α1〉 ⊗ · · · ⊗ |αN 〉
and functions Pn : {1, . . . ,n} → {1, . . . ,N}. In particular, the
variance of a Hermitian operator A can be expressed as

(�A)2 =
∞∑

n=1

�
n

n!

∑
Pn

|〈α|[QPn(1),

[
QPn(2), . . .

[
QPn(n),A

]
. . .

]]|α〉|2, (A5)

and the leading-order results for energy fluctuations are given
in Eqs. (44)–(46).

The counterpart of Eq. (A1) for two spins 	S1, 	S2 reads

〈z|AB|z〉 =
2S2∑
m=0

2S1∑
n=0

(2S2 − m)!

m!(2S2)!

(2S1 − n)!

n!(2S1)!
〈z|

[
i

�
S̃−

2 ,

[
i

�
S̃−

1 ,A

]
n

]
m

|z〉〈z|
[

i

�
S̃+

2 ,

[
i

�
S̃+

1 ,B

]
n

]
m

|z〉. (A6)

with |z〉 = |z1〉 ⊗ |z2〉. Due to the more complicated pref-
actors, a similarly compact form as in Eq. (A4) for the
full expansion seems to be unachievable for spin systems.
The leading terms of energy fluctuations given in Eqs. (62)
and (63), however, are again rather simple and allow for an
intuitive interpretation.

Finally, combining both types of systems, the leading-order
contribution to the fluctuation of a Hamiltonian depending on

N oscillatory degrees of freedom and M spins reads

(�H)2 = �

2

N∑
a=1

[
ωa〈∂tqa〉2 + 〈∂tpa〉2

ωa

]
+ O(�2)

+
M∑

b=1

{
(�Sb)2

[
1

2Sb

(∂t	sb)2 + O

(
1

S2
b

)]}
. (A7)
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APPENDIX B: NORMALIZATION OF COHERENT
INTERTWINERS AND RELATED INTEGRALS

In order to evaluate the normalization integral of coherent
intertwiners in the semiclassical regime, we shall use a slightly
different version of SU(2) coherent states generated by

V (ϑ,ϕ) = e−ϕSz

e−ϑSy

(B1)

such that compared to Eq. (14) one has (dropping again factors
of �)

V (ϑ,ϕ)|S〉 = eiϕSU (ϑ,ϕ)|S〉, (B2)

i.e., the coherent states generated by the operators (16)
and (B1) just differ by a phase factor which drops out from all
expectation values. The operator (B1) fulfills

V + 	SV = 	uSx + 	vSy + 	sSz (B3)

with

	u = (	ez × 	s) × 	s
|	ez × 	s| , 	v = 	ez × 	s

|	ez × 	s| (B4)

such that 	u, 	v, 	s, form an orthonormal system. If one had used
the original operator (16) for generating coherent states the
form of the vectors 	u, 	v would be less transparent. Now the
normalization integral can be written as

〈�|P |�〉 =
∫

dμ

N∏
a=1

〈Sa|eiψ 	na
	Sa |Sa〉 (B5)

with

nx
a = 	n	ua, ny

a = 	n	va, nz
a = 	n	sa, (B6)

where 	n is the rotation axis occurring in Eqs. (92) and (93).
Taking into account the explicit form of the rotation matrix
element [57]

〈S|eiψ 	n	S |S〉 =
(

cos
ψ

2
+ inz sin

ψ

2

)2S

, (B7)

elementary manipulations lead to

〈�|P |�〉 = 1

2π2

∫ π

0
dϑ sin ϑ

∫ 2π

0
dϕ

∫ π/2

0
dψ sin2 ψ

×
∑
η=±

N∏
a=1

(η cos ψ + i	n	sa sin ψ)2Sa , (B8)

where the cosine of ψ is non-negative in the entire integration
interval. Following Ref. [11] we introduce 	p := 	n sin ψ

fulfilling

d3p = sin ϑ sin2 ψ cos ψdϑdϕdψ (B9)

such that

〈�|P |�〉 = 1

2π2

∑
η=±

∫
p�1

d3p√
1 − p2

eSη( 	p), (B10)

where

Sη( 	p) =
N∑

a=1

2Sa ln(η
√

1 − p2 + i 	p	sa). (B11)

In this form the integral can be evaluated via saddle-point
approximation to Sη( 	p). As discussed in detail in Ref. [11],
provided that the classical closure relation (95) holds, the
maximum of Sη( 	p) occurs at 	p = 0 with

S+(0) = 0, S−(0) = 2πi

N∑
a=1

Sa (B12)

and since the latter sum must be an integer for a nontrivial
singlet space we have exp (S±(0)) = 1. The Hessian is given
by [cf. Eq. (101)](

∂2S±( 	p)

∂pi∂pj

)
	p=0

=: −2Hij = −2
N∑

a=1

Sa

(
δij − si

as
j
a

)
. (B13)

Extending now the integration domain in Eq. (B10) to the
infinite space (as the integrand falls off rapidly), we are left
with simple Gaussian integrals leading to the result (100)
where the leading first term was already obtained in Ref. [11]
while the subleading correction stems from expanding the
square root in Eq. (B10).

To compute the numerator of the coefficients (99) we
consider

〈�|[iVa
	SaV

+
a ,P ]|�〉 =

∫
dμ〈Sa|[i 	Sa,e

iψ 	na
	Sa ]|Sa〉

×
∏
b �=a

〈Sb|eiψ 	nb
	Sb |Sb〉 (B14)

with Va = V (ϑa,ϕa). With the help of the rotation matrix
element [57]

〈S − 1|eiψ 	n	S |S〉 =
√

2S

(
cos

ψ

2
+ inz sin

ψ

2

)2S−1

×(nx + iny) sin
ψ

2
(B15)

one derives

〈Sa|
[
iSx

a ,eiψ 	na
	Sa
]|Sa〉 = −i

(
cos

ψ

2
+ inz

a sin
ψ

2

)2S−1

×2San
y
a sin

ψ

2
, (B16)

〈Sa|
[
iSy

a ,eiψ 	na
	Sa
]|Sa〉 = i

(
cos

ψ

2
+ inz

a sin
ψ

2

)2S−1

×2San
x
a sin

ψ

2
, (B17)

〈Sa|
[
iSz

a,e
iψ 	na

	Sa
]|Sa〉 = 0. (B18)

Now proceeding as before, the two nontrivial expectation
values can be formulated as

〈�|[iVaS
x
a V +

a ,P
]|�〉

= −iSa

π2

∑
η=±

∫
d3p√
1 − p2

	p	va

η
√

1 − p2 + i 	p	sa

eSη( 	p), (B19)

〈�|[iVaS
y
a V +

a ,P
]|�〉

= iSa

π2

∑
η=±

∫
d3p√
1 − p2

	p	ua

η
√

1 − p2 + i 	p	sa

eSη( 	p). (B20)
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Performing again a saddle-point approximation to the expo-
nential and expanding the remaining integrand in quadratic
order around 	p = 0 leads to

〈�|[iVaS
x
a V +

a ,P
]|�〉 = −Sa

(	vT
a H−1	sa

)
√

π det H
, (B21)

〈�|[iVaS
y
a V +

a ,P
]|�〉 = Sa

(	uT
a H−1	sa

)
√

π det H
, (B22)

and using Eq. (B3) along with elementary geometric relations
it follows for the coefficients (99) that

	Ca(�) = −Sa

[	ua

(	vT
a H−1	sa

) − 	va

(	uT
a H−1	sa

)]
= Sa	sa × [	va

(	vT
a H−1	sa

) + 	ua

(	uT
a H−1	sa

)]
. (B23)

Finally, observing that 	ua , 	va span the plane perpendicular to
	sa we obtain the result (104), and the numerator of Eq. (99) is
given by Eq. (103).
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