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Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many
redundant registers in an environment containing their classical information. This amplification phenomenon,
where only classical information reaches the macroscopic observer and through which different observers
can agree on the objective existence of such object, has been revived lately for several types of situations,
successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of
two level systems which are initially prepared in the ground state of the XX model, which exhibits different
phases; we find that the different phases have different abilities to redundantly acquire classical information
about the system, the “ferromagnetic phase” being the only one able to complete quantum Darwinism. At the
same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation
that non-Markovian dynamics is associated with backflow of information from environment to system, thus
spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing
a small interaction among them, finding that this spoils the stored information as previously found in the
literature.

DOI: 10.1103/PhysRevA.92.022105 PACS number(s): 03.65.Yz, 64.70.Tg, 75.10.Jm

I. INTRODUCTION

Quantum Darwinism deals with the description and quan-
tification of the reasons why quasiclassical states play a special
role in our world, as they are perfectly suitable to describe
what happens in a broad range of scales [1]. Indeed, in our
daily experience, we only observe phenomena that can be
described by classical laws, despite the fact that classical states
represent a very tiny fraction of the whole Hilbert space of the
Universe.

The theory of open quantum systems explains the emer-
gence of classicality as the result of the interaction of a
small system with a larger one representing the environment.
Decoherence is the tool used to describe the transition from
quantum to classical states through the loss of information
from the system towards the environment [2,3]. When describ-
ing the emergence of decoherence, a partial trace is performed
over the bath’s degrees of freedom; that is, the information
contained in the environment is not accessible at all. Because
of the decoherence process, there are states that naturally
emerge due to their stability with respect to the interaction
with the bath. These states, usually referred to as pointer
states [4], are the best candidates to describe the classical
world.

In addition, most of the information we have about any
system comes from indirect observations made on fragments
of the environment rather than on the system itself. The
fact that different observers accessing different fragments
get the same information about the system is the central
result of quantum Darwinism: the states perceived in the
same way (objectively) by multiples observers are the ones
that are able to spread around them multiple copies of their
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classical information content. This illustrates the emergence
of an objective classical reality from the quantum probabilistic
world.

Recently it has been shown [5] that observers monitoring
a system by measuring its environment can only learn about
a unique (pointer) observable, this being a generic feature of
quantum mechanics. However, this is only part of the program:
observers need to be able to obtain close to full classical
information on the system and agree among themselves. The
latter redundant proliferation of information regarding pointer
states, far from being generic, has been demonstrated to take
place in different physical contexts, that is, considering purely
dephasing Hamiltonians [6], photon environments [7,8], spin
environments [9–11], and Brownian motion [12–14]. It has
recently been stressed that this redundant encoding should
be checked at the level of states, with a spectrum broadcast
structure [15].

The achievement of quantum Darwinism, obviously re-
lated to which Hamiltonians govern the problem, is also
determined by the initial state of the bath. The inhibition of
redundancy in Brownian motion has recently been linked [16]
to the presence of non-Markovianity in the open quantum
system dynamics [17,18]. Intuitively: the rollback of the
decoherence process, through which the environment learns
about the system, and which is a salient feature of non-
Markovian evolution, is expected to spoil records of the
system imprinted upon the environment. In the case of
spins, it is known that mixedness and misalignment [10]
(the closeness of bath states to eigenstates of the interaction
Hamiltonian) of environmental units will reduce the bath’s
ability to produce Darwinism. Also, if the bath units are
interacting [11], the redundant classical records will spread and
become inaccessible locally, which in the end forces observers
to collect huge amounts of bath fragments, thus ruining
Darwinism.
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As stated before, the initial state of the bath can play a
fundamental role towardsin the building-up of Darwinism.
However, so far, only the case of a product state has been
studied. Even in [5], which is the most generic setting
considered so far, a product state is assumed. In this paper,
we take a step foward and start considering the role of
initial correlations in a separable environment: an ensemble
of (uncoupled) spins is prepared in the ground state of the
(coupled) XX model in the presence of an external magnetic
field. In fact, by tuning the value of the field, different ground
states with different correlation properties are available. It
will be shown that an initially uncorrelated environment is
more liable to produce quantum Darwinism. Furthermore, by
gently turning on the XX coupling Hamiltonian among bath
spins, we show that redundant classical records in the bath are
spoiled in proportion to the coupling. Finally, we analyze the
non-Markovianity of the system’s evolution, showing that its
behavior follows the same trend of quantum Darwinism. We
end our work by conjecturing a possible relation between the
two phenomena, based on the amount of correlations present
in the environment as a pernicious influence.

II. QUANTUM DARWINISM

Quantum Darwinism is complete when the environment is
able to store redundantly copies of the classical information
about a pointer observable of the system, meaning that any
other information about the system has not “survived” the
(time) evolution. This is typically quantified by the mutual
information between the system and fractions F of the
environment: classical, objective existence of the system
requires different observers, who can access different and
independent fractions of the environment, to agree on the
properties of the system by querying such fractions. The size
of the fractions should not be a limitation, since otherwise
we would need a minimum amount of environment to learn
something about the system. Mathematically this condition
basically means that the mutual information between system
and fractions of the environment I (S : F) must be almost
independent of the fraction size (#F) and on which fraction
we have chosen [i.e., I (S : F) �= f (#F) and I (S : F1) = I (S :
F2) when #F1 = #F2].

Let us consider a system S in contact with an environment E
and suppose that we have knowledge about the inner structure
of E , that is, E = ⊗N

i=1Ei , where each Ei has dimension D. We
also suppose that any individual fragment of the environment
F = ⊗#F

i=1Ei [19] of size #F = f N (f · N , with 0 � f � 1,
is the number of E’s spins contained in F) is accessible. The
mutual information between S and F , which quantifies how
much information about S is present in fragment F , is defined
as

I(S : F) = HS + HF − HSF , (1)

where H is the von Neumann entropy. The emergence of
Darwinism can be explained by the following example: the
pure system + environment state

|φSE〉 = (α|0〉 + β|1〉) ⊗ |ε(0),ε(1), . . . ,ε(N)〉 (2)

evolves into

|φ′
SE〉 = α|0〉∣∣ε(0)

0 ,ε
(1)
0 , . . . ,ε

(N)
0

〉 + β|1〉∣∣ε(0)
1 ,ε

(1)
1 , . . . ,ε

(N)
1

〉
,

(3)

where 〈ε(n)
i |ε(n)

j 〉 = δij . In such a GHZ state, the information
carried out by the system can also be found considering any
possible environment fraction of any size. In fact, all the
reduced density matrices have the same entropy, and for any
#F excluding 0 and N , I (S : F) = HS , where ρS is the density
matrix of the system after the bath has been traced out. If the
total state S + E is pure, measuring the whole environment,
one acquires full knowledge about the state of the system, given
that HS = HE . As a further example, let us consider a random
pure state. Is it possible to get a great amount of information
by monitoring only a small part of the bath? What happens
is that, typically, the observer cannot learn anything about a
system without sampling at least half of its environment. This
characteristic behavior is illustrated in Refs. [20] and [21].
In turn, states created by decoherence, which do not follow
this behavior and are those explaining our everyday classical
experience, have zero measure in the thermodynamic limit.

It is pretty natural to ask whether the presence of correla-
tions in the environment facilitates the emergence of quantum
Darwinism. Here, we address this problem considering the
following model: a single spin S (the system) couples to a
collection of N spins. The Hamiltonian considered is H =
HS + HB + HSE , where

HB = −
N∑

i=1

(σ+
i σ−

i+1 + σ−
i σ+

i+1) − h

N∑
i=1

σ z
i , (4)

HSE = d σ z
S ⊗

N∑
i=1

σx
i . (5)

Here, N is the total number of spins in the bath, h is the
strength of the external magnetic field, and periodic boundary
conditions are imposed. Assuming [HS,HSE ] = 0, the system
time scales are of no importance and will be neglected; that is,
we neglect HS unless otherwise specified. Note that the form of
the coupling to the system plays a crucial role in determining
the emergent environment phases [22].

Usually, open quantum systems are studied in the weak-
coupling regime. However, as we stated in Sec. I, we want to
investigate the ability of this spin bath to store classical copies
of the system. Thus, the bath itself must be modified during the
dynamics. To this end, we consider a system-bath interaction
much higher than the bath Hamiltonian itself (d � h ∼ 1),
whose effects on the dynamics can be neglected, at least as a
first approximation.

The initial state of the system is |+〉 = (|↑〉 + |↓〉)/√2 (|↑〉
and |↓〉 are individually the pointer states of the system), while,
assuming zero temperature, the bath is initially prepared in its
ground state |G〉. We have chosen a superposition which is
not an eigenstate of the pointer observable, so the dynamics
produces classicalization/decoherence, but any other initial
state noncommuting with σ z

S would suit the purpose. As
[HS,HSE ] = 0, the evolution of the global state takes the form

|φSE(t)〉 = 1√
2
(|↑〉|G↑〉(t) + |↓〉|G↓〉(t)). (6)
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The system undergoes pure dephasing; that is, its density
matrix evolves in time as

ρS(t) = 1

2

(
1 ν(t)

ν∗(t) 1

)
, (7)

where ν(t) = 〈G↓|G↑〉.
As we prove, different forms for the ground state show

different capabilities of storing redundant copies of classical
information of the system. The case of a ferromagnetic phase
(h > hC = 1; see next section) has been studied [11] and is
an eigenstate of the individual bath operators σ z

i . The precise
form of HSE has been chosen so that it does not commute with
these operators and, thus, can write the system information
onto bath units.

III. QUANTUM PHASES

In this section we briefly review some of the properties of
the isotropic XX Hamiltonian in the presence of a transverse
field, which is exactly the model introduced in (4) to describe
the bath. The exact spectrum of HB can be calculated using
the Jordan-Wigner transformation, which maps spins into
spinless fermions [23]. This model is known not to possess
a proper quantum phase transition. Instead, an infinite-order
Kosterlitz-Thouless [24] quantum phase transition without
symmetry breaking takes place around h = hC = 1.

Depending on the value of the transverse field h, which
plays the role of an effective chemical potential, the number
of fermionic excitations in the ground state changes. In the
following, |Gn〉 indicates the ground state in the n-excitation
sector. Note that each |Gn〉 is the ground state for a finite range
of values of h and that the number of sectors n̄ depends on
the number of spins in the bath as n̄ = (N/2 + 1) for N even
and n̄ = (N + 1)/2 for N odd. For h � hC , no excitations are
present, that is, the ground state is |G0〉, while |Gn̄−1〉 is the
ground state in the region near h = 0. In the thermodynamic
limit, the magnetization grows continuously from h = 0 up
to h = 1 and then remains constant, showing a cusp around
h = hC [25].

IV. RESULTS

A. Quantum Darwinism from ground-state ordering

As stated before, we discuss the emergence of Darwinism
preparing the bath at its ground level. At the initial time we
assume

|ψ(0)〉 = |+〉 ⊗ |Gn〉. (8)

In the strong-coupling regime, that is, neglecting HB during
the dynamics, the evolution is given as

|ψ(t)〉 = e−iHSE t |ψ(0)〉. (9)

Because of the form of the interaction, the initial state
evolves spanning the whole set of 2N+1 basis states. This
exponential dependence strongly limits the maximum number
of spins that can be introduced to obtain the numerical solution
in computationally reasonable times. However, if the bath’s
initial (ground) state is either |G〉 = |G0〉 or |G〉 = |G1〉, due
to the invariance of these states under any spin-spin swap,
the effective action of HSE takes a very simple form. Let us
indicate by |i〉 the i-magnon state, that is, the swap-invariant

FIG. 1. (Color online) I(S : F) at t = π/4 for N = 14 and in
the strong-coupling regime d � h ∼ 1 for different values of h. The
eight lines correspond to the eight ground states of HB . The darker
the line, the higher the value of h. For h = hC = 1 (black curve),
I(S : F) = HS for any size fraction: even observing only one spin
in the bath we can learn all the classical information on the system;
quantum Darwinism has been fully achieved. For lower h (the lightest
line corresponds to the ground state of the sector 0 � h � 0.11) a
significant fraction size (#F ∼ N/2) has to be observed in order to
obtain enough information [I(S : F) ∼ HS], so quantum Darwinism
has not succeeded.

state with i 1s and (N − i) 0s; for instance, |G0〉 = |0〉 and
|G1〉 = |1〉. Consider also that

e−iHSE t |ψ(0)〉 = e−idσ z
S

∑
i σ x

i t |ψ(0)〉
= 1√

2

(
e−id

∑
i σ x

i t |↑〉|G〉 + e+id
∑

i σ x
i t |↓〉|G〉).

It is easy to show that
∑

i σ
x
i couples |i〉 to |i + 1〉 and to

|i − 1〉, with no other states involved.
Then, as detailed in the Appendix, an effective Hamiltonian

with N + 1 degrees of freedom can be built to describe the
evolution, (9), of (8),

Heff =
N∑

n=0

(A+
n |n〉〈n + 1

∣∣ + A−
n |n〉〈n − 1|), (10)

where A−
n = √

n(N − n + 1) and A+
n = A−

n+1. As the transi-
tion from |G〉 = |G0〉 to |G〉 = |G1〉 takes place at hC , we
can monitor the qualitative change around the critical point by
considering very long chains.

The simple form of the evolution operator allows us to learn
about the recurrence time of the system. In fact, we have

|ψ(π/2d)〉 = UX|ψ(0)〉, (11)

where UX = ⊗N
i=1σ

x
i is the spin-flip operator. Then, at d·t =

π/2, the evolved state is identical to the initial one provided
that the exchange |↑〉 � |↓〉 has been applied to every single
spin. Thus, as far as the information content of the state is
considered, π/2 represents the model periodicity, and π/4
the time when the influence of the environment over the
state is maximized before revival takes place. Based on these
considerations, we also expect that quantum Darwinism effects
are more evident for π/4.

In Fig. 1, we chose the optimal time d·t = π/4 and
calculated I(S : F) as a function of #F and for different values
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of h in order to take into account any of the possible ground
states |Gn〉 of HB for a bath of 14 spins. (Note that all fragments
in the bath are equal and thus interchangeable). From Fig. 1,
we learn that the presence of correlations in the initial state
(h < hC) has the tendency to destroy the emergence of
quantum Darwinism, while, as expected, uncorrelated states
(h � hC) bring perfect redundant information proliferation.
When moving towards lower values of h (lighter curves) the
behavior of I(S : F) tends to that observed upon picking
random states (no Darwinism); however, for very low h

the shape returns to a Darwinism-like one, even though the
achieved slope is far from being optimal.

A possible intuitive explanation of the observed trend,
although it will have to remain as a conjecture at this stage,
comes from studying the entanglement properties of ground
states of the XY model, both bipartite [26] and multipartite
[27]. When we take a given fraction, its initial entropy is
higher when it is more entangled with the rest of the bath, thus
more (multipartite) entanglement means more initial entropy
of the fraction and thus less ability to store new information
about the system. Thus, as discussed in [10], the best situation
for Darwinism is when each bath unit is initially pure (has no
entropy, so it can grow its entropy maximally through learning
the system’s state) and when they are orthogonally aligned
with the eigenbasis of the interaction Hamiltonian (this is
why the h = hC case is optimal). As we move from h = hC

to lower field values, multipartite entanglement increases
each fraction’s entropy and worsens the ability to produce
darwinism. However, when the ground state is half-filled,
that is, when h ∼ 0, a new competing effect appears: the
system von Neumann entropy drops dramatically close to
0 at the time when Darwinism is expected to appear (not
shown). At the same time, the bath’s single-fraction density
matrix remains maximally mixed. Because of this drop, the
difference between HF and HSF becomes less relevant and
the Darwinism measure is more sustained (i.e., better) than
in the presence of more intense values of the magnetic field.
This means that we are facing a nonlinear type of effect: the
multipartite entanglement initially present in the bath is able
to induce a small amount of disorder in the system without
losing its properties.

B. Mixing of classical records

We have seen that initially correlated states in the bath
(h < hC = 1) perform worse in terms of quantum Darwinism.
This means that they are less able to store redundant copies of
the classical information about the system. A further aspect,
as studied, e.g., in [11], is whether classical redundant copies
are stable along time. In that work, the authors study a
spin dephasing star model in which they add random weak
couplings among bath units; such couplings introduce mixing
among the records, thereby leading to a delocalization of the
system’s information. It is thus no longer possible to recover
such information by just measuring a small, local, fraction of
the environment, hence leading to poor Darwinism.

Here we have so far studied the case of evolution dictated
by only HSE , which imprints the information of the system
onto the bath. But what happens if the self-dynamics of the
bath is taken into account? In this case, the individual spins no

FIG. 2. (Color online) Full evolution of I(S : F) including the
bath Hamiltonian, with d = h = 1, N = 12, and H = HSE + λHB .
From top to bottom: λ = 0, 0.25, 0.5, and 1. In the λ = 0 case a
perfect plateau is seen at d·t = π/4 [we have drawn a vertical (red)
line to highlight the plateau] and the full dynamics recurrence time
occurs at d·t = π/2. Once the bath Hamiltonian comes into play,
λ �= 0, the first plateau gets narrower due to mixing of records in
the environment, and the second plateau, even more so. Also, the
recurrence dynamics gets shorter and distorted. The more important
is the role of the bath Hamiltonian, for higher λ, the more pronounced
is the effect. Mixing of bath records breaks the quantum Darwinism
plateau.

longer represent the stable bath modes, whose form could be
obtained by writing the environment in its diagonal form. The
Hamiltonian HB consists of a local (field h) part and a term (XX
interaction) which propagates interaction among bath units,
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therefore it is to be assumed that HB will mix different local
records and diffuse such information in a nonlocal fashion all
over the bath’s extension. If so, a worse plateau should be
observed. Indeed, in Fig. 2 we see that such is the case. There
we let system and bath evolve according to H = HSE + λHB

for different values of λ (to be compared with results in the
previous section, where we set d = 1 and λ = 0, which is the
equivalent of d � 1). A progressive worsening of the plateaus
for higher λ values can be observed, in addition to a distortion
of the periodicity which was present when only HSE was active.

C. Non-Markovianity

So far, we have studied the emergence of Darwinism
induced by the system-bath interaction. As we are working
in the strong-coupling regime, it is quite natural to expect that
memory effects come out together with a flux of information
from the bath to the system. The connection between non-
Markovianity and Darwinism was discussed in Ref. [16]
considering a harmonic oscillator whose position was coupled
to the positions of N harmonic oscillators representing the
bath. In that context, it was shown that the presence of memory
effects inhibits the emergence of objective reality. The same
kind of analysis can be carried out considering the model under
investigation.

The measure introduced in Ref. [17] provides a way to
quantify the amount of non-Markovianity produced during the
dynamics. Let us briefly recall this definition. In a Markovian
process, the distinguishability between any pair of quantum
states is a monotonously decreasing function of time. Thus,
the presence of time windows where some states become
more distinguishable from each other witnesses the presence of
non-Markovianity in the dynamical map. The non-Markovian
quantifier is then defined as

N = max
ρ1,ρ2

∫
σ>0

dt σ (t,ρ1,2(0)), (12)

where the trace distance, which quantifies distinguishability,
is D(ρ1,ρ2) = Tr|ρ1 − ρ2|/2 and where its rate of change is
σ [t,ρ1,2(0)] = dD[ρ1(t),ρ2(t)]/dt . The maximum in Eq. (12)
is taken over any possible pair of states {ρ1,ρ2}. In the case
of pure dephasing, it was shown in Ref. [28] that there is
a simple way of calculating N in terms of the Loschmidt
echo: the trace distance of any pair of (qubit) system states is

0.2 0.4 0.6 0.8 1.0 1.2
h

0.5

1.0

1.5

FIG. 3. (Color online) Non-Markovian quantifierN for a 12-spin
bath in the strong-coupling regime.

0 20 40 60 80 100 120
N

0.2

0.4

0.6

0.8

1.0

FIG. 4. (Color online) Non-Markovianity immediately before
the critical point N (h−

C ) as a function of the bath size N .

D[ρ1
s (t),ρ2

s (t)] = √
L(t), where the Loschmidt echo is L(t) =

|ν(t)|2.
In Fig. 3 we plot N as a function of h for a bath of 12

spins. The measure is taken considering times between 0 and
π/4. In agreement with the results in Ref. [16], the evolution
is completely Markovian for h � hC . By lowering the value
of h and passing through the whole family of |Gn〉, the value
of N increases monotonically as magnetization decreases and
reaches its maximum for h = 0. From this point of view, the
result is qualitatively similar to the one obtained considering
Darwinism. In other words, the higher the amount of non-
Markovianity, the smaller the ability to proliferate throughout
the environment.

A more detailed analysis can be given by calculating N
around h = hC by means of the exact solution introduced in
Sec. IV A. As expected, for h � hC , N = 0 irrespective of the
bath’s size. More interesting is the behavior immediately below
the critical point. Indeed, except for the case of very short
chains (N � 8), N (h−

C ) has a constant value (see Fig. 4). In a
way, N plays the role of a precursor of the Kosterlitz-Thouless
phase transition, as the critical point can be spotted far before
reaching the thermodynamic limit by monitoring the amount
of non-Markovianity.

V. CONCLUSIONS

In conclusion, we have studied several aspects of the
emergence of quantum Darwinism in the pure-decoherence
setting due to a spin bath. The main scope of our work being
the investigation of the role of the initial fragment-fragment
correlations, we have chosen to prepare the bath in different
quantum phases of the isotropic XX model with a transverse
field. If the initial bath’s state is uncorrelated (h � hC), as
already known, quantum Darwinism arises as redundant pro-
liferation of information is produced throughout the bath. The
presence of initial correlations (h < hC), however, represents
an obstacle towards the building-up of classical objectivity.

We have also quantified the amount of non-Markovianity
of the system’s dynamics, finding that it correlates well
with the absence of quantum Darwinism. This offers further
evidence of what was already shown in [16] for the Brownian
oscillator model.

Finally, along the lines presented in [11], we have shown
that coupling between spins in the bath necessarily ruins the
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achieved redundant classical information storage. This can
be understood as mixing and delocalization of such records,
whereby information can no longer be gained locally through
a small bath’s fragments.

As the main conclusion, we have found that the quantum
Darwinism program is better achieved if the environment is
similar to a blank slate (no correlations) made of uncoupled
units, as intuitively is to be expected from any good memory
device.
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APPENDIX: SIMPLIFIED EXACT SOLUTION AROUND
THE CRITICAL POINT

According to the notation introduced in the text, for fields
immediately smaller than hC , the ground state of HB is the
single-magnon state

|G1〉 = 1√
N

∑
i

|0,0, . . . ,1i , . . . ,0〉. (A1)

Let us assume that the bath is initially prepared in |G〉 = |G0〉
or in |G〉 = |G1〉, while the initial state of the system is |+〉 =
(|0〉 + |1〉)/√2. Due to the purely dephasing character of the
coupling, the evolution in time |ψ(t)〉 = e−iH t |G〉 ⊗ |+〉 can
be split into

|ψ(t)〉 = 1√
2
(e−iH0t |G〉 ⊗ |0〉 + e−iH1t |G〉 ⊗ |1〉), (A2)

where H0 = −H1 = ∑N
i=1 σx

i only involve bath degrees of
freedom.

Given that |G〉 is invariant under any spin-spin swap, its
evolution takes a very simple form. Let us indicate by |i〉 the
i-magnon state, that is, the swap-invariant state with i 1s (let
us point out that |i〉 �= |Gi〉 unless i = 0,1). It is easy to show
that H0 couples |i〉 to |i + 1〉 and to |i − 1〉, with no other states
involved. Then an effective Hamiltonian with N + 1 degrees
of freedom can be built to describe the evolution of |G〉,

Heff =
N∑

n=0

(A+
n |n〉〈n + 1| + A−

n |n〉〈n − 1|), (A3)

where A−
n = √

n(N − n + 1) and A+
n = A−

n+1.

Once the effective Hamiltonian has been derived, the exact
dynamics of the initial state |G〉 ⊗ |+〉 takes the form

|ψ(t)〉 = 1√
2

N∑
n=0

[cn(t)|n〉 ⊗ |0〉 + cn(−t)|n〉 ⊗ |1〉]. (A4)

The reduced density matrix of the system is then given by

ρS(t) = 1

2

(
1 ν(t)

ν∗(t) 1

)
, (A5)

where ν(t) = ∑
n c2

n(t).
If we want to calculate the reduced density matrices of

fractions of the bath we need to decompose the states n
into subparts. As all the states involved have long-range
correlations, we limit our calculation to considering the first k

spins of the baths (the result would be identical for any group
of k spins). So, defining the partition {k,N − k}, the state |n〉N
(the subscript indicates the Hilbert space where the state is
defined) can be written as

|n〉N =
imax∑

i=imin

fN,n,i,k|i〉k|n − i〉N−k, (A6)

where imax = min[k,n], imin = max[0,k + n − N ] and where

fN,n,i,k =
√(

N − k

n − i

)(
k

i

)/(
N

n

)
. (A7)

Eliminating k spins from the bath gives

ρk̄,S(t) = 1

2

k∑
i=0

N−k∑
n,m=0

cn+i(t)c
∗
m+i(t)fN,n+i,i,kf

∗
N,m+i,i,k|n〉

× 〈m| ⊗ |0〉〈0|

+ 1

2

k∑
i=0

N−k∑
n,m=0

cn+i(t)c
∗
m+i(−t)fN,n+i,i,kf

∗
N,m+i,i,k|n〉

× 〈m| ⊗ |0〉〈1|

+ 1

2

k∑
i=0

N−k∑
n,m=0

cn+i(−t)c∗
m+i(t)fN,n+i,i,kf

∗
N,m+i,i,k|n〉

× 〈m| ⊗ |1〉〈0|

+1

2

k∑
i=0

N−k∑
n,m=0

cn+i(−t)c∗
m+i(−t)fN,n+i,i,k

× f ∗
N,m+i,i,k|n〉〈m| ⊗ |1〉〈1|. (A8)

Let us assume that the bath is initially prepared in |n = 0〉.
For t = π/4, the state takes the form

|ψ(t)〉 = 1√
2
[(|0〉 + i|1〉)⊗N ⊗ |0〉 + [(|0〉 − i|1〉)⊗N ⊗ |1〉]

(A9)
and brings perfect Darwinism.
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